当前位置:文档之家› 高中物理 第2章 打开电磁联系的大门 2_4 电子束偏转的奥秘教师用书 沪科版选修1-1

高中物理 第2章 打开电磁联系的大门 2_4 电子束偏转的奥秘教师用书 沪科版选修1-1

高中物理 第2章 打开电磁联系的大门 2_4 电子束偏转的奥秘教师用书 沪科版选修1-1
高中物理 第2章 打开电磁联系的大门 2_4 电子束偏转的奥秘教师用书 沪科版选修1-1

2.4 电子束偏转的奥秘

1.(2分)如图2-4-1所示,两个同心放置的同平面金属圆环,条形磁铁穿过圆心且与两环平面垂直,则通过两圆环的磁通量Φa、Φb之间的关系是( )

图2-4-1

A.Φa>Φb

B.Φa<Φb

C.Φa=Φb

D.不能确定

【解析】通过圆环的磁通量为穿过圆环的磁感线的净条数,首先明确条形磁铁的磁感线分布情况,另外要注意磁感线是闭合的曲线.

条形磁铁的磁感线在磁铁的内部是从S极到N极,在磁铁的外部是从N极到S极,内部有多少根磁感线,外部的整个空间就有多少根磁感线同内部磁感线构成闭合曲线.对两个圆环,磁铁内部的磁感线全部穿过圆环,外部的磁感线穿过多少,磁通量就抵消多少,所以面积越大,磁通量反而越小,故选A.

【答案】 A

2.(2分)如图2-4-2所示,两个完全相同的线圈套在一水平光滑的绝缘圆柱上,线圈能自由移动,若两线圈内通有大小不等的同向电流,则它们的运动情况是( )

图2-4-2

A.都绕圆柱转动

B.以不等的加速度相向运动

C.以相等的加速度相向运动

D.以相等的加速度相背运动

【解析】同向环形电流可分成很多小段直线电流元,则不难发现相对应的直线电流元方向总是相同的,方向相同的直线电流元是相互吸引的;也可以把环形电流等效成小条形磁铁,异名磁极相互吸引,虽然两电流大小不等,根据牛顿第三定律知两线圈间的相互作用力大小相等,所以选C项.

【答案】 C

3. (3分)如图2-4-3所示,长为l的通电直导体棒ab放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x,棒处于静止状态.则( )

图2-4-3

A .导体棒中的电流方向从b 流向a

B .导体棒中的电流大小为kx Bl

C .若只将磁场方向顺时针缓慢转过一小角度,则x 变大

D .若只将磁场方向逆时针缓慢转过一小角度,则x 变大

【解析】 由于弹簧伸长,根据左手定则知导体棒中的电流方向从a 流向b ,所以A 错误;由力的平衡条件知kx =BIl ,所以B 正确;如果磁场方向转过一小角度,安培力水平方向的分量均要减小,所以x 变小,故C 、D 错误.

【答案】 B

4.(3分)关于对磁通量的描述,下列说法正确的是( )

A .位于磁场中的一个平面垂直磁场方向时,穿过该平面的磁通量最大

B .穿过平面的磁通量最大时,该处的磁感应强度一定最大

C .如果穿过某平面的磁通量为零,则该处的磁感应强度一定为零

D .将一平面置于匀强磁场中的任何位置,穿过该平面的磁通量总是相等

【解析】 由磁通量Φ=BS ·cos θ可知,磁通量不但与B 、S 有关,还与平面与该平面沿垂直磁场方向的投影面之间的夹角有关.Φ=0,B 不一定为零,Φ最大,B 也不一定大.故选项A 正确.

【答案】 A

电视机显像管发射出的高速电子流受到一组通电线圈磁场控制,打到荧光屏的各个部位产生精彩纷呈的图像.奥斯特的电流磁效应竟能被应用的如此出神入化.

二、洛伦兹力 1.首先对磁场中运动电荷做深入研究的是荷兰物理学家洛伦兹. 2.磁场对运动电荷的作用力叫做洛伦兹力.

三、洛伦兹力的方向 1.判定:由于电荷的运动相当于电流,因此,洛伦兹力的方向同样可以用左手定则来判断. 2.特点:洛伦兹力的方向处处垂直于运动电荷的速度. 3.作用:洛伦兹力只改变运动电荷的速度方向,不改变运动电荷的速度大小,因而垂

直磁场射入的电子在洛伦兹力作用下做圆周运动.

四、磁偏转的应用

1.分离放射线:放射性物质衰变时,会从原子核内发射出三种射线:α射线由带正电的氦原子核组成,β射线是带负电的高速电子流,γ射线是不带电的光子流,利用洛伦兹力可以把它们分离开来.

2.质谱仪:质谱仪是科学研究中用来分析同位素和测量带电粒子质量的精密仪器.当电量相同、质量不同的带电粒子进入磁场后将沿不同半径做圆周运动,在显示屏上出现按质量大小排列的若干谱线.

3.回旋加速器:回旋加速器是一种能产生大量高能量粒子的装置.

一、洛伦兹力与安培力有何异同?

1.在导体静止不动时,安培力是洛伦兹力的合力,所以洛伦兹力的方向与安培力的方

向是一样,可由左手定则来判定.判断洛伦兹力的方向时一定要注意F垂直于v与B所决定的平面.

2.当运动电荷的速度v的方向与磁感应强度的方向平行时,运动电荷不受洛伦兹力作用,仍以初速度做匀速直线运动.而磁场中静止的电荷也不受洛伦兹力的作用.导体平行磁场方向放置时,定向运动的电荷不受洛伦兹力,所以导体也不受安培力.

3.洛伦兹力对运动电荷永不做功,而安培力对运动导体却可以做功.由于洛伦兹力F 始终垂直于电荷的运动速度v的方向,不论电荷做什么性质的运动,也不论电荷是什么样的运动轨迹,F只改变v的方向,并不改变v的大小,所以洛伦兹力对运动电荷不做功.通电导体在磁场中运动后,电荷相对磁场的运动方向并不沿导体方向,所受洛伦兹力的方向也不垂直于导体,洛伦兹力垂直于导体方向的分力做正功,而沿导体方向的分力做负功,总功仍为0.导体中所有运动电荷受到的洛伦兹力,在垂直于导体方向的分力的合力就是安培力,所以安培力对运动导体可以做功.

安培力与洛伦兹力的比较如下表所示

1.运动电荷的速度v与磁场B平行时,磁场对运动电荷无作用力,做匀速直线运动.2.运动电荷的速度v与磁场B垂直时,由于洛伦兹力总垂直于电荷的运动方向,所以只改变速度的方向,不改变速度的大小,所以将在磁场做匀速圆周运动.

3.运动电荷的速度v与磁场B方向夹角为θ时,把速度分解在垂直于磁场和平行于磁场的两个方向上,由上述1、2可知,在这两个方向上分别做匀速圆周运动和匀速直线运动,其合运动为等速螺线运动.

【特别提醒】在处理洛伦兹力的有关问题时,要切记以下几点:

(1)洛伦兹力方向一定与电荷的运动方向垂直,它只改变速度的方向,不改变速度的大小.

(2)在判断洛伦兹力方向时把运动电荷看作电流,因此伸直的四指指向正电荷的运动方向(或负电荷的反方向).

三、带电粒子在磁场中的偏转及应用

1.分离放射线

放射性物质衰变时,会从原子核内发射出三种射线:一种叫α射线,由带正电的氦原子核(42He)组成;一种叫β射线,是带负电的高速电子流;还有一种叫γ射线,是不带电的光子流.利用洛伦兹力,就可以把它们分离开来.(如图2-4-4所示)

图2-4-4

2.显像管的工作原理

(1)构造如图2-4-5所示.

图2-4-5

(2)原理:阴极发射电子,经过偏转线圈,偏转线圈产生的磁场和电子运动方向垂直,电子受洛伦兹力作用发生偏转,偏转后的电子打在荧光屏上,使荧光屏发光.

(3)扫描:偏转区的水平方向和竖直方向都加有偏转磁场,其方向、强弱都在不断变化,因此电子束打在荧光屏上的光点不断移动,这种现象称为扫描.偏转磁场的变化随图像信号的变化而变化,电子束打在荧光屏上就会产生精彩纷呈的图像.

3.回旋加速器

(1)主要由粒子源、两个D形金属盒、匀强磁场、粒子引出装置等组成,回旋加速器一般放在真空容器中.(如图2-4-6所示)

图2-4-6

(2)回旋加速器原理:如图2-4-7所示,设粒子源中放出的是带正电的粒子,以一定初

速度v0进入下方D形盒中的匀强磁场做匀速圆周运动,运行到半周后回到窄缝边缘,这时在A1、A1′间加一向上的电场,粒子将在电场作用下被加速,速率由v0变为v1,然后粒子在上方的D形盒的匀强磁场中做匀速圆周运动,经过半个周期后到达窄缝边缘,这时在A2、A2′间加一向下的电场,使粒子又一次得到加速,速率变为v2,这样使粒子每次经过窄缝时被加速,又通过D形盒内的磁场回旋到窄缝,通过反复加速使粒子达到很高的能量.

图2-4-7

【深化探究】从回旋加速器的原理可知,带电粒子进入两D型盒狭缝时电场就对其加速,那么狭缝所加电场应该怎样变化?

提示:因为带电粒子在磁场中做匀速圆周运动,它的周期确定,这样,狭缝所加电场的方向每经过带电粒子在磁场中运动半个周期便改变,也就是狭缝间加一交变电流.周期与带电粒子的运动周期相同,则带电粒子就会每经过狭缝总是被加速.

4.质谱仪

(1)用途:质谱仪是一种测量微小带电粒子质量和分离同位素的仪器.

(2)原理:如图2-4-8粒子源S产生质量为m、电荷量为q的正粒子(所受重力不计).粒子无初速度的经过电压为U的电场加速后,进入磁感应强度为B的匀强磁场中做匀速圆周运动.经过半个周期后到达记录它的照相底片P上,测得P点位置到入口处的距离为L,即可求得带电粒子的质量和比荷.

图2-4-8

一、左手定则的应用

在下列选项所示的四幅图中,正确标明了在磁场中带正电的粒子所受洛伦兹力f方向的是( )

【解析】由左手定则可知,洛伦兹力的方向一定与速度和磁场垂直,故C、D均错误;考虑到带电粒子带正电,可确定选项A正确.

【答案】 A

在判断运动电荷所受洛伦兹力方向时,要注意区分电荷的电性,若为正电荷,四指指向正电荷的运动方向,若为负电荷,则四指指向负电荷运动的反方向.

1.(多选)如图2-4-9所示是表示从粒子源S以相同速度射出的三种粒子A、B、C在匀强磁场中运动的轨迹,由此可判定( )

【导学号:22940019】

图2-4-9

A.带正电的是C粒子

B.带正电的是A粒子

C.不带电的是B粒子

D.带负电的是A粒子

【解析】粒子源发出不同粒子→电性不同

→进入同一磁场

→B、C正确

【答案】BC

二、带电粒子的磁偏转及其应用的探究

电子束的偏转与聚焦实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。电场力做的功eU应等于电子获得的动能

电子束偏转与聚焦试验中

电子束的偏转与聚焦实验 一、实验目的 1、了解示波管的构造和工作原理,分析电子束在匀强电场和匀强磁场作用下的偏转情况; 2、学会使用数字万能表和聚焦法测量电子荷质比的方法。 二、实验原理 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 K G A Y1S Y2 G U1 K U2 图1 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了

图2 弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。令Z 轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X 轴为水平方向向右,Y 轴为垂直方向向上。假定电子从阴极逸出是初速度忽略不计,则电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能 2m 2 1 v eU = (1) 显然,电子沿Z 轴运动的速度v z 与第二阳极A 2的电压U 2的平方根成正比,即 22v U m e z = (2) 若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏 转,如图2所示。 若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出: d l U U L D d 2)2l (2+= (3) 由式(3)可知,当U 2不变时,偏转量 D 随U d 的增加而线性增加。所以,根 据屏上光点位移与偏转电压的线性关系, 可以将示波管做成测量电压的工具。若 改变加速电压U 2,适当调节U 1到最佳 聚焦,可以测定D-U d 直线随U 2改变而 使斜率改变的情况。 4、磁偏转原理 电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。 由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以 eB R z mv = (4) 电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。在偏转角φ较小的

实验电子束的电偏转

实验电子束的电偏转 篇一:实验十三电子束线的电偏转与磁偏转 实验十三电子束线的电偏转与磁偏转 实验目的 1.研究带电粒子在电场和磁场中偏转的规律。2.了解电子束线管的结构和原理。实验仪器 SJ—SS—2型电子束实验仪。实验原理 在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现, 显像管等器件就是在这个基础上运用相同的原理制成的。 1.电偏转原理 电偏转原理如图4-17-1所示。通常在示波管(又称电子束线管)的偏转板上 加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E (Y轴方向)的作用,使电子的运动轨道发生偏移。假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。在偏转板之内 Y?1at2?1eE(Z)2 (4-17-1) 2 2mv 式中v为电子初速度,Y为电子束在Y方向的偏转。电子在加速电压VA的作用下,加速电压对电子所做的1 功全部转为电子动能,则mv2?eVA。 2 将E=V/d和v2代入(4-17-1)式,得 2 Y?VZ 4VAd 电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为 tg??dY?Vl(4-17-2) dZx?l2VAd设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则 S tg?? L代入(4-17-2)式,得 S?VlL (4-17-3) 2VAd 由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压VA成反比,由于上式中的其它量是与示波管结构有关的常数故可写成 S?keV(4-17-4)

电子束的偏转

参考答案 答案1: 答案2: 答案3: 答案4: 正确答案为:4 你做的答案为:1 答案1:限制通过小孔的电子数量;产生自由电子;使电子沿轴线加速;使电子束侧面偏转。

答案2:产生自由电子;限制通过小孔的电子数量;使电子沿轴线加速;使电子束侧面偏转。 答案3:产生自由电子;限制通过小孔的电子数量;使电子束侧面偏转;使电子沿轴线加速。 答案4:限制通过小孔的电子数量;产生自由电子;使电子束侧面偏转;使电子沿轴线加速。 正确答案为:2 你做的答案为:3 答案1: 正比;反比 答案2: 反比;正比 答案3:正比;正比 答案4:反比;反比 正确答案为:2 你做的答案为:3

答案1:V4> V3> V1> V2 答案2: V3> V4> V2> V1 答案3: V4> V3> V2> V1 答案4:V3> V4> V1> V2 正确答案为:1 你做的答案为:4 (电偏转、电聚焦)在下列各电压中,与电子从电子枪口出射速度相关的有_______ 答案1: 聚焦电压V1 答案2:加速电压V2 答案3:栅压V G 答案4:偏转电压V dx、V dy 正确答案为:2 你做的答案为:3 参考答案

答案1:限制通过小孔的电子数量;产生自由电子;使电子沿轴线加速;使电子束侧面偏转。答案2:产生自由电子;限制通过小孔的电子数量;使电子沿轴线加速;使电子束侧面偏转。答案3:产生自由电子;限制通过小孔的电子数量;使电子束侧面偏转;使电子沿轴线加速。答案4:限制通过小孔的电子数量;产生自由电子;使电子束侧面偏转;使电子沿轴线加速。 2 正确答案为: 你做的答案为:2 (电偏转、电聚焦)栅压电压的绝对值越大,荧光屏的亮度越_____;加速电压越大,荧光屏的亮度越_____。 答案1:暗;暗 答案2:暗;亮 答案3:亮;暗 答案4:亮;亮 2 正确答案为: 你做的答案为: 2 答案1:是;U dy/ed 答案2:否;U dy/ed

最新初中物理电磁感应发电机知识点与习题(含答案)好

电磁 安培定律 法拉第电磁感应定律 电流的磁效应 电磁感应 右手螺旋定则右手定则 安培力 左手定则1.安培定律:表示电流和电流激发磁场的 磁感线方向间关系的定则,也叫 右手螺旋定则。(1)通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (2)通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致 ,那么大拇指所指的那一端是通电螺线管的N 极。 左手反之。

应用:电能转化为磁,可以用于人造磁铁等。 2. 法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁 通变化率成正比。 右手定则:使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把 右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向产生的感应电流的方向。 应用:将动能转化为电能,发电机。 3.安培力:电流导体在磁场中运动时受力。 左手定则:左手平展,使大拇指与其余四指垂直,并且都跟手掌在一个 平面内。把左手放入磁场中,让磁感线垂直穿入手心(手心对准N极,手背对准S极),四指指向电流方向(既正电荷运动的方向)则大拇指的方向 就是导体受力方向。 应用:通过磁场对电流的作用,将电磁能转化为机械能:电动机。 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时, 导体中就会产生电流,这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线

运动的方向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。

电子束的偏转与聚焦现象

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:电子束的偏转与聚焦现象实验 学院:机电工程学院 专业班级:机制154班

学生:郝为权学号:5901115110 实验地点:基础实验大楼213座位号:31 实验时间:第 1周星期一 一、实验目的 1、了解示波管的构造和工作原理,分析电子束在匀强电场和匀强磁场作用下的偏转情况; 2、学会使用数字万能表和聚焦法测量电子荷质比的方法。 二、实验原理 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。令Z轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X轴为水平方向向右,Y轴为垂直方向

初中物理 电磁感应讲解学习

初中物理电磁感 应

一、【教学过程】 (一)复习引入 1. 师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢? 生答:导线中电流的方向、磁感线的方向有关。 2. 师问:通过上节的学习,我们得到了电动机的工作原理是什么呢? 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中是否能够产生电呢?本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,

这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线运动的方 向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。 3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。 磁铁(定子) 线圈(转子) 滑环 电刷 4. 直流电与交流电: (1)方向不变的电流叫做直流电大小和方向作周期性改变的电流叫做交流电。(2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就是时间的单位秒(s)。 (3)交流电的频率:电流每秒发生周期性变化的次数。其单位是赫兹,符号是Hz。频率和周期的数值互为倒数。 5.电动机与发电机的比较:

试验二十四电子射线的电偏转与磁偏转

实验二十四 电子射线的电偏转与磁偏转 一、实验目的 1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式; 2. 了解阴极射线管的构造与作用。 三、实验仪器 1. TH-EB 电子束实验仪; 2. 0~30V 可调直流电源; 3. 数字式万用表。 三、实验原理 1 电偏转原理 电子束电偏转原理如图1所示。通常在示波管的偏转板上加 偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后, 受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏 转。假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。荧光屏上电子束的偏转距离D 可以表示为 式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。为了反映电偏转的灵敏程度,定义 δ电称为电偏转灵敏度,用mm/V 为单位。δ电越大,电偏转的灵敏度越高。 2 磁偏转原理 电子束磁偏转原理如图2所示。通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为 零。当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑 兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为: 式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的 常数称为磁偏常数。为了反映磁偏转的灵敏程度,定义 )3( A m V I k D =(2)  电A e V k V D ==δ(1) / A e V V k D = l e 图1 电子束电偏转原理 e v 图2 电子束磁偏转原理

实验二十四电子束的偏转

实验二十四 电子束的偏转 示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。前者称为电聚焦或电偏转。随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。 【目的】 1.了解示波管结构和原理。 2.研究带电粒子在电场和磁场中偏转的规律。 3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。 【原理】 示波管的基本结构主要由以下4个部分组成 (1)示波管 示波管的构造如图4-43所示。当加热电流通过灯丝时,阴极K 被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。第一阳 极A 1相对于阴极K 有很高的电压(约 1 500V )用以加速电子;第二阳极 A 2与第一阳极A 1之间构成聚焦电 场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。X 、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。光点移动距离的大小与加在偏转板上的电压成正比。 (2)扫描电压发生器 扫描电压发生器是产生扫描电压的装置。 示波器通常是要观察轴输入的周期性信号电压的波形。如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。如果扫描电压的周期T x与正弦电压的周期T y相同,荧光屏上将显示一个完整的正弦波形。如果T x是T y的整数倍,则荧光屏上将显示出n 个完整的正弦波形。若用频率表示,则为: f X=nf Y 为了能用示波器观察各种频率的信号电压波形,扫描电压的频率必须在很大的范围内连续可调,调节扫描电压的频率,使其与Y 轴输入信号电压的频率成整数比方可。这一调整过程称为“同步”。人工“同步”可以很容易达到f X=nf Y,使其出现暂时稳定的图形。由于 图4-52 电子束的电偏转 图4-43 电子射线示波管 A 1-第一阳极 A 2-第二阳极 f-灯丝 G-栅极 K-阴极 X 、Y-偏转转板

九年级物理电磁感应现象教学设计人教版.docx

电磁感应现象教学设计 一、教学设计思想 这节课的设计思想是:把电磁感应现象的发现过程,从教育的角度编制成既有一定难度、又有操作可能的科学探究活动,让学生通过科学探究,认识电磁感应现象,体会实验探索的艰辛,进一步提高科学探究能力,学习科学家执着探究科学真理的精神。 二、教学目的 《一》、知识目标 1.启发学生观察实验现象,从中分析归纳出产生感应电流的条件,从而进一步理解电磁感应现象,理解产生感应电流的条件。 2.培养学生运用所学知识,独立分析问题的能力。 3.培养学生观察、实验操作能力和概括能力。 《二》教学目标 1.知识与技能:认识电磁感应现象。 2.过程与方法:经历科学探究的过程,提高科学探究的能力。 3.情感态度与价值观:培养热爱科学的情感和实事求是的科学态度。 三、教学重难点: 1.教学重点:电磁感应现象及电磁感应现象的科学探索过程。 2.教学难点:对切割磁感线运动的认识及探究过程中问题的提出和解决问 题办法的猜想。 初三学生已经具有了初步的动手操作能力、初步的空间想象能力和逆向思维能力,经过教师的提示点拨、分析比较与实际的动手操作,可以探究并归纳出产生电磁感应现象的条件。 四、教学过程

引入: 1820 年,丹麦物理学家奥斯特发现了——电流的磁效应,揭示了电 和磁之间存在着联系,受到了这一发现的启发,人们开始考虑这样一个问题:既然“电能生磁”,“磁能不能生电”呢?不少科学家进行了这方面的探索,英国 平民科学家法拉第,坚信电与磁有密切的联系。经过10 年坚持不懈的努力,在 无数次的挫折与失败之后,终于在1831 年一个偶然的机会里,发现了利用磁场 产生电流的条件。法拉第的发现使发电机等用电设备的发明和应用成为可能,我们现在能很方便的用电。我国令人瞩目的三峡工程等都与法拉第的发现有着联 系。 我手中就有一个发电机模型(简介其结构),它为什么能发电呢?其发电的 条件是什么呢?带着这些问题,我们一起来学习第一节:电磁感应现象。 师:同学们,我们在初中就学过,导体切割磁感线时,闭合电路中有电流产 生。 (教师演示)在这个实验中,磁场是由马蹄形磁体提供的。是不是只有马蹄形磁铁才能提供磁场呢? 生:不,电流也能产生磁场,通过电螺线管也能产生磁场。 师:通电螺线管的磁场与哪种磁体周围的磁场相似? 生:条形磁铁。 师:好。除了这个演示实验所示的方法外,还有没有另外的利用磁场产生电流的办法呢?请大家选用桌上的实验器材,两个同学一组,共同探究利用磁场怎么样才能产生电流。将你们的实验过程及实验现象记录在表格中。若实验器材不够,请到台前来取。 实验探究产生感应电流的条件的记录表格 探究设计活动过程现象记录初步分析初步结论 活动 1 活动 2 活动 3

实验 电子束的电偏转

电子束的电偏转、磁偏转研究 示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。因此统称它们为电子束线管。电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。本实验研究电子束的电偏转和磁偏转。通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。 [实验目的] 1.研究带电粒子在电场和磁场中偏转的规律。 2.了解电子束线管的结构和原理。 [实验原理] 1.电子束的电偏转 电子在两偏转板之间穿过时,如果两板间电位差为零,电子则笔直地穿过偏转板打在荧屏中央(假定电子枪瞄准了中心)形成一个小亮斑。如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。 在图5-1中,设两板相距为d ,电位差为V d ,可看做平行板电容器,则两板间的电场强度是 d V E d y = 电子受电场力 d eV eE f d y y == 的作用,产生加速度 md eV m f a d y y = = 电子在Z 方向上没有加速度,故从Y 板左端运动到右端的时间是z v l t /1=再从右端运动到屏的时间是z v L t /2'=电子离开板右端时的垂直位移是 2 2 11) ( 22 z d y v l md eV t a y ?= = 在同一点的垂直速度 )( )( 1z d y y v l md eV t a v ?== 电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移是 ) ( )( )(22z z d y v L v l md eV t v y '??== 电子在屏上总位移 ) 2()( 221L l m d v l eV y y D z d '+?=+= 令 L l L ' += 2,又因为电子在加速电压的作用下,加速场对电子所做的功全部转化为电子 的动能,则 2 221eV mv z = (1) 代入上式,并由式(1)消去v z 最后得,板中心至屏的距离, d V dV lL D 2 2= (2)

电子束的偏转实验报告

电子束的偏转实验报告 以下是为大家整理的电子束的偏转实验报告的相关范文,本文关键词为电子束,偏转,实验,报告,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:电子束偏转实验报告 篇一:电子束的偏转实验报告 实验题目:电子束线的偏转 实验目的 1.研究带电粒子在电场和磁场中偏转的规律; 2.了解电子束管的结构和原理。仪器和用具 实验原理 1.电子束在电场中的偏转 假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到vz? 2

12mvz2 2eua (c.11.1)m e 式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷m 质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图c.11.l所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee? eu (c.11.2)d ??根据牛顿定律fy?m?y??因此?y eu d eu (c.11.3)md 即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为t? l (c.11.4)vz 当电子飞出电容器后,由于受到的合外力近似为零,于是电子几

乎作匀速直线运动,一直打到荧光屏上,如图c.11.l里的f点.整理以上各式可得到电子偏离z轴的距离 n?ke u (c.11.5)ua ll?l? 1???2d?2l? 式中ke? 是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比. 2.电子束在磁场中的偏转 如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图c.11.2所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运 动,洛伦兹力就是向心力,所以电子旋转的半径r? mvz (c.11.6)eb 当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki(c.11.7)

实验3—13电子束线的电偏转与磁偏转

实验3—13 电子束线的电偏转与磁偏转 【实验目的】 1.研究带电粒子在电场和磁场中偏转的规律。 2.了解电子束线管的结构和原理。 【实验仪器】 1-e EB 型电子束实验仪。 【实验原理】 在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,如示波管、显像管等器件就是在这个基础上运用相同的原理制成的。 1.电偏转原理 电偏转原理如图3-13-1所示。通常在示波管(又称电子束线管)的偏转板 上加上偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,受到偏转电场E(y 轴方向)的作用,使电子的运动轨道发生偏移。假定偏转电场在偏转板l 范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。在偏转板之内 2 2)(2121v x m eE at y == (3-13-1) 式中v 为电子初速度,y 为电子束在y方向的偏转。电子在加速电压a U 的作用下,加速电压对电子所做的功全部转为电子动能,所以: A eU mv =2 2 1,m eU v a 22= 将E =V /D 和v 2 代入(3-13-1)式,得 24x D U V y a = 电子离开偏转系统时,电子运动的轨道与x 轴所成的偏转角?的正切为 l d U V dx dy tg a l x 2= = =? (3-13-2) 设偏转板的中心至荧光屏的距离为L ,电子在荧光屏上的偏离为S,则 L S tg =? 代入(3-13-2)式,得 D U VlL S a 2= (3-13-3) 由上式可知,荧光屏上电子束的偏转距离S 与偏转电压V 成正比,与加速电压a U 成反比,由于上式中的其它量是与示波管结构有关的常数故可写成

初中物理电磁现象

电磁现象 一、磁现象 1、磁性:物体能够吸引铁、镍、钴等物质的性质。 2、磁体:具有磁性的物体叫磁体。 3、磁极:磁体上磁性最强的部分叫磁极。 ①任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)②磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。 4、磁化:使原来没有磁性的物体有了磁性的过程。 5、永磁体:能长期磁性的磁体,叫做永磁体。 6、磁性材料:能够被磁化的物质(如铁、钴、镍和许多合金)称为磁性材料磁性。磁性材料按其磁化后保持磁性的情况不同分为硬磁材料(永磁材料)和软磁材料。 二、磁场 1、磁体周围存在着磁场。磁场对放入其中的磁体具有力的作用,这是磁场的基本性质。磁极间的相互作用就是通过磁场发生的。 2、磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向(也就是小磁针北极受力的方向)就是该点的磁场方向。 3、磁感线:描述磁场的强弱和方向的带箭头的曲线。磁感线上某一点的切线方向(放入该处的小磁针N极的指向),就是该点的磁场的方向。磁体周围的磁感线是从它北极出发,回到南极。(磁场是客观存在的,磁感线是画出的。) 4、磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向、小磁针静止时北极受力的方向相同。 5、地球周围空间存在的磁场叫做地磁场。 6、地磁的北极在地理位置的南极附近;而地磁的南极则在地理位置的北极附近。地理的南北极与地磁的南北极并不重合,它们的夹角称磁偏角。我国宋代科学家沈括是世界上第一个准确记载这一现象的人。 三、电流的磁场 1、奥斯特实验证明:通电导线周围存在磁场。 2、右手螺旋定则: 用右手握螺线管,让四指弯曲且与螺线管中电流方向一致,则大拇指所指的那端就是螺线管的N极,或者说大拇指所指的方向就是通电螺线管内部磁场的方向。 四、影响电磁铁磁性强弱的因素 1、通电螺线管的性质: ①通过电流越大,磁性越强;②线圈匝数越多,磁性越强; ③插入软铁芯,磁性大大增强;④通电螺线管的极性可用电流方向来改变。 2、电磁铁:内部带有铁芯的螺线管就构成电磁铁。 3、电磁铁的特点:①磁性的有无可由电流的通断来控制; ②磁性的强弱可由改变电流大小和线圈的匝数来调节;③磁极可由电流方向来改变。 五、电磁铁的应用 1、电磁继电器:实质上是一个利用电磁铁来控制的开关。利用电磁继电器可实现远距离操作,利用弱电流、低电压来控制大电流、高电压的工作电路。 2、电磁继电器的应用:可使人远离高压的危险,可使人远离高温、有毒等环境。①电磁阀车门(由电磁阀控制,利用压缩空气开关车门)②磁浮列车(特点:震动小;噪声小;速度高;能耗低)

高中物理 第2章 打开电磁联系的大门 2_4 电子束偏转的奥秘教师用书 沪科版选修1-1

2.4 电子束偏转的奥秘 1.(2分)如图2-4-1所示,两个同心放置的同平面金属圆环,条形磁铁穿过圆心且与两环平面垂直,则通过两圆环的磁通量Φa、Φb之间的关系是( )

图2-4-1 A.Φa>Φb B.Φa<Φb C.Φa=Φb D.不能确定 【解析】通过圆环的磁通量为穿过圆环的磁感线的净条数,首先明确条形磁铁的磁感线分布情况,另外要注意磁感线是闭合的曲线. 条形磁铁的磁感线在磁铁的内部是从S极到N极,在磁铁的外部是从N极到S极,内部有多少根磁感线,外部的整个空间就有多少根磁感线同内部磁感线构成闭合曲线.对两个圆环,磁铁内部的磁感线全部穿过圆环,外部的磁感线穿过多少,磁通量就抵消多少,所以面积越大,磁通量反而越小,故选A. 【答案】 A 2.(2分)如图2-4-2所示,两个完全相同的线圈套在一水平光滑的绝缘圆柱上,线圈能自由移动,若两线圈内通有大小不等的同向电流,则它们的运动情况是( ) 图2-4-2 A.都绕圆柱转动 B.以不等的加速度相向运动 C.以相等的加速度相向运动 D.以相等的加速度相背运动 【解析】同向环形电流可分成很多小段直线电流元,则不难发现相对应的直线电流元方向总是相同的,方向相同的直线电流元是相互吸引的;也可以把环形电流等效成小条形磁铁,异名磁极相互吸引,虽然两电流大小不等,根据牛顿第三定律知两线圈间的相互作用力大小相等,所以选C项. 【答案】 C 3. (3分)如图2-4-3所示,长为l的通电直导体棒ab放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x,棒处于静止状态.则( ) 图2-4-3

基础实验-19电子束偏转实验

实验19 电子束偏转实验 一、预习思考题 1.电子束在磁场作用下的运动轨迹是怎样的? 2.利用电子束的偏转可以测量哪些物理量? 二、实验目的 1、了解示波管的结构; 2、了解电子束发生电偏转、电聚焦、磁偏转、磁聚焦的原理; 3、掌握一种测量荷质比的方法。 三、实验器材 LB-EB3型电子束实验仪控制面板如图19-1所示。 利用电压指示选择档,可以实时通过示波管电压显示窗口观察记录相应的电压值并可通过三个电压调节旋钮随时调节相应的电压值。 电压输出用于给螺线管供电,其连接极性为:红——红,黑——黑。同时通过电压调节旋钮对其电压进行调解。 交直流开关用于直流和交流的切换,X,Y 换向开关用于换档显示X 、Y 偏转电压。 四、实验原理 测量物理学方面的一些常数(例如光在真空中的速度c,阿伏加德罗常数N ,电子电荷e,电子的静止质量m )是物理学实验的重要任务之一,而且测量的精确度往往会影响物理学的进一步发展和一些重要的新发现。本实验将通过较为简单的方法,对电子e/m 进行测量。 1.电子束实验仪的结构原理 电子束实验仪的工作原理与示波管相同,它包括抽成真空的玻璃外壳、电子枪、偏转系统与荧光屏四个部分。 电 源 电流输出 + - Y X V G 调节 电流调节 V A2调节V A1调节示波管电压励 磁 电 流 偏 转 电 压 交 流 Y 偏转 Y 调零X 偏转X 调零直 流 电 子 束(荷 质 比)实 验 仪 南 京 浪 博 科 教 仪 器 研 究 所 LB-EB3 图19-1

图19-2 (1)电子枪 电子枪的详细结构如图19-2所示。电子源是阴极,它是一只金属圆柱筒,里面装有一根加热用的钨丝,两者之间用陶瓷套管绝缘。当灯丝通电(6.3伏交流)被加热到一定温度时,将会在阴极材料表面空间逸出自由电子(热电子)。与阴极同轴布置有四个圆筒的电极,它们是各自带有小圆孔的隔板。电极G称为栅极,它的工作电位相对于阴极大约是5-20V的负电位,它产生一个电场是要把从阴极发射出的电子推回到阴极去,只有那些能量足以克服这一阻止电场作用的电子才能穿过控制栅极。因此,改变这个电位,便可以限制通过G小孔的电子 的数量,也就是控制电子束的强度。电极G′在管内与A 2相连,工作电位V 2 相对于K一般是正几 百伏到正几千伏。这个电位产生的电场是使电子沿电极的轴向加速。电极A1相对于K具有电位 V 1,这个电位介于K和G′的电位之间。G′与A 1 之间的电场和A 1 与A 2 之间的电场为聚焦电场(静 电透镜),可使从G发射出来的不同方向的电子会聚成一细小的平行电子束。这个电子束的直 径主要取决于A 1的小孔直径。适当选取V 1 和V 2 ,可获得良好的聚焦。 (2)偏转系统 电偏转系统是由一对竖直偏转板和一对水平偏转板组成,每对偏转板是由两块平行板组成,每对偏转板之间都可以加电势差,使电子束向侧面偏转。磁偏转系统是由两个螺线管形成的。 (3)荧光屏 荧光屏是内表面涂有荧光粉的玻璃屏,受到电 子束的轰击会发出可见光,显示出一个小光点。 2.电偏转:电子束+横向电场 电偏转原理如图19-3所示。通常在示波管(又称 电子束线管)的偏转板上加上偏转电压V d ,当加速后 e Y + - + + + + - - - - l L S Z - + d

初中物理 电磁感应

初中物理电磁感应 适用学科物理适用年级初中三年级 适用区域 人教版课时时长(分钟) 60分钟 知识点 1.电磁感应现象; 2.交流发电机的工作原理和能量转化; 教学目标 1.记忆并理解电磁感应现象; 2.知道交流发电机的工作原理及其能量的转化; 教学重点 1.电磁感应现象的理解与运用; 2.交流发电机的工作原理以及能量的转化。 教学难点运用电磁感应现象解决实际问题。 一、【教学过程】 (一)复习引入 1. 师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢 生答:导线中电流的方向、磁感线的方向有关。 2. 师问:通过上节的学习,我们得到了电动机的工作原理是什么呢 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中是否能够产生电呢本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,这种现象叫做电磁感应。2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线运动的方向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。

3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。 4. 直流电与交流电: (1)方向不变的电流叫做直流电大小和方向作周期性改变的电流叫做交流电。 (2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就是时间的单位秒(s)。(3)交流电的频率:电流每秒发生周期性变化的次数。其单位是赫兹,符号是Hz。频率和周期的数值互为倒数。 5.电动机与发电机的比较: 原理通电导体在磁场中受力转动电磁感应现象 结构 转子:线圈和换向器 定子:磁体和电刷 转子:线圈和铜环定子:磁体和电刷 (实际生产中常采用线圈不动、磁极旋转)能量把电能转化为机械能把机械能转化为电能 其他换向器的作用:改变线圈中电流的方向 线圈在磁场中转动一转,感应电流的方向改变 两次。(照明电的频率为50Hz表示线圈转50 转/秒,电流方向改变100次/秒) (三)例题详解: 磁铁(定子) 线圈(转子) 滑环 电刷

电子束的偏转与聚焦实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用 下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。 二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第

教学设计《电磁感应现象的应用》(新课标初中物理教案).

《电磁感应现象的应用》教学设计 广州市九十五中学李琼 一、教材内容分析 (一)教材内容 电磁感应现象在日常生活和生产中应用的例子很多,本节选讲变压器和汽车防抱死系统,主要考虑是:1.电能是日常生活和生产中不可缺少的能源,电能的生产和输送都离不开电磁感应原理;2.汽车防抱死系统是社会生活对物理学提出的问题,解决实际问题要依靠科学技术的发展进步,汽车防抱死系统是近年发展的一项成熟的技术.通过本节的学习,让学生体会所学知识的时代性以及人类探索自然规律的科学态度和科学精神. (二)教学重点:知道在日常生活和生产中哪些地方应用了电磁感应现象,了解变压器工作原理 (三)教学难点:汽车防抱死系统工作原理 二、教学对象分析 学生在初中已学习电磁感应的有关知识,但不够深入,另外本校学生素质较差,基础知识不扎实,尤其是文科生理科成绩较差。学生的自主探究能力、独立思考问题的能力较弱,对生活常见现象的想象能力还有待提高。 针对此种情况,在教学中需充分利用多媒体手段,加上实验的现象,使所要掌握的知识更加形象生动地展现出来。 三、教学目标 1.知识与技能 (1)了解变压器的工作原理. (2)了解汽车防抱死制动系统(ABS)的工作原理 2.过程与方法 (1)读图2-3-1,2-3-2,2-3-5及本节最后一段,了解电磁感应原理在日常生活和生产中的应用

(2)观察原、副线圈匝数与电压关系演示实验,培养学生的观察能力,体会物理学的研究方法 (3)通过讨论与交流变压器在日常生活中的应用,提高学生的表达能力 (4)参观发电站或变电站,体会电磁港英原理在生产中的应用 3.情感态度与价值观 (1)了解电磁感应原理对经济、社会发展的贡献,体会人类探索自然规律的科学态度和科学精神 (2)关注西电东送中有关电能输送的问题,树立可持续发展的意识 (3)通过解读ABS系统的工作原理,引导学生关注世界科技发展的现状与趋势(4)通过参观变电站或发电站,发展学生对科学的好奇心与求知欲 四、教学设计思想 针对文科学生的物理基础知识差、对物理不感兴趣或右畏惧心理,教学中要激发学生的学习兴趣,注重与实际生活的联系,应用多种的教学手段,在教学上采取讲授、实验探究、讨论交流等教学方法。 通过实验,让学生在自主探究中获取知识,培养他们的观察和思考能力;通过“讨论与交流”,发挥学生的主体作用,体现互动性,让他们在讨论中归纳总结,得出结论; 通过多媒体的教学手段,模拟汽车防抱死制动系统,更加形象,使学生更加容易接受; 通过例题的讲解、列举生活中实例,注重知识与生活的联系,激发学生的兴趣,让学生体现身边随处可见物理现象。 五、教学流程图

相关主题
文本预览
相关文档 最新文档