当前位置:文档之家› 微生物的代谢

微生物的代谢

代谢工程在工业微生物育种中的应用

代谢工程在工业微生物育种中的应用 摘要:传统的诱变育种仍是目前发酵工业菌种选育中最常用的育种技术,以基因工程技术为主的多元化育种方式的发展,为代谢途径操作引入了全新的理念和方法,使代谢工程得以发展。代谢工程是对细胞代谢网络的代谢流量及代谢控制进行定量地、系统地分析,并通过DNA重组技术和相关的遗传学手段对微生物细胞进行代谢改造,提高其目的产物代谢量。本文论述了微生物代谢工程的理论基础及其在发酵工业微生物育种中的应用现状。 关键词:代谢工程;代谢途径;菌种选育 发酵工业自20世纪40年代发展至今,在青霉素等抗生素的发酵生产、赖氨酸等一系列氨基酸的发酵生产以及核苷酸、有机酸等物质的发酵产业发展中起了极其重要的作用。在工业微生物育种的过程中,对个别基因进行改造的经典基因工程技术不能保证对微生物代谢网络结构和功能的准确分析和高效利用,影响了相关行业的生产效率的稳定和经济效益的提高。目前,几乎所有重要工业微生物模式菌种的基因组全序列已经或即将公布,转录组、蛋白质组、代谢组、通量组等数据资源正在迅速扩展。充分利用组学数据中包含的有用信息,可以更有效地改造和控制细胞性能、提高底物利用以及产品的产率、改善微生物工业适应性,促进工业生物技术发展[1]。 菌种筛选和持续不断的改良贯彻于发酵生产过程的始终,以基因工程为核心的现代生物技术正越来越显示出其在菌种改良上的魅力,将最终成为微生物育种的主导技术[2]。建立在重组DNA技术基础之上的代谢工程技术,可以更容易地选择菌种的改良靶点,构建具有新的代谢途径的微生物细胞,提高其发酵性能,生产特定目的产物,从而可以推动发酵工业的发展。 一、代谢工程概述 代谢工程(Metabolic engineering),又称途径工程(Pathway engineering),是指利用生物学原理,系统地分析细胞代谢网络,并通过DNA重组技术合理设计细胞代谢途径,通过遗传修饰,完成细胞特性改造的应用性学科。1974年,Chakrabarty在假单胞菌属的两个菌种中分别引入几个稳定的重组质粒,从而提高了对樟脑和萘等复杂有机物的降解活性,这成为代谢工程技术的第一个应用实例。代谢工程的概念是1991年由生化工程专

微生物的代谢

第五章微生物的代谢 一、名词解释: 01.新陈代谢(metabolism): 02.合成代谢(anabolism): 03.分解代谢(catabolism): 04.生物氧化(biological oxidation): 05.呼吸作用(respiration): 06.有氧呼吸(aerobic respiration): 07.无氧呼吸(anaerobic respiration): 08.发酵(fermentation): 09.底物水平磷酸化(substrate level phosphorylation): 10.氧化磷酸化(oxidative phosphorylation): 11.光合磷酸化(photophosphorylation): 12.呼吸链(respiratory chain, RC): 13.糖酵解(glycolysis): 14.CO2的固定: 15.生物固氮: 16.Stickland反应: 17.初级代谢: 18.次级代谢: 二、填空题: 01.生物体内葡萄糖被降解为丙酮酸的过程称为(),主要分为四种途径:

()、()、()和()。 02.EMP途径中,第一阶段是一分子葡萄糖被裂解成2个三碳化合物,即 ()和(),并消耗掉2分子ATP。 03.EMP途径中,第二阶段甘油醛-3-磷酸转化为1, 3-二磷酸甘油酸是() 反应,辅酶()接受氢原子,形成()。 04.分子的葡萄糖通过EMP途径可产生()分子丙酮酸,()分子 ATP和()个NADH。 05.一分子葡萄糖经有氧呼吸彻底氧化可产生()个ATP;每一分子葡萄 糖通过酵母菌进行乙醇发酵产生()个ATP;通过德氏乳酸杆菌进行正型乳酸发酵可产生()个ATP。 06.HMP途径的一个循环的最终结果是1分子葡萄糖-6-磷酸转变成() 分子甘油醛-3-磷酸、()分子CO2和()分子NADH。 07.HMP途径可为合成代谢提供()和()。 08.ED途径是在研究嗜糖假单胞菌时发现的。通过该途径1分子葡萄糖最后生 成()分子丙酮酸、()分子ATP、()分子NADPH和NADH。 09.ED途径中关键性酶是();HMP途径中的关键性酶是();EMP 途径中关键性酶是()。 10.ED途径产生的物质有:()、()、()和小分子碳架 ()、()、()、()等。 11.磷酸解酮酶途径是明串珠菌在进行异型乳酸发酵过程中分()和 ()途径。该途径的特征性酶是磷酸解酮酶。根据该酶的不同,把具

第五章-微生物代谢试题

第五章微生物代谢试题 一.选择题: https://www.doczj.com/doc/5f7851128.html,ctobacillus是靠__________ 产能 A. 发酵 B. 呼吸 C. 光合作用 答:( ) 50781.50781.Anabaena是靠__________ 产能. A. 光合作用 B. 发酵 C. 呼吸 答:( ) 50782.50782.________是合成核酸的主体物。 A. 5----D 核糖 B. 5----D 木酮糖 C. 5----D 甘油醛 答:( ) 50783.50783.ATP 含有: A. 一个高能磷酸键 B. 二个高能磷酸键 C. 三个高能磷酸键 答:( ) 50784.50784.自然界中的大多数微生物是靠_________ 产能。 A. 发酵 B. 呼吸 C. 光合磷酸化 答:( ) 50785.50785.酶是一种__________ 的蛋白质 A. 多功能 B. 有催化活性 C. 结构复杂 答:( ) 50786.50786.在原核微生物细胞中单糖主要靠__________ 途径降解生成丙酮酸。 A. EMP B. HMP C. ED 答:( ) 50787.50787.参与脂肪酸生物合成的高能化合物是__________。 A.乙酰CoA B. GTP C. UTP 答:( ) 50788.50788.Pseudomonas是靠__________ 产能。 A. 光合磷酸化 B. 发酵 C. 呼吸 答:( ) 50789.50789.在下列微生物中__________ 能进行产氧的光合作用。 A. 链霉菌 B. 蓝细菌 C. 紫硫细菌 答: ( ) 50790.50790.合成环式氨基酸所需的赤藓糖来自__________。

代谢工程

代谢工程 科技名词定义 中文名称:代谢工程 英文名称:metabolic engineering 定义:通过基因工程的方法改变细胞的代谢途径。 所属学科:生物化学与分子生物学(一级学科);新陈代谢(二级学科) 本内容由全国科学技术名词审定委员会审定公布 代谢工程书籍图 代谢工程(Metabolic engineering)是生物工程的一个新的分支。代谢工程把量化代谢流及其控制的工程分析方法和用以精确制订遗传修饰方案并付之实施的分子生物学综合技术结合起来,以上述“分析——综合”反复交替操作、螺旋式逼近目标的方式,在较广范围内改善细胞性能,以满足人类对生物的特定需求的生物工程。 目录

发展前沿 展开 编辑本段发展 为了满足人类对生物的特定需求而对微生物进行代谢途径操作,已有将近半个世纪的历史了。在氨基酸、抗生素、溶剂和维生素的发酵法生产中,都可以找到一些典型实例。操作的主要方法是,用化学诱变剂处理微生物,并用创造性的筛选技术来检出已获得优良性状的突变菌株。尽管这种方法已被广泛地接受并已取得好的效果,但对突变株的遗传和代谢性状的鉴定是很不够的,更何况诱变是随机的,科学不足技巧补! DNA重组的分子生物学技术的开发把代谢操作引进了一个新的层面。遗传工程使我们有可能对代谢途径的指定酶反应进行精确的修饰,因此,有可能构建精心设计的遗传背景。DNA重组技术刚进入可行阶段不久,就出现了不少可用来说明这种技术在定向的途径修饰方面的潜在应用的术语。如分子育种(1981年),体外进化(1988年),微生物工程或代谢途径工程(1988~1991年),细胞工程(1991年)和代谢工程(1991年)。尽管不同的作者提出不完全相同的定义,这些定义均传达了与代谢工程的总目标和手段相似的含义。 我们曾经把代谢工程定义为,代谢工程就是用DNA重组技术修饰特定的生化反应或引进新的生化反应,直接改善产物的形成和细胞的性能的学科。这样定义代谢工程强调了代谢工程工作目标的确切性。也就是说,先要找到要进行修饰或要引进的目标生化反应,一旦找准了目标,就用已建立的分子生物学技术去扩增、去抑制或删除、去传递相应的基因或酶,或者解除对相应的基因或酶调节,而广义的DNA重组只是常规地应用于不同步骤中,以便于达到这些目标。 编辑本段优势与研究方向 优势 尽管在所有的菌种改良方案中都有某种定向的含义,但与随机诱变育种相比较,在代谢工程中工作计划的定向性更加集中更加有针对性。这定向性在酶的目标的选择,实验的设计,数据的分析上起着支配的作用。不能把细胞改良中的所谓“定向” 解释为合理的途径设计和修饰,因为“定向选择”与随机诱变之间没有直接关系。相反地我们可借助于“逆行的代谢工程”(reverse metabolic engineering), 从随机诱变而获得的突变株及其性状的实验结果,来提取途径及其控制的判断信息(critical information)。 研究方向

微生物名词解释大全

微生物名词解释大全 名词解释 1.质粒、附加体、粘粒、抗药性质粒、Ri质粒、Ti质粒 2.酵母、真酵母、假酵母、假丝酵母、菌丝、菌丝体、真菌丝、假菌丝、匍匐菌丝、假根 3菌落、菌苔、菌膜、糖被、粘液层、菌胶团、R型菌落、S型菌落、小(微)菌落 4.λ噬菌体、P1噬菌体、T2噬菌体、φX174噬菌体、SV40 5.菌索、菌核、子座、子实体、吸器、菌网、菌套、附着胞、附着枝、哈氏网 6.单倍体型、双倍体型、单双倍体型 7.种、菌株、型、品系、群、亚种、小种 8.支原体、衣原体、菌质体、原生质体、中体(质体、中间体)、类菌质体、类菌体、类囊体、立克次氏体、L型细菌、疵壁菌、球状体、包涵体 9培养基、天然培养基、合成培养基、半合成培养基、加富培养基、基本培养基、完全培养基、选择培养基、鉴别培养基、补充培养基、纯培养物、混合培养物、二元培养物 10微生物、细菌、放线菌、兰细菌、螺旋体、原生动物、粘菌、地衣、极端微生物、悉生生物、光合细菌、螺旋藻、古细菌、蛭弧菌、真菌、霉菌、酵母菌、蕈子、不可培养微生物、大肠菌群、大肠杆菌 11异形胞、异核体、胞壁质、假胞壁质、质壁空间、周质 12寄生、腐生、兼性寄生(腐生) 13溶源化(细胞)、非溶源化(细胞) 14好氧、厌氧、兼性厌氧 17免疫、免疫原性、免疫反应性、抗原、完全抗原、半抗原、抗原决定基、血清型反应、沉淀反应、凝集反应、补体结合(固定) 18菌丝、菌丝体、基内菌丝、气生菌丝、孢子丝、假菌丝、菌褶、菌环、菌托、子实体 19营养缺陷型、野生型、原养型、生长因子、耐药性因子、转化因子 20外毒素、内毒素、类毒素、抗毒素、肉毒素、伴孢晶体、δ—内毒素、苏云金素、β—外毒素 21胞囊、芽孢、营养细胞、有性孢子、无性孢子、游动孢子、不动孢子、内生孢子、分生孢子、厚垣孢子、节孢子、孢囊孢子、芽孢子、分生节孢子、粉孢子、卵孢子、接合孢子、担孢子、子囊孢子、 22自养微生物、异养微生物、化能有机型、化能无机型、光能有机型、光能无机型 23被动扩散、助长扩散、主动运输、基团转移、胞吞、胞吐 24菌根、外生菌根、内生菌根、V-A菌根、豆白红蛋白、根瘤素、哈蒂氏网、根际效应25.LPS、ELISA、BT、EM、PGPR、LB、PHB、MPN 26膜套、内膜系统、壁膜间隙 27活的非可培养状态 28 16s rRNA分析法、三域(原界)学说 29 鞭毛、菌毛、性菌毛、纤毛 30外显子、内含子、转座子、插入序列 31生长、繁殖、分化、发育、产能代谢、耗能代谢、物质代谢、能量代谢、合成代谢、分解代谢、初生代谢、次生代谢 32同宗结合、异宗结合、锁状联合、有性繁殖、无性繁殖、有性杂交、准性生殖、有性孢子、无性孢子、子囊果、子囊壳、闭囊壳、子囊盘、子座、分生孢子器、分生孢子座、分生孢子盘 33基因、基因型、基因组、假基因、基因盒、基因文库、基因工程、基因沉默、基因敲除、

微生物代谢类型

一、微生物代谢类型: 1.细菌:原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。 ①细菌:三册书中所涉及的所有细菌的种类: 乳酸菌、硝化细菌(代谢类型); 肺炎双球菌S型、R型(遗传的物质基础); 结核杆菌和麻风杆菌(胞内寄生菌); 根瘤菌、圆褐固氮菌(固氮菌); 大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞); 苏云金芽孢杆菌(为抗虫棉提供抗虫基因); 假单孢杆菌(分解石油的超级细菌); 甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢); 链球菌(一般厌氧型); 产甲烷杆菌(严格厌氧型)等 ②放线菌:是主要的抗生素产生菌。它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。繁殖方式为分生孢子繁殖。 ③衣原体:砂眼衣原体。 2.病毒:病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒) ①动物病毒:RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒) DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒) ②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等) ③微生物病毒:噬菌体。 3.真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。 ①霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。

我国在微生物代谢领域的研究现状及展望

我国在微生物代谢领域的研究现状及展望 发表时间:2012-06-18T14:33:59.827Z 来源:《赤子》2012年第8期供稿作者:李夏 [导读] 微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。 李夏(四川化工职业技术学院,四川泸州 646005) 摘要:微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。在分解代谢中,有机物在微生物作用下,发生氧化、放热和酶降解过程,使结构复杂的大分子降解;合成代谢中,微生物利用营养物及分解代谢中释放的能量,发生还原吸热及酶的合成过程,使微生物生长增殖。文章主要介绍我国在微生物代谢领域的研究现状及对未来的展望,为我们呈现了一个广阔的微生物代谢世界。 关键词:微生物代谢;分解代谢;合成代谢;研究现 前言 微生物在生长过程中机体内的复杂代谢过程是互相协调和高度有序的,并对外界环境的改变能够迅速做出反应。其原则是经济合理地利用和合成所需要的各种物质和能量,使细胞处于平衡生长状态。在实际生产中,往往需要高浓度的积累某一种代谢产物,而这个浓度又常常超过细胞正常生长和代谢所需的范围。因此要达到超量积累这种产物,提高生产效率,必须打破微生物原有的代谢调控系统,在适当的条件下,让微生物建立新的代谢方式,高浓度的积累人们所期望的产物[1]。 1 我国微生物代谢的研究现状 1.1 利用微生物代谢生产酶 工业上,曾由植物、动物和微生物生产酶。微生物的酶可以用发酵技术大量生产,是其最大的优点。而且与植物或动物相比,改进微生物的生产能力也方便得多。微生物的酶主要应用于食品及其有关工业中。酶的生产是受到微生物本身严格控制。为改进酶的生产能力可以改变这些控制,如在培养基中加入诱导物和采用菌株的诱变和筛选技术,以消除反馈阻遏作用。 1.2 利用微生物代谢产生的代谢产物生产目的物 在微生物对数生长期中,所产生的产物,主要是供给细胞生长的物质,入氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。这些产物称为初级代谢产物。利用发酵生产的许多初级代谢产物,具有重大的经济意义,我国现已可以根据微生物代谢调控的理论,通过改变发酵工艺条件如pH、温度、通气量、培养基组成和微生物遗传特性等,达到改变菌体代谢平衡,过量生产所需要产物的目的。 1.3 利用微生物代谢理论发展产生了代谢工程 代谢工程是指利用基因工程技术,定向的对细胞代谢途径进行修饰、改造,以改变微生物的代谢特征,并于微生物基因调控、代谢调控及生化工程相结合,构建新的代谢途径,生产新的代谢产物的工程技术领域。 1.4 改变微生物代谢途径生产目的物 改变代谢途径是指改变分支代谢的流向,阻断其他代谢产物的合成,以达到提高目的产物的目的。改变代谢途径有各种方法,如加速限速反应,改变分支代谢途径流向、构建代谢旁路、改变能量代谢途径等不同方法[1]。 1.5 利用微生物代谢进行发酵 数千年来由于科学技术进步缓慢,各种微生物工业也未能充分发展。直到20世纪中期才建立了一系列新的微生物工业。近几年来,由于微生物代谢工程的应用,发酵工业开始进入新的发展时期。发酵产品增长快、质量明显提高,在国民经济中起重要作用。 1.6 微生物代谢在环境方面的应用 微生物降解是环境中去除污染物的主要途径。深人了解污染物在微生物内的代谢途径,将有助于人们优化生物降解的条件,从而实现快速的生物修复。这些代谢中间体大都通过萃取、分析方法进行逐个研究,并借助专家经验拟合出代谢途径,其动力学过程亦很少触及。代谢组学方法的采用有可能改变这一现状[2]。 1.7 利用微生物代谢进行赖氨酸的生产 在许多微生物中,可用天冬氨酸作原料,通过分支代谢途径合成出赖氨酸、苏氨酸和甲硫氨酸。赖氨酸在人类和动物营养上是一种十分重要的必须氨基酸,因此,在食品、医药和畜牧业上需求量很大。但在代谢过程中,一方面由于赖氨酸对天冬氨酸激酶有反馈抑制作用,另一方面,由于天冬氨酸除用于合成赖氨酸外,还要作为合成甲硫氨酸和苏氨酸的原料,因此,在正常细胞内,就难以累积较高浓度的赖氨酸。 为了解除正常的代谢调节以获得赖氨酸的高产菌株,工业上选育了谷氨酸棒杆菌的高丝氨酸缺陷型菌株作为赖氨酸的发酵菌种。由于它不能合成高丝氨酸脱氢酶,故不能合成高丝氨酸,也不能产生苏氨酸和甲硫氨酸,在补给适量高丝氨酸的条件下,可在含较高糖浓度和铵盐的培养基上,产生大量的赖氨酸[3]。 1.8 微生物代谢与分子生物学方法的结合 随着遗传学、分子生物学等方法的不断发展,人们越来越多地将这些方法运用到微生物的研究工作中。一些野生菌的合成能力或分泌能力有限,目前可通过人工诱变或构建高效的基因工程菌株等方法对其进行改造以扩大应用范围此外,现在许多细菌合成拮抗物质的基因已被克隆测序,为使植物获得微生物所具有的特殊功能,一种可能的方法是通过基因工程将目的基因导入植物体内,使植物直接表达活性物质[4]。 2 展望 2.1 微生物代谢在医药行业的展望 微生物在代谢过程中可分泌蛋白酶、纤维素酶、半纤维素酶、果胶酶、淀粉酶等几十种胞外酶进入培养基,这些酶有的可以将药物成分分解转化,形成新的化合物,有的可水解植物细胞壁的纤维素、半纤维素、果胶质等,使细胞破裂,利于有效成分溶出。特别是采用一些酶作用于药用植物材料,使细胞壁及细胞间质中的纤维素、半纤维素等物质降解,使细胞破裂,细胞间隙增加,减小细胞壁、细胞间物质传递屏障、对有效成分从胞内向胞外扩散的阻力减少,可促进有效成分的吸收提高。 2.2 微生物代谢在生理生化、微生物遗传育种方面的展望 随着分子生物学理论与技术的飞速发展,尤其是基因组和后基因组时代的到来,传统上的生理学与遗传学的交叉融合越来越多,许多

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH 及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀

微生物生产L_苏氨酸的代谢工程研究进展_董迅衍

Advances in Microbial Metabolic Engineering to Increase L-Threonine Production DONG Xunyan 1,2, WANG Xiaoyuan *1,2 (1.State Key Laboratory of Food Science and Technology ,Jiangnan University ,Wuxi 214122,China ;2.School of Biotechnology ,Jiangnan University ,Wuxi 214122,China ) Abstract :As an essential amino acid for mammals ,L-threonine has a wide application in the food ,feeds ,pharmaceutical and cosmetics industries.To date ,L-threonine is almost exclusively produced through microbial fermentation.Metabolic engineering provides an effective means to strain development and thus to enhancing the L-threonine production.In this article ,the pathway and regulation of L-threonine in the major industrial strains ,Corynebacterium glutamicum and Escherichia coli are summarized ,and advances on metabolic engineering to increase L-threonine production are reviewed. Keywords :L-threonine ,Corynebacterium glutamicum ,Escherichia coli ,metabolic engineering ,fermentation 摘要:L-苏氨酸作为一种必需氨基酸被广泛用于食品、饲料、医药及化妆品行业。目前L-苏氨酸主要通过微生物发酵法生产。代谢工程技术的应用为菌种选育开辟了有效途径,使在现有高产基础上进一步提高氨基酸的产量成为可能。作者对两大氨基酸生产菌——— 大肠杆菌和谷氨酸棒杆菌中的L-苏氨酸生物合成相关途径、代谢调控机理以及运用代谢工程技术提高L-苏氨酸产量所取得的成果进行了系统综述。 关键词:L-苏氨酸;谷氨酸棒杆菌;大肠杆菌;代谢工程;发酵中图分类号:Q 933 文献标志码:A 文章编号:1673—1689(2016)12—1233—08 微生物生产L-苏氨酸的代谢工程研究进展 董迅衍1,2,王小元*1,2 (1.食品科学与技术国家重点实验室,江南大学,江苏无锡214122;2.江南大学生物工程学院,江苏无锡 214122) 收稿日期:2016-07-08 基金项目:国家973计划项目(2012CB725202);国家自然科学基金项目(NSFC31370131);江南大学博士科研基金项目(JUDCF11025)。作者简介:董迅衍(1986—),女,江苏无锡人,发酵工程博士研究生,主要从事氨基酸生产菌株代谢工程方面的研究。 Email :xunyandong@https://www.doczj.com/doc/5f7851128.html, *通信作者:王小元(1965—),男,山西垣曲人,工学博士,教授,博士研究生导师,主要从事工业微生物代谢工程方面的研究。 E-mail :xwang@https://www.doczj.com/doc/5f7851128.html,

关于微生物名词解释

微生物名词解释1.自养微生物:一类以光能为能量的来源,以环境中的CO2为碳源,来合成有机物,并且储存能量的新陈代谢过 程。 2.微体:真核细胞中一种有单层膜包裹的,与溶酶体相似的小球形细胞器,主要含氧化酶和过氧化氢酶,又称过氧化物酶体,其功能是使细胞免受H2O2毒害,氧化分解脂肪酸等。 3.连续培养:又称开放培养,在培养微生物的过程中一方面以一定的流速连续流入新鲜培养液和通入无菌空气,另一方面以同样的流速溢流出培养物,使容器内的培养物达到指数期的平衡生长状态和恒定的生长速率的培养方式。 4.感受态因子:调节感受态的一类特异蛋白。它包括:膜相关DNA结合蛋白,细胞壁自溶素,几种核酸酶。 5.共同抗原:又称类属抗原,交叉反应抗原。为多种抗原系统所共有的抗原。 6.单细胞蛋白:人工培养的非致病性细菌、微型菌、真菌等微生物单细胞菌体。 7.紫膜:某些嗜盐菌上能进行光合作用的细胞膜,它细菌视紫红质和类脂组成,因颜色呈紫色,故称紫膜,紫膜可介导光合作用。 8.活性污泥:一种由活细菌、原生动物和其他微生物聚集在一起组成的絮凝团,在污水处理中具有很强的吸附、分解有机物或毒物的能力。 9.类毒素:用%%甲醛溶液对外毒素进行脱毒处理,可获得失去毒性但保留其免疫原形的生物制品。 10.Park核苷酸:即UDP-N-乙酰胞壁酸五肽。是原核生物合成细胞壁肽聚糖时,首先在细胞膜中由G合成NAG-UDP和NAM-UDP,然后由NAM-UDP连接5个氨基酸,即形成了Park核苷酸。 11.膜边体:又称须边体或质膜外泡,为许多真菌所特有。它是一种位于菌丝细胞四周的质膜与细胞壁间,由单层膜包裹的细胞器。 12.细菌虑沥:又称细菌浸出或细菌冶金。用化能自养细菌对矿物质中的硫或硫化物进行氧化,使它不断生产和再生酸性浸矿物剂,并让低品位矿石中的铜等形式不断溶解出来,然后采用电动序较低的铁等金属粉末来进行置换,以此获取铜等有色金属或稀有金属。 13.菌落:固体培养基上(内)以母细胞为中心的一对肉眼可见的,有一定形态、构造等特征的子细胞集团。 14.支原体:一类无细胞壁,介于独立生活与细胞内寄生生活间的最小型原核生物。 15.朊病毒:一类不含核酸的传染性蛋白分子,它能引起宿主体内现成的同类蛋白质分子发生与之相似的构象变化而使宿主致病。 16.培养基:由人工配制的,适合微生物生长繁殖或产生代谢产物的混合营养料。 17.无氧呼吸:在无氧条件下进行的,底物按常规途径脱氢后经过部分呼吸链,最终由氧化态无机物或有机物受氢的一种产能效率较低的呼吸链。 18.Stickland反应:以一种氨基酸做底物脱氢,而已另一种氨基酸做氢受体而实现生物氧化产能的独特发酵类型。 19.光合细菌:利用光能和CO2维持自养生活的有色细菌,其光合驱动机制是循环光合磷酸化。 20.营养缺陷型:某一野生型菌株因发生基因突变而丧失合成一种或几种生长因子、碱基或氨基酸的能力,因而无法再在正常基本培养基上正常生长繁殖的变异类型。 21.转导:通过缺陷噬菌体的媒介,把供体细菌的小片段DNA携带到受体细胞中,通过交换与整合,使后者获得前者部分遗传性状的现象。 22.免疫应答:一类发生在活生物体内的特异性免疫的系列反应过程。抗原刺激机体,经过抗原特异性淋巴细胞对抗原的识别,使他们发生活化、增殖、分化等一系列变化,最终表现出相应的体液免疫和(或)细胞免疫效应。 23.菌株:又称品系。它表示任何由一个独立分离的单细胞(或单个病毒颗粒)繁殖而成的纯遗传型群体及其一切后代。 24.前噬菌体:温和噬菌体的基因整合到宿主基因组上的状态。如果提供适当条件打破保持前噬菌体状态的机制,噬菌体基因组即变为可增殖型而进行自主增殖,并使细胞裂解。 25.古生菌:在进化途径上很早就与真细菌和真核生物相互独立的生物类群,主要包括一些独特生态类型的原核生物。 26.磷壁酸:结合在G+细菌细胞壁上的一种酸性多糖,主要成分为磷壁酸和核糖磷酸。 27.基因移位:既需要特异载体蛋白参与,有需要获能,且运输前后物质分子结构发生明显变化的一种运输方式。 28.大肠菌群:包括大肠杆菌、产气肠杆菌和柠檬酸杆菌属等一些革兰氏阴性,无芽孢,能发酵乳糖,产酸产气的兼性厌氧杆菌。

常见微生物的代谢方式

常见微生物的代谢方式 马丽甘肃省临夏回民中学(731100) 微生物种类繁多,代谢方式多样,本文将一些常见微生物的代谢方式归纳如下。所涉及生物中,除特别标注外,其它均为原核生物。 1、光能自养需氧型 这类微生物以光为能源,以CO2为主要碳源,适合生存于有氧环境,如:蓝藻、衣藻(原生生物)。 2、化能自养需氧型 这类微生物以无机化学能为能源,以CO2为主要碳源,适合生存于有氧环境,如:铁细菌、无色硫细菌、硝化细菌。 3、光能自养厌氧型 这类微生物如:绿硫菌,以光为能源,以CO2为主要主要碳源;有光合色素,进行光合作用获取生长所需要的能量;以无机物如H2、H2S、S等作为供氢体或电子供体,使CO2还原为细胞物质。适合生存于无氧环境。 4、化能异养需氧型 这类微生物的能源和碳源均来自于有机物,适合生存于有氧环境,真菌和绝大多数的细菌都是这一类型,常见的有:霉菌(真核生物)、草履虫及变形虫(原生生物)、放线菌、根瘤菌、圆褐固氮菌、肺炎双球菌、结核杆菌、霍乱弧菌、炭疽杆菌、麻风杆菌、黄色短杆菌、土壤农杆菌、枯草芽孢杆菌、苏云金芽孢杆菌、谷氨酸棒状杆菌等。 5、化能异养厌氧型 这类微生物的能源和碳源也是均来自于有机物,但是只有在缺氧的条件下才能很好的生长,如:乳酸菌、甲烷杆菌、反硝化细菌、破伤风杆菌、幽门螺旋杆菌。 6、化能异养兼性厌氧型 这类微生物的能源和碳源也是均来自于有机物,在有氧和无氧的条件下均能生长,如:大肠杆菌、酵母菌(真核生物)、金黄色葡萄糖球菌、支原体、酿脓链球菌。 7、兼性营养需氧型 这类微生物比较少见,如:裸藻,又叫眼虫(原生生物),适合生存于有氧环境,它在含有有机物的水中,能够靠细胞膜吸取水里的有机物“食物”,过着动物式的化能异养生活。但是同时,眼虫的细胞中具有含叶绿素的叶绿体,在无有机物的情况下,能够自己制造营养物质进行光合作用。因此兼有光能自养和化能异养的代谢方式。 8、兼性营养兼性厌氧型 这类微生物也是比较少见,如:红螺菌,它的同化方式是兼性营养型,以光为能源,以二氧化碳为主要碳源,以水或其他无机物作为供氢体,进行光合作用,还原CO2合成有机物。属于光能自养;或者以光为能源,以有机物为主要碳源,并且以有机物作为供氢体进行光合作用,同化有机物形成自身物质,属于光能异养。而它的异化方式也是兼性的,在湖泊、池塘的淤泥中进行厌氧呼吸;而在废水处理体系中却是需氧的。

哈工大污染控制微生物学真题名词解释

哈工大历年真题总结 一、名词解释 1.共代谢: 2.双名法:由两个名字组成的命名方法,即一个物种的名字,是由它所属的属名后面 加上种名形容词所组成的(属名+种名) 3.菌落:将细菌接种在固体培养基中,由于单个细胞在局部大量繁殖,形成肉眼可见 的细菌群体,称为菌落 4.细菌的特殊结构:指部分细菌所具有的可变结构,包括:荚膜、鞭毛、芽孢 5.菌胶团:产生荚膜与粘液层的细菌,相互粘连在一起,形成具有一定形态的细菌集 团,具有共同的粘液层,内含许多细菌 6.中体:细菌细胞质中的主要膜状结构,由细胞膜以最大量的褶皱内陷而形成的层状、 管状或囊状物,常伸入细胞内 7.二次生长曲线:当大肠杆菌在含有葡萄糖和乳糖的液体培养基中生长时,大肠杆菌 首先利用葡萄糖而不利用乳糖,只有当葡萄糖被利用完后才开始利用乳糖,大肠杆 菌呈现二次生长现象 8.溶原性:温和噬菌体侵染细菌后并不立即使细菌发生裂解,而是将其核酸整合在细 菌染色质体的一定位置上,并与细菌的染色质体一道复制,随着细菌的分裂传给每 个子代细胞;含有温和噬菌体的细菌的这一特性称为溶原性 9.温和型噬菌体:当噬菌体侵染细菌后细菌不发生裂解而能继续生长繁殖,这种噬菌 体称为温和型噬菌体。含有这种温和性噬菌体的细胞称为溶源性细菌 10.裂解量:每个噬菌体增殖后释放出新的噬菌体的平均数称为裂解量 11.营养缺陷型:丧失合成一种或多种生长因子能力的微生物 12.生态位分离:是指在稳定的环境中,不同种群在同一生境长期共存时,必须有各自 不同的(实际)生态位,从而避免种群间长期而又激烈的竞争,并有利于每 个种群在生境内进行有序的和有效的生存。 13.生物修复:有毒有害的有机污染物不仅(由于工业废水的排放)存在于地表水中,而 且更广泛地存在于土壤、地下水和海洋中。利用生物特别是微生物催化降解有机污 染物,从而去除或消除环境污染的一个受控或自发进行的过程,称为生物修复 14.生长因子:些微生物不能从普通的碳源、氮源物质合成,而只有通过外源供给才能 满足机体生长需要的有机物质,称为生长因子 15.生态平衡:生态系统发展到成熟的阶段,它的结构和功能,包括生物种类的组成, 各个种群的数量比例以及能量的和物质的输入、输出都处于相对稳定的状态,这种 状态称为生态平衡 16.CoA: 具巯基的辅酶,作为酰基的载体 17.质粒:质粒是指独立于染色体外,存在于细胞质中,能自我复制,由共价闭合环状 双螺旋DNA分子所构成的遗传因子。其相对分子质量较细菌染色体小,每个菌体内 有一个或几个,也可能有很多个质粒 18.糖酵解:微生物在厌氧条件下,通过氧化还原反应(脱氢)将葡萄糖分解为丙酮酸, 并产生可供机体生长的能量的过程,称为糖酵途径 19.无氧呼吸:以NO3-、SO4-、CO3-等为最终电子受体的氧化还原过程 有氧呼吸:以氧气为最终电子受体的氧化还原过程 发酵:呼吸是指底物在氧化过程中脱下的氢或电子不是直接与中间代谢产物相偶联,

第五章微生物代谢 答案

第五章微生物能量代谢 一、选择题(只选一项,将选项的的字母填在括号内) 1.下列哪种微生物能分解纤维素?( B ) A金黄色葡萄球菌B青霉C大肠杆菌D枯草杆菌 2.下列哪种产能方式其氧化基质、最终电子受体及最终产物都是有机物?( A ) A发酵B有氧呼吸C无氧呼吸D光合磷酸化 3.硝化细菌的产能方式是( D ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 4.微生物在发酵过程中电子的最终受体是(A) A有机物B有机氧化物C无机氧化物D.分子氧 5.乳酸发酵过程中电子最终受体是( B ) A乙醛B丙酮 C O2 D NO3ˉ 6.硝酸盐还原菌在厌氧条件下同时又有硝酸盐存在时,其产能的主要方式是( C ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 7.下列哪些不是培养固氮菌所需要的条件?( A ) A培养基中含有丰富的氮源B厌氧条件C提供A TP D提供[H] 8.目前认为具有固氮作用的微生物都是( D ) A真菌B蓝细菌C厌氧菌D原核生物 9.代谢中如发生还原反应时,( C )。 A从底物分子丢失电子B通常获得大量的能量 C 电子加到底物分子上D底物分子被氧化 10.当进行糖酵解化学反应时,( D )。 (a)糖类转变为蛋白质 (b)酶不起作用 (c)从二氧化碳分子产生糖类分子 (d)从一个单个葡萄糖分子产生两个丙酮酸分子 11.微生物中从糖酵解途径获得( A )ATP分子。 (a)2个 (b)4个 (c)36个 (d)38个 12.下面的叙述( A )可应用于发酵。 (a)在无氧条件下发生发酵 (b)发酵过程发生时需要DNA (c)发酵的一个产物是淀粉分子 (d)发酵可在大多数微生物细胞中发生 13.进入三羧酸循环进一步代谢的化学底物是( C )。 (a)乙醇 (b)丙酮酸 (c)乙酰CoA (d)三磷酸腺苷 14.下面所有特征适合于三羧酸循环,除了( D )之外。 分子以废物释放 (b)循环时形成柠檬酸 (a)C0 2 (c)所有的反应都要酶催化 (d)反应导致葡苟糖合成 15.电子传递链中( A )。 (a)氧用作末端受体 (b)细胞色素分子不参加电子转移 (c)转移的一个可能结果是发酵 (d)电子转移的电子来源是NADH 16.化学渗透假说解释( C )。 (a)氨基酸转变为糖类分子 (b)糖酵解过程淀粉分子分解为葡萄糖分子 (c)捕获的能量在ATP分子中 (d)用光作为能源合成葡萄糖分子 17.当一个NADH分子被代谢和它的电子通过电子传递链传递时,( C )。 (a)形成六个氨基酸分子 (b)产生一个单个葡萄糖分子 (c)合成三个ATP分子 (d)形成一个甘油三酯和两个甘油二酯 18.己糖单磷酸支路和ED途径是进行( C )替换的一个机制。

微生物代谢工程

微生物代谢工程 1.代谢控制发酵 代谢控制发酵就是利用遗传学的方法或生物化学方法,人为地在DNA分子水平上改变和控制微生物的代谢,使得目的产物大量的生成、积累的发酵。 代谢控制发酵的核心:解除微生物代谢控制机制,打破微生物正常的代谢调节,人为地控制微生物的代谢。 2.微生物代谢工程定义、研究内容和研究手段 定义:应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作(包括代谢分析、代谢设计、遗传操作、目的代谢活性的实现)。简而言之,代谢工程是生物化学反应代谢网络有目的的修饰。 研究内容: (1)代谢流的定量和定向 (2)细胞对底物的吸收和产品的释放模型及分析 (3)研究胞内代谢物浓度的反应工程方法 (4)用13C标记实验进行胞内稳态流分析 研究手段 (1)采用遗传学手段的遗传操作 ①基因工程技术的应用。②常规诱变技术的应用。 (2)生物合成途径的代谢调控 ①生物合成中间产物的定量生物测定。②共合成法在生物合成中的应用。③酶的诱导合成和分解代谢产物阻遏。④无机磷对生物合成的调节。 (3)研究生物合成机制的常用方法 ①刺激实验法。②同位素示踪法。③洗涤菌丝悬浮法。④无细胞抽提法。⑤遗传特性诱变法。 3. 工业发酵的五字策略(图示加文字说明) ①进,在育种和发酵控制方面都要促进细胞对碳源营养物质的吸收; ②通,在育种方面解除对某些酶的反馈调节,在发酵控制方面,诱导这些酶的合成或激活这些酶,从而使来自各代谢物流(除碳架物流外海包括其他支持生物合成的物流)能够畅通的注入载流途径,汇入代谢主流,流向目的产物,特别是当发酵进入目的产物合成阶段后,必需确保载流路径通畅,代谢主流优势明显 ③节,采用育种或发酵控制手段,节制与目的产物的形成无关或关系不大的代谢支流,使碳架物质相对集中地流向目的产物。这里所谓的“节制”是指封闭或削弱以目的产物合成途径的起始底物或以中间产物为起始底物的分支途径; ④堵,采用育种或发酵手段消除或削弱目的产物进一步代谢的途径,包括目的产物参与的分解代谢和合成代谢,为了消除或削弱目的产物的进一步分解代谢,就必须降解目的产物进一步代谢的酶活力或酶量,甚至使这些酶不再合成或不起作用; ⑤出,促进目的产物向胞外空间分泌。在育种和发酵控制发面可通过调节细胞对目的产物的通透性,增加输送目的产物的载体蛋白的量,为目的产物输送代谢能的方法,使目的产物尽快转移出细胞。 4. 酶的阻遏机制,以大肠杆菌色氨酸或组氨酸操纵子为例来说明(图示加文字说明) 终端产物对其自身合成途径的酶的合成的反馈阻遏和弱化的机制反馈阻遏:

微生物降解农药

摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物 降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污 染的环境是消除农药污染的一个有效方法。关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起 到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学

农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀粉

相关主题
文本预览
相关文档 最新文档