当前位置:文档之家› 最新光学信息处理实验

最新光学信息处理实验

最新光学信息处理实验
最新光学信息处理实验

光学信息处理实验

光学信息处理实验

阿贝成像与空间滤波实验 (2)

调制 (5)

光栅自成像实验 (8)

马赫—泽德干涉仪 (10)

阿贝成像与空间滤波实验

光学信息处理是在上世纪中叶发展起来的一门新兴学科, 1948年首次提出全息术,1955年建立光学传递函数的概念,1960年诞生了强相干光——激光,这是近代光学发展历史上的三件大事。而光学信息处理的起源,可以追溯到阿贝的二次成像理论的提出和空间滤波技术的兴起。空间滤波的目的是通过有意识地改变像的频谱,使像产生所希望地变换。光学信息处理则是一个更为广阔地领域,它主要是用光学方法实现对输入信息的各种变换或处理。阿贝于1893年,波特于1906年为验证这一理论所作的实验,说明了成像质量与系统传递的空间频谱之间的关系。

实验目的

频谱滤波实验是信息光学中最典型的实验,通过对频谱的观察和动手完成阿贝——波特实验(方向滤波),高通滤波、低通滤波实验,可加深对傅立叶信息光学中的空间频率、空间频谱、空间滤波和阿贝成像原理的理解和认识。首先,叙述一下实验原理。

实验原理

阿贝认为在相干的平行光照明下,透镜的成像可以分为两步,第一步是平行光透过物体后产生的衍射光,经透镜后在其后焦面上形成衍射图样。第二步是这

些衍射图上的每一点可以看作是相干的次波源,这些次波源发出的光在像平面上相干叠加,形成物体的几何像。

成像的这两步,从频谱分析的观点来看,本质上就是两次傅立叶变换,如果物光的复振幅分布是g(x 0,y 0),可以证明在物镜后焦面),(ηξ上的复振幅分布是g(x 0,y 0)的傅立叶变换G ),(y x f f (只要令f

f f f y x ληλξ==,;λ为波长,?为透镜的焦距)。所以第一步就是将物光场分布变换为空间频率分布,衍射图所在的后焦面称频谱面(简称谱面或者傅氏面)。第二步是将谱面上的空间频率分布作逆傅氏变换还原成为物的像(空间分布)。按照频谱分析理论,谱面上的每一点均有以下四点明确的物理意义。

第一点:谱面上任一光点对应着物面上的一个空间频率分布。

第二点:光点离谱面中心的距离标志着物面上该频率成分的高低,离中心远的点代表物面上的高频成分,反映物的细节部分。靠近中心的点,代表物面的低频成分,反映物的粗轮廓,中心亮点是0级衍射即零频,她不包含任何物的信息,所以反映在像面上呈现均匀的光斑而不能成像。

第三点:光点的方向是指出物平面上该频率成分的方向,例如横向的谱点表示物面有纵向栅缝。

第四点:光点的强弱则显示物面上该频率成分的幅度大小。

如果在谱面上人为的插上一些滤波器(吸收板可移相板)以改变谱面上的光场分布,就可以根据需要改变像面上的光场分布,这就叫空间滤波。最简单的滤波器就是一些特种形状的光阑。把这种光阑放在谱面上,使一部分频率分量能通过而挡住其它的频率分量,从而使像平面上的图像中某部分频率得到相对加强或者减弱,以达到改善图像质量的目的。常用的滤波方法有如下这些。

1.低通滤波

低通滤波目的是滤去高频成分,保留低频成分,由于低频成分集中在谱面的光轴(中心)附近,高频成分落在远离中心的地方,所以,低通滤波器就是一个圆孔。图像的精细结构及突变部分主要由高频成分起作用,所以经过低通滤波器滤波后图像的精细结构将消失,黑白突变处也变的模糊。

2.高通滤波。高通滤波目的是滤去低频成分而让高频成分通过,滤波器形状是一个圆屏。其结果正好与前面的低通滤波相反,是使物的细节及边缘清晰。3.方向滤波(波特实验)。只让某一方向(如横向)的频率成分通过,则像面上将突出了物的纵向线条。这种滤波器呈狭缝状。

实验仪器

激光器

L:准直透镜 O:物(光栅) L2、L1:付里叶变换透镜 P1:频谱面

P2:像平面 M:全反射镜 C:扩束镜 E:光栅

图1 实验装置光路图

物面O处可放置透射的一维光栅和正交光栅(网格),谱面处放各种滤波器(形状不同的光阑,狭缝等)。按图1调节光路,使激光束经过C、L扩束后准直后,形成大截面的平行光照在物面上,移动L1使像面P2上得到一个放大的实像,并使谱面的衍射图适于各种滤波器的大小,以便于滤波处理。例如当=时,则可选光栅常数mm

mm

f250

=;像面(x,y)可以放得比较远一

d1.0

些,能获得较大的放大倍数,以便看到光栅清晰放大的像。

首先,观察空间滤波的现象。物面上放置一维光栅,光栅条纹沿铅直方向,频谱面上可以看到水平排列的等间距衍射光点如图2(a)所示,中间最亮的点为

0级衍射,两侧分别为2

±,……级衍射点。像面上可以看到黑白相间且界线明

,1±

显的光栅像。

实验步骤

一.在频谱面上可以放一个可调狭缝,逐步缩小狭缝,使只有0级,1

±级衍射通过,如图2(b)。像面上光栅像变为正弦形,光栅间距不变。但明暗条纹之间是逐步渐变的。

二.进一步缩小狭缝,仅使0级衍射通过,如图2(c),这时像面上虽然有亮斑,但不出现光栅像。

三.在谱面上加上光阑,使0级,2

±级通过,如图2(d),则像面上的光栅像的空间频率加倍。

四.用光阑挡去0级衍射而使其它衍射光通过,如图2.2(e),则像面上发生反衬度的半反转,即原来的暗条纹的中间出现细亮线,而原来的亮条纹仍然是亮的。

(a)(b)(c)

(d)(e)

图2空间滤波

θ调制

θ调制彩色合成概况

阿贝成像理论,成功地提出了“频域”概念,以及二次成像过程。θ调制彩色合成(分光滤波)是阿贝成像基本原理的应用,是基于改变频谱,从而获得需要的像,即将原始像变换成按一定角度的光栅调制像,将该调制像置于光路中,当用白光照明后进行适当的空间滤波处理,实现假彩色编码,从而得到彩色的输出像;当使用单色光照明,则在像平面上各部分呈现不同的灰度,得到有着明暗变化的输出像。

θ调制彩色合成原理

θ调制就是以不同取向的光栅,调制物平面的不同部位,经过空间滤波以后,使像平面上各相应部位呈现不同的色彩。

这里物平面上放置的是用全息照相方法制作的一个θ调制图像(θ

调制板),即由不同取向的光栅组成的图像,例如图1所示图中的大地(草地)、房子、天空分别由三个不同取向的光栅组成,这里三个光栅取向各相差0

60。

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

现代光电信息处理技术样本

1、 在空域中, 如何利用d 函数进行物光场分解。( 5分) 答: 根据δ函数的筛选性质, 任何输入函数都能够表示为 ()()()ηξηξδηξd d y x f y x f 1??∞ ∞-111--=,,, 上式表明, 函数()1y x f 1, 能够分解成为在1y x 1, 平面上不同位置处无穷多个δ函数的线性组合, 系数()ηξ,f 为坐标位于()ηξ, 处的δ函数在叠加时的权重。函数()1y x f 1,经过系统后的输出为 () ()()??????--=??∞∞-112ηξηξδηξd d y x f y x g 2,,,L 根据线性系统的叠加性质, 算符{} L 与对基元函数积分的顺序能够交换, 即可将算符{} L 先作用于各基元函数, 再把各基元函数得到的响应叠加起来 ()()(){}ηξηξδηξd d y x f y x g 2??∞ ∞-112--=,, ,L ( 1.4) (){ }ηξδ--11y x ,L 的意义是物平面上位于()ηξ, 处的单位脉冲函数经过系统后的输出, 可把它定义为系统的脉冲响应函数( 图1.3) ()(){}ηξδηξ--=112y x y x h 2,,; ,L ( 1.5) 2、 卷积与相关各表示什么意义? 在运算上有什么差异? ( 5分) 答: 函数()y x g ,和()y x h ,的卷积定义为 ()()()()ηd ξd ηy ξx h ηξg y x h y x g ??∞ ∞---=*,,,, 则 ()(){}()()y x y x f f H f f G y x h y x g ,,,,F ?=* 即空间域中两个函数的卷积的傅里叶变换等于它们对应傅里叶变换的乘积。另一方面有

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

Matlab在光学信息处理仿真实验中的应用

收稿日期:2004202213 基金项目:佛山科学技术学院校级科研课题经费资助 作者简介:谢嘉宁(1971-),女,广东潮州人,佛山科学技术学院物理系讲师,光学工程硕士,主要从事光学实验教学与 光信息处理的研究. Matlab 在光学信息处理仿真实验中的应用 谢嘉宁1,陈伟成1,赵建林2,陈国杰1,张潞英1 (1.佛山科学技术学院物理系,广东佛山528000;2.西北工业大学应用物理系,陕西西安710072) 摘 要:提出了一种利用计算机并通过Matlab 软件仿真光学信息处理实验的方法,其特点是可以随意改变物理参量,克服了光学实验上难以实现的操作.文中分别给出了光栅衍射、空间滤波、图像边缘增强、相关识别等实验的部分仿真结果. 关键词:Matlab ;计算机仿真;CAI 中图分类号:O4239 文献标识码:A 文章编号:100524642(2004)0620023203 1 引 言 光学信息处理是以光子传递信息,以光学或光电子器件进行操作运算,利用光的透射、干涉和衍射等光学现象来实现对输入信息的各种变换或处理.因此,它也是一门基于实验的科学.随着计算机的广泛使用,计算机仿真实验得到了大量研究,各类CA I 软件应运而生,给光学信息处理的研究和教学带来极大方便.但笔者在调研中发现,大部分的仿真程序由VB ,C 和Fortran 等高级语言编写[1~3].使用这些语言编程,需要编者具有良好的计算机编程能力并花费较多的时间.因此,本文探讨利用Matlab 软件实现对光学信息处理实验的计算机仿真方法. Matlab 作为科学计算软件,主要适用于矩阵 运算和信息处理领域的分析设计,它使用方便、输入简捷,运算高效、内容丰富,并且有大量的函数库可供使用[4].与Basic ,C 和Fortran 相比,用Matlab 编写程序,其问题的提出和解决只需以数 学方式表达和描述,不需要大量繁琐的编程过程,因此特别适合工程计算和教学软件的编写.本仿真实验系统实现了多种衍射屏的夫琅和费衍射、空间滤波、图像边缘增强、相关识别等实验的仿真.2 仿真系统的总体设计 本系统采用Matlab5.3编写,在Pentium 以上个人计算机上、Matlab 环境下运行.为了方便 用户使用,本系统的实验项目模块设置如图1所示.主界面的程序为O IP000.m ,界面如图2所 示.四大系统子模块是该窗体的子窗体模块,分别为O IP1.m ,O IP2.m ,O IP3.m 和O IP4.m ,通过单击主界面上相应的按钮即可启动相应的子窗体,在每一级子窗体界面上有相关的参量选择和操作 . 图1 系统模块功能图 图2 仿真实验系统主界面 第24卷 第6期 2004年6月 物 理 实 验 PH YSICS EXPERIM EN TA TION Vol.24 No.6  J un.,2004

基于MATLAB光学信息处理结果的模拟

主要符号表 λ 入射光的波长 0 r 狭缝到接收屏的距离 a 缝宽(矩形孔的长度) b 矩形孔的宽度 d 缝间距 r 圆孔半径 θ 衍射角 f 透镜的焦距 x 屏上横向坐标 y 屏上纵向坐标 0I 0P 点的光强 I P 点的光强

1 绪论 1.1MATLAB语言用于计算机模拟的优势 有过计算机语言编程经验的人可能都会有这样的体会,当我们进行程序设计时,特别是当程序涉及到矩阵运算或绘图时,程序的编程过程是比较繁琐的,尤其是当我们需要编出一个通用程度较高的程序时就更为麻烦。它不仅要求我们深刻了解所要求解的问题以找到一个可靠性较好的算法,还必须研究各种可能的边界条件,特别是要考虑各种范围的数据大小等。另外,还要熟练掌握所使用的计算机语言。即便如此,所编写出的程序仍有可能会由于这样或那样的原因出错,或得不到满意的结果。因此,对于非计算机专业的科研和教学人员,更渴望有一种能让他们省时省力就能编写出解决专业问题的软件,从而避免资源浪费,提高工作效率。MATLAB就是顺应这一需求产生的,而且从它诞生之日起,就受到用户的欢迎,并且很快在各个领域得到推广。 MATLAB语言是Mathworks公司推出的一套高性能的数值计算可视化软件,它集数值分析、矩阵运算和图形显示于一体,被称为演算纸式的语言,是当今国际上最具活力的软件开发工具包。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形生成及模拟、便捷的与其它程序和语言接口的功能。高质量的图形生成及模拟包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB 命令,以及开发GUI应用程序的各种工具。MATLAB提供了一个人机交互的系统环境,与利用C语言或FORTRAN语言作数值计算的程序设计相比,可以节省大量的 编程时间。通过MATLAB高质量的图形生成及模拟功能对抽象物理现象的细致模拟,使这些过程变得非常直观明了,从而把一些抽象的理论简明化,而且这种方法的实现要比其它的一些仿真软件简单、易行。因为MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台,它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,可以在它的集成环境中交互或编程以完成各自的计算及图形生成与模拟。MATLAB中的Simulink是用来对真实世界的系统建模、模拟和分析的部件,提供了基于MATLAB核心的数值、图形、编程功能的一个块状图界面,对模型进行分析和模拟。通过利用MATLAB的编译器、C/C++数学库和图形库,可以自动地将包含数值计算和图形的MATLAB语言的源程序转换为C/C++的源代码。这些代码根据需要既可以当作子模块嵌入大的应用程序中,也可以作为一个独立的程序脱离环境单独运行。这样把一些复杂的物理现象通过MATLAB模拟出来并生成可执行的程序,可以拿来直接MATLAB使用,这是非常方便的。 MATLAB软件包括基本部分和专业扩展部分。基本部分包括:矩阵的运算和各种变换,代数和超越方程的求解。数据处理和傅立叶边变换,数值积分等等。专业扩展部分称为工具箱。它实际上是用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。易扩展性是MATLAB 最重要的特点,每一个MATLAB用户都可以成为对其有贡献的人。在MATLAB的发展过程中,许多科学家、数学家、工程人员就用它来开发一些新的、有价值的应用程序,所有的程序完全不需要使用低层代码来编写。通过这些工作,已经发展

傅立叶光学实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目: 傅里叶光学实验 实验目的: 加深对傅里叶光学中的一些基本概念与理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。 实验原理: 1、傅里叶光学变换 二维傅里叶变换为:??+-=?=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 ) 1()[(,)]x y g x F a f f -=, ''x y x f f y f f λλ??=????????=???? 复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。 2、阿贝成像原理 由于物面与透镜的前焦平面不重合,根据傅立叶光 学的理论可以知换(频谱),不过只有一个位相因子 的差别,对于一般情况的滤波处理可以不考虑。这个光路的优道在透镜的后焦平面上得到的不就是物函数的严格的傅立叶变点就是光路简单,就是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正就是阿贝当时要改进显微镜的分辨本领时所用的光路。

3、空间滤波 根据以上讨论:透镜的成像过程可瞧作就是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数(,)x y a f f ,再变回到空间函数(,)g x y ,如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。 实验内容: 1、测小透镜的焦距f1 (付里叶透镜f2=45、0CM)、 光路:直角三棱镜→望远镜(倒置)(出射应就是平行光)→小透镜→屏。(思考:如何测焦距?) 夫琅与费衍射: 光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅与费衍射测一维光栅常数; 光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,… 请自己选择待测量的量与求光栅常数的方法。(卷尺可向老师索要) 记录一维光栅的衍射图样、可瞧到哪些级?记录 0级、±1级、±2级光斑的位置; (2)记录二维光栅的衍射图样、 3、观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 思考:空间频谱面在距小透镜多远处?图样应就是何样? (1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根

光学实验报告

建筑物理 ——光学实验报告 实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测 实验小组成员: 指导老师: 日星期二3月12年2013日期: 实验一、材料的光反射比和光透射比测量

一、实验目的与要求 室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。 通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法 光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。下面是间接测量法。 1.实验原理 (1)用照度计测量: P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,根据光反射比的定义:光反射比即: φφP=P/因为测量时将使用同一照度计,其受光面积相等, 且,所以对于定向反射的表面,我们可以用上述代入式,整理后得: P=EE P/对于均匀扩散材料也可以近似的用上述式。 可知只要测出材料表面入射光照度E和材料反射光照度Ep,即可计算出其反射比。 (2)用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度E和亮度L后按下式计算 πL/EP= 2;被测表面的亮度,cd/m式中:L---E—被测表面的照度,lx 。 2.测量内容 要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(POWER)开关拨至“ON”,检查电池,如果仪器显示窗出现“BATT”字样,则需要换电池; ②将光接收器盖取下,将其光敏表面放在待测处,再将量程(RANGE)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。有的照度计为自动量程,直接读取照度计数字即为测量结果。 ③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度E;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读;ρ,即可计算出光反射比Ep取反射照度值 ④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。

光电信息处理技术复习考试题

长春理工大学光电信息处理技术考试复习题 1、人眼感受到的电磁波谱分布是0.01-1000μm或从3×102Hz- 3×107 Hz。 2、说出紫外光区、红外光区、可见光区的波长范围。 3、辐射的传播服从几何光学定律: 4、说明下列典型光学元器件的作用及特点。 ①透镜元器件(成像) ②反射元器件(改变光的方向) ③其他元器件 5、简述光调制的方法。各举一个具体的例子。 6、简述LED的特性及典型驱动电路。 7、简述半导体激光器的激光器稳定工作条件。 8、简述半导体激光器的特性。 9、简述LD的典型应用。 10、液晶显示器的驱动 11、简述液晶显示器的特点及应用。 12、简述CRT的优缺点。 13、简述光电信息转换的四种基本原理。 简述常用光电信息转换器件的名称、原理、主要特性和实用输出电路。15、光敏电阻有以下优点: 16、画出光敏电阻的恒流偏置电路与恒压偏置电路。

17、光电池的开路电压与照度L是什么关系?短路电流与照度L成什么关系?当光电池作为测量元件时,应以什么的形式来使用? 18、发光二极管工作时加正向还是反向电压?它输出的光强由什么控制?发光二极管和光敏二极管电路中的电阻及各起什么作用? 19、PIN管和APD管的频率特性为什么比普通的光敏二极管好? 20、热电探测器与光电探测器比较,在原理上有何区别? 21、试设计一个实用的光电检测或光电控制装置,要求: (1)大胆想象,有创新意识,又有实用价值。 (2)叙述原理,画出原理框图。 (3)画出电子线路图,不能画出部分用框图代替。 (4)叙述提高测量精度或防干扰措施。 22、叙述CCD的工作的基本原理及典型CCD输出信号的处理方式。 23、画出用线阵CCD测量工件直径的结构示意图,叙述CCD测量的原理,画出CCD测量的原理框图。如何提高测量精度?大直径测量怎样实现? 24、画出用线阵CCD测量运动热钢板长度的结构示意图,叙述CCD测长的原理,画出CCD测长的原理框图。画出测量时CCD输出信号的波形,并设计出供计数器计数的放大比较整形电路。

立式光学仪实验报告doc

立式光学仪实验报告 篇一:光学实验报告 建筑物理 ——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量 一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光 材料的过透射比进行实测。通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反 射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。 下面是间接测量法。

1. 实验原理 (1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即: p=φp/φ 因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们 可以用上述代入式,整理后得:p=ep/e 对于均匀扩散材料也可以近似的用上述式。可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。(2) 用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e 式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。 2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字 样,则需要换电池;

信息光学matlab仿真

%圆孔的夫琅禾费衍射: N=512; r=3; %衍射圆孔的半径 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/16,N/16-1,N)); D=(m.^2+n.^2).^(1/2); I(find(D<=r))=1; subplot(1,2,1),imshow(I); title('生成的衍射圆孔'); % 夫琅禾费衍射的实现过程 L=500; [X,Y]=meshgrid(linspace(-L/2,L/2,N)); lamda_1=630; % 输入衍射波长; lamda=lamda_1/1e6 k=2*pi/lamda; z=1000000; % 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(X.^2+Y.^2))/(2*z))/(1j*lamda*z);%脉冲相应 H =fftshift(fft2(h)); %传递函数 B=fftshift(fft2(I)); %孔径频谱 G=fftshift(ifft2(H.*B)); subplot(1,2,2),imshow(log(1+abs(G)),[]); title('衍射后的图样'); figure meshz(X,Y,abs(G)); title('夫琅禾费衍射强度分布')

%单缝的夫琅禾费衍射: N=512; a=25; % 单缝的宽度 b=1000;% 单缝的长度 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/4,N/4,N)); I(-a

光学信息处理讲义

光学信息处理 1. 引 言 自六十年代激光出现以来,光学的重要发展之一是形成了一个新的光学分支——傅里叶光学。傅里叶光学是指把数学中的傅里叶分析方法用于波动光学,把通讯理论中关于时间、时域、时间调制、频率、频谱等概念相应地改为空间、空域、空间调制、空间频率、空间频谱,并用傅里叶变换的观点来描述和处理波动光学中学波的传播、干涉、衍射等。傅里叶变换已经成为光信息处理的极为重要的工具。 光学信息处理就是对光学图像或光波的振幅分布作进一步的处理。自从阿贝成像理论提出以后,近代光学信息处理通常是在频域中进行。由于光的衍射,图像的夫琅和费衍射分布,即图像的空间频谱分布与图像的空间分布规律不同,这使得在频谱面上对其进行处理可获得一些特殊的图像处理效果。近代光学信息处理具有容量大,速度快,设备简单,可以处理二维图像信息等许多优点,是一门既古老又年青的迅速发展的学科。光学信息存储、遥感、医疗、产品质量检验等方面有着重要的应用。 2. 实验目的 1) 通过实验,加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2) 掌握光学滤波技术,观察各种光学滤波器产生的滤波效果,加深对光学信息处理基本思想的认识。 3) 加深对卷积定理的理解 4) 了解用光栅滤波实现图像相加减及光学微分的原理和方法。 5) 了解黑白图像等密度的假彩色编码。 3. 实验原理 1) 二维傅里叶变换和空间频谱 在信息光学中常用傅里叶变换来表达和处理光的成像过程。设在物屏X -Y 平面上光场的复振幅分布为g (x ,y ) ,根据傅里叶变换特性,可以将这样一个空间分布展开成一系列二维基元函数的线性叠加,即 )](2exp[y f x f i y x +π∫∫+∞ ∞ ?+= y x y x y x df df y f x f i f f G y x g )](2exp[),(),(π (1) 式中f x 、f y 为x 、y 方向的空间频率,即单位长度内振幅起伏的次数,G (f x ,f y )表示原函数g (x ,y )中相应于空间频率为f x 、f y 的基元函数的权重,亦即各种空间频率的成分占多大的比例,也称为光场(optical field )g (x ,y )的空间频谱。G (f x 、f y )可由g (x ,y )的傅里叶变换求得 ∫∫+∞ ∞ ?+?= dxdy y f x f i y x g f f G y x y x )](2exp[),(),(π (2) g (x ,y )与G (f x ,f y )是一对傅里叶变换式,G (f x ,f y )称为g (x ,y )的傅里叶的变换,g (x ,y )是G (f x ,f y )的逆变换,它们分别描述了光场的空间分布及光场的频率分布,这两种描述是等

高等光学实验报告

实验一用两次成像法测薄透镜焦距 一、引言 透镜是光学仪器中最基本的元件,反映透镜特性的一个主要参量是焦距,它决定了透镜成像的位置和性质(大小、虚实、倒立)。对于薄透镜焦距测量的准确度,主要取决于透镜光心及焦点(像点)定位的准确度。本实验在光具座上采用贝塞耳法(两次成像法)测薄凸透镜焦距,以便了解透镜成像的规律,掌握光路调节技术,为今后正确使用光学仪器打下良好的基础。 二、实验目的 1.学会用贝塞耳法(两次成像法)测量透镜焦距的方法。 2.掌握简单光路的分析和光学元件同轴等高的调节方法。 3.熟悉光学实验的操作规则。 三、实验仪器 He-Ne激光器,白光源,双凸透镜,反射镜,目标物,白屏,分划板 四、实验原理 在近轴光线的条件下,薄透镜成像的高斯公式为: ' ' 1 f f s s +=(4-1) 当将薄透镜置于空气中时,则焦距: ' ' ' s s f f s s =-= - (4-2) (4-2)式中, f ′为像方焦距; f为物方焦距;s′为像距;s为物距。 式中的各线距均从透镜中心(光心)量起,与光线进行方向一致为正,反之为负, 如图4-1所示。若在实验中分别测出物距s和像距s′,即可用式(4-2)求出该透镜的焦距f′。但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。对于凸透镜焦距的测量,除用当将薄透镜上述物像公式法测量之外,还可用以下几种方法。 1.粗略估测法 图4-1 薄透镜成像

以太阳光或较远的灯光为光源,用凸透镜将其发出的光线聚成一光点(或像),此时,s →∞,s ′≈f ′,即该点(或像)可认为是焦点,而光点到透镜中心(光心)的距离,即为凸透镜的焦距,此 法测量的误差约在10%左右。由于 这种方法误差较大,大都用在实验 前作粗略估计,如挑选透镜等。 2.自准法 如图4-2所示,在待测透镜L 的一侧放置被光源照明的1字形物屏AB ,在另一侧放一平面反射镜M , 移动透镜(或物屏),当物屏AB 正好位于凸透镜之前的焦平面时,物屏AB 上任一点发出的光线经透镜折射后,将变为平行光线,然后被平面反射镜反射回来。再经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像A ′B ′。此时物屏到透镜之间的距离,就是待测透镜的焦距,即 f =s (4-3) 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在1%~5%之间。 3.位移法(又称为贝塞尔物像交换法) 物像公式法、粗略估 测法自准法都因透镜的中 心位置不易确定而在测量 中引进误差,为避免这一 缺点,可取物屏和像屏之 间的距离D 大于4倍焦距 (4f),且保持不变,沿光 轴方向移动透镜,则必能 在像屏上观察到二次成像。 如图4-3所示,设物距为s 1时,得放大的倒立实像; 物距为s 2时,得缩小的倒立实像,透镜两次成像之间的位移为d,根据透镜成像 公式(4-2),将 ()12/2S S D d ¢=-=-- () 12/2S S D d ¢=-=+ 代入式(4-2)即得 22 ' 4D d F D -= (4-4) 可见,只要在光具座上确定物屏、像屏以及透镜二次成像时其滑座边缘所在位置,就可较准确的求出焦距f ′。这种方法毋须考虑透镜本身的厚度,测量误差可达到1% 。 五、 实验内容 图4-2 凸透镜自准法成像 图5-3 二次成像

光学图像信息处理

课题光学图像信息处理 1.了解光学图像信息处理的基本理论和技术 教学目的 2.掌握光的衍射、光学傅里叶变换、频谱分析及频谱滤波的原 理和技术。 重难点 1.光具组各元件的共轴调节; 2.傅里叶变换原理的理解。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光学信息处理技术是近20年多来发展起来的新的研究领域,在现代光学中占有重要的位置。光学信息处理可完成对二维图像的识别、增强、恢复、传输、变换、频谱分析等。从物理光学的角度,光学信息处理是基于傅里叶变换和光学频谱分析的综合技术,通过在空域对图像的调制或在频域对傅里叶频谱的调制,借助空间滤波的技术对光学信息进行处理。 二、实验仪器 黑白胶片、白光光源、聚光镜、小孔滤波器、准直镜、黑白编码片框架、傅氏变换透镜、频谱滤波器、场镜、CCD彩色摄像机、彩色监视器、白屏等。 三、实验原理 光学信息处理的理论基础是阿贝(Abbe)二次衍射成像理论和著名的阿贝-波特(Abbe-Porter)实验。阿贝成像理论认为,物体通过透镜成像过程是物体发出的光波经物镜,在其后焦面上产生夫琅和费衍射的光场分布,即得到第一次衍射的像(物的傅里叶频谱);然后该衍射像作为新的波源,由它发出次波在像面上干涉而构成物体的像,称为第二次衍射成像,如图1所示。

进一步解释,物函数可以看作由许多不同空间频率的单频(基元)信息组成,夫琅和费衍射将不同空间频率信息按不同方向的衍射平面波输出,通过透镜后的不同方向的衍射平面波分别汇聚到焦平面上不同的位置,即形成物函数的傅里叶变换的频谱,频谱面上的光场分布与物函数(物的结构)密切相关。不难证明,夫琅和费衍射过程就是傅里叶变换过程,而光学成像透镜即能完成傅立叶变换运算,称傅里叶变换透镜。 阿贝成像理论由阿贝-波特实验得到证明:物面采用正交光栅(网格状物),用平行单色光照明,在频谱面放置不同滤波器改变物的频谱结构,则在像面上可得到物的不同的像。实验结果表明,像直接依赖频谱,只要改变频谱的组份,便能改变像。这一实验过程即为光学信息处理的过程,如图2所示。 如果对物或频谱不进行任何调制(改变),物和像是一致的,若对物函数或频谱函数进行调制处理,由图2所示的在频谱面采用不同的频谱滤波器,即改变了频谱则会使输出的像发生改变而得到不同的输出像,实现光学信息处理的目的。

MATLAB编程用两种方法模拟光学实验

MATLAB编程用两种方法模拟光学实验 摘要: 利用MATLAB软件编程实现了用衍射积分的方法对单缝衍射、杨氏双缝干涉、黑白 光栅衍射的计算机模拟;以及用傅立叶变换方法对简单孔径衍射、黑白光栅及正弦光栅夫 琅和费衍射的模拟。 关键词: MATLAB;衍射积分;傅立叶变换;计算机模拟 引言: 美国Mathworks公司推出的MA TLAB,是一种集数值计算、符号预算、可视化建模、 仿真和图形处理等多种功能于一体的优秀图形化软件。本文介绍了通过MA TLAB软件编 程实现用衍射积分和傅立叶变换实现夫琅和费衍射计算机模拟的方法。 计算机模拟为衍射实验的验证提供一条简捷、直观的途径。从而加深了对物理原理、 概念和图像的理解。 正文: 大学教学课程中引入计算机模拟技术正日益受到重视,与Basic、C和Fortran相比,用MA TLAB软件做光学试验的模拟,只需要用数学方式表达和描述,省去了大量繁琐的编 程过程。下面来介绍利用MATLAB进行光学模拟的两种方法。 (一)衍射积分方法: 该方法首先是由衍射积分算出接收屏上的光强分布,然后根据该分布调制色彩作图,从而得到衍射图案。 1.单缝衍射。 把单缝看作是np个分立的相干光源,屏幕上任意一点复振幅为np个光源照射结果 的合成,对每个光源,光程差Δ=ypsinΦ,sinΦ=ys/D,光强I=I0(Σcosα)2+(Σsinα)2,其中α=2Δ/λ=πypys/λD 编写程序如下,得到图1 lam=500e-9; a=1e-3;D=1; ym=3*lam*D/a; ny=51; ys=linspace(-ym,ym,ny); np=51; yp=linspace(0,a,np); for i=1:ny sinphi=ys(i)/D; alpha=2*pi*yp*sinphi/lam; 图1 单缝衍射的光强分布 sumcos=sum(cos(alpha)); sumsin=sum(sin(alpha)); B(i,:)=(sumcos^2+sumsin^2)/np^2; end N=255; Br=(B/max(B))*N; subplot(1,2,1)

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

最新光学信息处理实验

光学信息处理实验

光学信息处理实验

阿贝成像与空间滤波实验 (2) 调制 (5) 光栅自成像实验 (8) 马赫—泽德干涉仪 (10) 阿贝成像与空间滤波实验 光学信息处理是在上世纪中叶发展起来的一门新兴学科, 1948年首次提出全息术,1955年建立光学传递函数的概念,1960年诞生了强相干光——激光,这是近代光学发展历史上的三件大事。而光学信息处理的起源,可以追溯到阿贝的二次成像理论的提出和空间滤波技术的兴起。空间滤波的目的是通过有意识地改变像的频谱,使像产生所希望地变换。光学信息处理则是一个更为广阔地领域,它主要是用光学方法实现对输入信息的各种变换或处理。阿贝于1893年,波特于1906年为验证这一理论所作的实验,说明了成像质量与系统传递的空间频谱之间的关系。 实验目的 频谱滤波实验是信息光学中最典型的实验,通过对频谱的观察和动手完成阿贝——波特实验(方向滤波),高通滤波、低通滤波实验,可加深对傅立叶信息光学中的空间频率、空间频谱、空间滤波和阿贝成像原理的理解和认识。首先,叙述一下实验原理。 实验原理 阿贝认为在相干的平行光照明下,透镜的成像可以分为两步,第一步是平行光透过物体后产生的衍射光,经透镜后在其后焦面上形成衍射图样。第二步是这

些衍射图上的每一点可以看作是相干的次波源,这些次波源发出的光在像平面上相干叠加,形成物体的几何像。 成像的这两步,从频谱分析的观点来看,本质上就是两次傅立叶变换,如果物光的复振幅分布是g(x 0,y 0),可以证明在物镜后焦面),(ηξ上的复振幅分布是g(x 0,y 0)的傅立叶变换G ),(y x f f (只要令f f f f y x ληλξ==,;λ为波长,?为透镜的焦距)。所以第一步就是将物光场分布变换为空间频率分布,衍射图所在的后焦面称频谱面(简称谱面或者傅氏面)。第二步是将谱面上的空间频率分布作逆傅氏变换还原成为物的像(空间分布)。按照频谱分析理论,谱面上的每一点均有以下四点明确的物理意义。 第一点:谱面上任一光点对应着物面上的一个空间频率分布。 第二点:光点离谱面中心的距离标志着物面上该频率成分的高低,离中心远的点代表物面上的高频成分,反映物的细节部分。靠近中心的点,代表物面的低频成分,反映物的粗轮廓,中心亮点是0级衍射即零频,她不包含任何物的信息,所以反映在像面上呈现均匀的光斑而不能成像。 第三点:光点的方向是指出物平面上该频率成分的方向,例如横向的谱点表示物面有纵向栅缝。 第四点:光点的强弱则显示物面上该频率成分的幅度大小。 如果在谱面上人为的插上一些滤波器(吸收板可移相板)以改变谱面上的光场分布,就可以根据需要改变像面上的光场分布,这就叫空间滤波。最简单的滤波器就是一些特种形状的光阑。把这种光阑放在谱面上,使一部分频率分量能通过而挡住其它的频率分量,从而使像平面上的图像中某部分频率得到相对加强或者减弱,以达到改善图像质量的目的。常用的滤波方法有如下这些。

浙江大学物理光学实验报告

本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 2012年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: i?i0( 装 式中 sin? ? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。i0为衍射场中心点(??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,i有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: n? sin?2 )2 i?i0()( ?

2 (4) sin 式中 ?? sin??2???dsin? ? ?? (5) ?为单缝宽度,d为相邻单缝间的间距,n为被照明的单缝数,?为考察点相应的衍射角;i0为衍射中心点(??0处)的光强。 n? )2 (sin?2() 2称?为单缝衍射因子,为多缝干涉因子。前者决定了衍射花 sin (干涉)极大的条件是dsin??m?(m?0,?1,?2......)。 dsin??(m? m )?(m?0,?1,?2......;m?1,2,.......,n?1)n 样主极大的相对强度,后者决定了主极大的位置。 (干涉)极小的条件是 当某一考虑点的衍射角满足干涉主极大条件而同时又满足单缝衍射极小值条件,该点的光强度实际为0/,主极大并不出现,称该机主极大缺级。显然当d/??m/n为整数时,相应的m 级主极大为缺级。 不难理解,在每个相邻干涉主极大之间有n-1个干涉极小;两个相邻干涉极小之间有一个干涉次级大,而两个相邻干涉主级之间共有n-2个次级大。 三、主要仪器设备 激光器、扩束镜、准直镜、衍射屏、会聚镜、光电接收扫描器、自动平衡记录仪。 四、操作方法和实验步骤 1.调整实验系统 (1)按上图所示安排系统。 (2)开启激光器电源,调整光学元件等高同轴,光斑均匀,亮度合适。(3)选择衍射板中的任一图形,使产生衍射花样,在白屏上清晰显示。 (4)将ccd的输出视频电缆接入电脑主机视频输出端,将白屏更换为焦距为100mm的透镜。 (5)调整透镜位置,使衍射光强能完全进入ccd。 (6)开启电脑电源,点击“光强分布测定仪分析系统”便进入本软件的主界面,进入系统的主界面后,点击“视频卡”下的“连接视频卡”项,打开一个实时采集窗口,调整透镜与ccd的距离,使电脑显示屏能清晰显示衍射图样,并调整起偏/检偏器件组,使光强达到适当的强度,将采集的图像保存为bmp、jpg两种格式的图片。 2.测量单缝夫琅和费衍射的光强分布(1)选定一条单狭缝作为衍射元件(2)运用光强分布智能分析软件在屏幕上显示衍射图像,并绘制出光强分布曲线。 (3)对实验曲线进行测量,计算狭缝的宽度。 3.观察衍射图样 将衍射板上的图形一次移入光路,观察光强分布的水平、垂直坐标图或三维图形。

相关主题
文本预览
相关文档 最新文档