当前位置:文档之家› 酞菁铜有机半导体调研报告

酞菁铜有机半导体调研报告

酞菁铜有机半导体调研报告
酞菁铜有机半导体调研报告

实习(调研)报告

一、课题的来源及意义

1907 年Braun和Tchemiac两人在一次实验中偶然得到了一种蓝色物质,当时他们两人正在研究邻氰基苯甲酰胺的化学性质,当他们将这种无色的物质加热后得到了微量的蓝色物质,这就是现在被人们称为酞菁的化合物。1923 年Diesbach等人发现可以用邻二苄溴与氰化亚铜反应制得邻二苄腈,于是他们想用邻二溴苯与氯化亚铜反应来制备邻苯二腈。可实验结果出乎他们的意料,他们并未得到所期望的邻苯二腈,而是得到一种深蓝色的物质,并且产率达到 23%。这种蓝色物质就是现在被称为酞菁铜的化合物。至此,酞菁和金属酞菁化合物被发现。

二、国内外发展状况及酞菁类物质性质

1929年,在英国的ICI公司的资助下,伦敦大学的Linstead教授和他的合作者开始进行这类新物质的结构测定工作。1933 年他们用综合分析法测定了该类化合物的结构后,便用phthalocyanine一词来描述这类新化合物。1935 年Linstead教授和他的合作者采用 500℃以上的高温和低气压,用CO2作载气制得了酞菁化合物的单晶,Robertson教授用X射线衍射分析法对酞菁及金属酞菁化合物的单晶进行结构分析,至此,酞菁自正式被发现到首个单晶生成共经历了12 年。根据他的报道,酞菁及金属酞菁分子组成的晶体属单斜晶系,空间群为

P2/a。每个晶胞中有两个分子,每个分子都呈现出高度平面的结构。所得分子结构的结果与Linstead教授的结果完全一致,从而酞菁的化学结构得到了进一步的证实。酞菁分子的这种结构使得它具有非常稳定的特性,耐酸、耐碱、耐水浸、耐热、耐光以及耐各种有机溶剂。一般酞菁化合物的热分解温度在 500℃以上,在有机溶剂中的溶解度极小,并且几乎不溶于水。相对而言,铜酞菁在冷的浓硫酸中较稳定,它可以溶解在其中,并且当硫酸浓度降低时又可从中析出来。铜酞菁的这种特性常常被用来提高它的纯度。由于上述代表性的工作,酞菁及金属酞菁化合物的化学结构才为世人所知,从此,酞菁及金属酞菁化合物的研究及应用也进入了一个崭新的阶段。

酞菁铜(CuPc)最早由瑞士化学家Diesbach等[1]制得,其优越的耐光耐辐射、光/暗电导比、热稳定和化学稳定等特性,预期在太阳能电池、电致发光器件、光记录存储、化工染料、静电复印感光鼓、气敏传感器件等方面有广泛的应用潜力。近年来,基于酞菁环面的共轭π-π*电子跃迁而产生的可见光及近红外区域的强

吸收特性,已经成功地应用在太阳能电池和静电复印感光鼓等方面。CuPc作为光电信息材料的研究正引起人们越来越大的兴趣。

大尺寸的CuPc晶体难以生长,因此主要的研究都集中在其薄膜应用方面。传统的CuPc薄膜大都通过L-B法来制备,但L-B法主要用于制备超薄、有序的有机单分子薄膜,它是在一定压力下制备的,要求材料可溶于有机溶剂但不溶水,因此用来制备较厚的CuPc薄膜存在不稳定、杂质多和工艺难以控制等缺点。用真空热蒸发法制备CuPc薄膜尽管早已采用,但有关真空热蒸发法制备条件对CuPc薄膜性能影响方面的研究尚为少见。

酞菁铜是一种有机染料,由于其良好的物理和化学稳定性,在太阳能电池、气体传感器、非线性光学器件和光动力疗法等方面应用广泛.但普通酞菁材料较差的溶解性限制了其应用,通过在酞菁外围引入给电子基团,可以改善其溶解性,甚至改变酞菁的性质.同时,相对于其他酞菁的电化学研究,酞菁铜的电化学和光谱电化学研究特别是合成催化等反应机理研究较少。

酞菁分子是由四个异叫噪单元构成的平面大环共辘芳香体系,环内存在着一个空穴,其结构如图1.8所示。内环空穴的直径大致为2.7x10m,能够容纳铜、铁、钻、铝、镍、钙、锌、镁、钠等多种金属及非金属元素。酞菩环是一个具有18一7t电子的共扼大兀体系,18个二电子分布于内环c一N位,其上电子密度的分布是非常均匀的,因此分子中的四个苯环一般不易变形,而且每个C一N 键的长度也几乎相等。酞着化合物可以被看做四氮杂叶琳的衍生物,其中心的氮原子具有碱性,能够接受两个电子而变成二价的正离子。而N一H键具有酸性,将失去两个电子而变成二价的负离子。酞著环上有四个对称的氮原子,由它们联

系着位于环中间的一个金属原子或二个氢原子。当金属原子位于中心位置时,金属原子除了和两个氮原子以共价键的形式结合外,还要和另外二个氮原子以配价键的形式相结合,成为坚牢的络合物。酞著环上的金属可以分为电离和络合两大类。含碱金属或碱土金属(如钠、钾、钙、镁等)的酞著都是电离的,不易挥发,也不易溶于有机溶剂。与酸作用,则金属原子被氢原子取代,变成不含金属的酞蓄。含重金属(如铜、铁、钻、镍等)的酞著都是络合的,能挥发,也能溶于有机溶剂。目前使用的酞著绝大多数属于这一种.

由于酞蓄大环共辘体系中π-π电子强烈的相互作用,此类化合物具有极其稳定的化学特性,它能够耐酸、耐碱、耐热以及耐光。一般来说,酞著类化合物的热分解温度都很高,几乎不溶于水,在大多数有机溶剂中的溶解度也很小。此外,酞著类化合物还具有同质多晶性,也就是说,同一种化合物能够生成不同结构的晶体,常见的酞普铜就具有8种晶体构型。

研究表明大环结构的酞菁与金属络合之后,会有新的低维电子态成为电子多重态,从而大幅度提高其三阶非线性响应[4]及三阶非线性极化率χ(3)。此外,根据Saukret一维电位模型理论,对无限长π共轭高分子求得的χ(3)值与能隙的6次方的倒数成正比[5],即χ(3)∝E-6g。所以,具有高玻璃化转变温度Tg、大环结构、窄能隙的有机聚合物是三阶非线性光学材料合成的目标之一。

按照酞菁的结构特点可将其基本结构分为以下几个组成部分:①四个吡咯环以四个氮原子相连构成的大共轭π电子体系,这是酞菁的基本结构特征;②中心金属或元素;③外围的苯环;④轴向取代基团。几十年来,人们合成出了大量的酞菁配合物,这些配合物大部分可归结为对酞菁环基本结构的组成部分进行的变换。

1.根据酞菁中心有无金属,可分为金属酞菁和无金属酞菁;

2.根据芳香环的种类,可分为酞菁、萘酞菁、蒽酞菁等;

3.根据酞菁结构的对称性,可分为对称性酞菁和不对称性酞菁,对称性酞菁

分子具有中心对称性,不对称性酞菁分子则由于外层芳环或取代基不同引起酞菁分子的对称性降低;

4.根据酞菁的溶解性特性,可分为油溶性酞菁,水溶性酞菁和两亲性酞菁;

5.根据酞菁空间结构,可分为普通平面式酞菁、周边取代酞菁、轴向酞菁和三明治式酞菁等。

随着研究的深入,人们对酞菁的认识也逐步深刻,研究发现,大多数酞菁类配合物具有同质多晶性(polymorohism),即:化学结构相同的酞菁分子在不同的环境中所生成的晶体结构是不相同的。如酞菁铜,它的同质多晶性较为典型,迄今为止共发现它有α、β、γ、δ、π、ρ、R、ε等八种晶型。

酞菁与金属元素结合可生成金属络合物,金属原子取代了位于该平面分子中心的两个氢原子。由于与金属元素生成配位络合物,所以在金属酞菁分子中只有16 个π电子。又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。酞菁周边的四个苯环—共有 16个氢原子,它们可以被许多原子或基团取代。取代的结果是派生出了许许多多的酞菁衍生物,迄今为止,已有近万种酞菁化合物结构被报道。这些不同类型的酞菁类功能材料,在许多领域都有广泛的应用潜力和前景,其中最具研究潜力的一直是具有四个异吲哚单元的这一酞菁族,已有近万种衍生物被陆续报道。

由于金属酞菁衍生物具有活性中心和较好的热/化学稳定性,近年来在化学传感器领域已成为非常重要的材料体系.有关酞菁LB膜气敏特性研究表明,其对NO2和NH3等气体具有较好的敏感特性,其气敏机理可能与气体和酞菁环及中心金属的作用有关.金属萘酞菁具有与酞菁类似的结构,且具有更大的共轭体系,金属萘酞菁LB膜及其气敏特性研究迄今未见报道.本文研究了八-n-丁氧基萘酞菁铜CuNc(OBun)8单分子膜在气-水界面的形成过程,以红外、紫外可见光谱对LB 膜进行了结构表征,着重研究了其对醇、氨等气体响应的灵敏度、响应速率和稳定性,并对其气敏机理进行了探讨,以期深入认识气敏材料的分子结构,特别是共轭体系对其气敏特性的影响及规律.

酞菁铜类化合物具有良好的热稳定性和化学稳定性,广泛地用于研究光电、气敏及分子器件等,利用LB膜技术制备超薄、高度有序的LB膜,以期达到实际应用的研究已经引起了国内外的重视。但由于成膜物质的选择、成膜技术、检测方法的限制,酞菁铜LB膜离实际应用还有一段距离。取代酞菁铜分子不是典型的双亲分子,它们在水亚相表面上形成单分子层主要依靠相邻大环之间强烈的π-π相互作用,而不是依靠与水亚相的强烈相互作用,因此在铺展过程中有可能部分形成多分子层结构。

三、研究目标、研究内容、研究方法

本课题的研究目标是客服酞菁铜难溶解、不易成膜的特性,找到合适的溶剂溶解酞菁铜粉末,并用溶液法制作酞菁铜薄膜。成功获得酞菁铜薄膜样本后利用电子衍射显微镜观察薄膜的分子结构。

L-B法

传统的CuPc薄膜大都通过L-B法来制备,但L-B法主要用制备超薄、有序的有机单分子薄膜,它是在一定压力下制备的,要求材料可溶于有机溶剂但不溶水,因此用来制备较厚的CuPc薄膜存在不稳定、杂质多和工艺难以控制等缺点。

真空热蒸发法

用真空热蒸发法制备CuPc薄膜尽管早已采用,但有关真空热蒸发法制备条件对CuPc薄膜性能影响方面的研究尚为少见。

常用的制备方法有:

溶剂蒸发法

这种方法比较适合于生长溶解度较大而温度系数很小的物质。它的基本原理就是将溶剂不断蒸发移走,使溶液始终处于过饱和状态,用控制蒸发量的多少来维持溶液的过饱和度,从而实现使晶体不断长大的目的。

降温法

这是从溶液中培养晶体最常用的一种方法。它的基本原理就是利用物质较大的正温度系数,将在一定温度下配制的饱和溶液,在封闭的状态下保持溶剂总量不变而缓慢地降低温度,使溶液成为亚稳过饱和溶液,并维持适宜的过饱和度使溶质析出,不断在晶体上结晶。

溶剂扩散法

这种方法是有机单晶生长最常用到的方法,如图 1.5 所示。适用于在某种有机溶剂中饱和溶解度在 3%左右的物质。其方法是,将待生长物质溶解在有机溶剂中,形成饱和溶液,用开口试管盛装并放入磨口瓶中。向磨口瓶中添加扩散溶剂,并将磨口瓶密封静置。在此后的数天乃至数个月中,扩散溶剂的饱和蒸气由于扩散作用不断溶解于有机溶剂中,使原试管中溶液过饱和从而析出溶质生成晶体。此方法的关键在于有机溶剂与扩散溶剂的选取,扩散溶剂要易挥发,且在有机溶剂中有很大的溶解度。另外,待生长物质必须不溶于扩散溶剂。

溶剂蒸发法

这种方法是借助溶剂蒸发使溶液形成过饱和状态,达到析出晶体的目的。生长设备极为简单,不需程序降温,当然也就不需控温仪器。但使用的助熔剂必须具有足够高的挥发性,挥发量依助熔剂性质、生长温度和容器开孔大小不同而不同。溶剂蒸发法的主要优点是生长可在恒温下进行,晶体成分较均匀,同时也避免了在冷却过程中出现的其它物相的干扰。此外,在降温过程中有些会发生结构相变或形成变价的化合物单晶,不能用通常的缓冷法生长,但若用恒温蒸发法就较为合适。生长速率的调节主要是靠改变蒸发孔径,从而改变平均蒸发速率来实现。这种方法的主要缺点是晶体一般生成在表面,质量往往不好。若采用比重比晶体小的助熔刘、并加适当搅拌时,情况会有一定改善。值得注意的是,助熔剂蒸气大多数有毒和有腐蚀性,对人体和容器危害很大,必须注意防护。

四、实验方案

实验拟用溶液法制备酞菁铜薄膜,蒸发法作为实验的备选方案。要用溶液法

制备其薄膜,首先要选取合适的溶剂。备选溶剂有三氯甲烷、乙酸、异丙醇、乙酸乙酯、二氯乙烷、盐酸、硝酸、硫酸。

首先在相同的条件下用备选的实际溶解酞菁铜粉末,比较各个溶液的溶解度,选择最佳的溶剂。然后利用溶液法制备酞菁铜薄膜。

参考文献;

1.杜国同,姜文海,酞菁化合物的晶体生长及其薄膜晶体管的制备与性能研究

2.孙艳美,邱成军,酞菁薄膜材料气体传感器研制及其特性研究

3.贺春英,霍丽华,吴谊群,左霞,席时权,八_n_丁氧基萘酞菁铜LB膜的制备及气敏特性研究

4.黄勇刚,张溪文,史国华,韩高荣,酞菁铜薄膜的真空热蒸发制备及其性能

5.何为,马春雨,程传辉,于书坤,范昭奇,夏道成,杜锡光,杜国同,2_3_四_2_异丙基_5_甲基苯氧基_酞菁铜的合成_光特性及电化学性质

6.丁明,张引,陈文启,席时权,成膜条件对酞菁铜单分子膜的影响

金属酞菁的合成及表征

金属酞菁的合成及表征 摘要:本实验是以苯酐-尿素法合成酞菁钴,以邻苯二甲酸酐、无水CoCl2、尿素为原料,以(NH4)2MoO4为催化剂,采用金属模版法合成酞菁钴,用浓硫酸再沉淀法提纯产物,纯产物通过红外光谱、紫外可见光谱进行表征。 关键词:苯酐-尿素;酞菁钴;合成;光谱测定 1 引言 酞菁类化合物是四氮大环配体的重要种类,酞菁是一个大环化合物,环内有一个空穴,可以容纳铁、钴、铜等金属元素,并结合生成金属配合物。金属原子取代了位于该平面分子中心的两个氢原子。由于与金属元素生成配位化合物,所以在金属酞菁分子中只有16个π电子,又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。故酞菁类化合物具有高度共轭π体系。它能与金属离子形成金属酞菁配合物,其分子结构式如图。这类配合物具有半导体、光电导、光化学反应活性、荧光、光记忆等特性。金属酞菁是近年来广泛研究的经典金属类大环配合物中的一类,其基本结构和天然金属卟啉相似,具有良好的热稳定性,因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。金属酞菁的合成方法主要是模版法,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用。 金属酞菁的分子结构

合成反应途径如下(以邻苯二甲酸酐为原料): 2 实验内容与步骤 2.1仪器与试剂 仪器:台秤、研钵、三颈瓶(250ml)、空气冷凝管、圆底烧瓶(100mL)、铁架台、玻璃棒、抽滤瓶、布氏漏斗、可控温电热套(250mL)、电炉、温度计、抽滤瓶 DZF-III型真空干燥箱 SHZ-III型循环水真空泵、紫外─可见分光光度计 试剂:邻苯二甲酸酐、尿素、钼酸铵、无水CoCl 煤油、无水乙醇、2%盐 2、 酸、氢氧化钠溶液、蒸馏水 2.2 酞菁钴粗产品的制备 称取邻苯二甲酸酐3.69g,尿素5.95g和钼酸铵0.25g于研钵中研细后加入0.85g无水氯化钴,混匀后马上移入250ml三颈瓶中,加入60ml煤油,加热(200℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入10到15ml无水乙醇稀释后趁热抽滤。并用乙醇洗涤2次,丙酮洗涤1次,得粗产品。 2.3 粗产品提纯 将滤饼加入2%盐酸加热煮沸后趁热抽滤,再将滤饼加入去离子水,煮沸后趁热抽滤,滤饼再加入适量氢氧化钠碱液煮沸抽滤,重复上述步骤2次,直至滤液接近无色。 将产品放在表面皿上在70℃真空干燥8h。 2.4 样品的表征与分析 干燥好后取少量样品溶于二甲基亚砜中,做紫外可见光谱分析。 3 结果和讨论 3.1 数据处理

1- 取代异喹啉合成新方法的研究

2006年第26卷有机化学V ol. 26, 2006第11期, 1548~1552 Chinese Journal of Organic Chemistry No. 11, 1548~1552 ygzhou@https://www.doczj.com/doc/5f707601.html, * E-mail: Received February 14, 2006; revised April 10, 2006; accepted May 23, 2006.

No. 11 陈国英等:1-取代异喹啉合成新方法的研究1549 Scheme 1 1.2 合成1-取代-2-苄氧羰基-1,2-二氢异喹啉 以合成1-正丁基-2-苄氧羰基-1,2-二氢异喹啉(1c)为例: 氮气保护下在一个50 mL反应瓶中, 加入镁(86 mg, 3.6 mmol), 几粒碘, 10 mL 干燥的乙醚. 滴加正丁基溴(493 mg, 0.38 mL, 3.6 mmol), 加毕, 室温搅拌30 min, 制备好格氏试剂备用. 氮气保护下的100 mL反应瓶中, 加入异喹啉(315 mg, 2.4 mmol), 再加入30 mL 干燥的乙醚. 冷却至-78 ℃后, 将制备好的格氏试剂滴加到异喹啉中, 继续搅拌10 min, 滴加氯甲酸苄酯(494 mg, 0.42 mL, 2.9 mmol). 加毕, 5 min后撤去冷浴. TLC跟踪反应, 原料消失后, 加入饱和氯化铵溶液40 mL, 乙醚(20 mL×2)萃取, 饱和食盐水洗涤, 无水硫酸钠干燥. 除去溶剂, 剩余物柱层析, 得到淡黄色油状物1c 724 mg (收率94%). 其它化合物的合成采用类似的操作进行. 化合物1a~1i的谱图数据如下: 1-甲基-2-苄氧羰基-1,2-二氢异喹啉(1a): 1H NMR (CDCl3, 400 MHz) δ: 1.30 (d, J=6.0 Hz, 3H), 5.23~5.28 (m, 2H), 5.32, 5.47 (q, J=6.4 Hz, 1H), 5.78, 5.88 (d, J=8.0 Hz, 1H), 6.80, 6.90 (d, J=8.0 Hz, 1H), 7.02~7.41 (m, 8H). 1-乙基-2-苄氧羰基-1,2-二氢异喹啉(1b): 1H NMR (CDCl3, 400 MHz) δ: 0.78~0.87 (m, 3H), 1.63~1.73 (m, 2H), 5.16~5.28 (m, 3H), 5.79, 5.91 (d, J=7.8 Hz, 1H), 6.83~7.40 (m, 10H); 13C NMR (CDCl3, 100 MHz) δ: 10.1, 28.2, 28.8, 57.1, 57.6, 68.0, 109.0, 109.3, 124.7, 124.8, 125.0, 125.5, 126.5, 126.7, 126.9, 127.7, 127.8, 128.3, 128.4, 128.5, 128.8, 130.3, 132.7, 136.3, 153.1, 153.9. HRMS calcd for C19H19NO2 (M++1) 294.1489, found 294.1465. 1-正丁基-2-苄氧羰基-1,2-二氢异喹啉(1c): 1H NMR (CDCl3, 400 MHz) δ: 0.77~0.85 (m, 3H), 1.18~1.25 (m, 4H), 1.61~1.66 (m, 2H), 5.20~5.35 (m, 3H), 5.81, 5.92 (d, J=7.6 Hz, 1H), 6.82~7.41 (m, 10H); 13C NMR (CDCl3, 100 MHz) δ: 14.2, 22.7, 22.8, 27.7, 34.9, 35.5, 55.9, 56.4, 68.0, 68.1, 69.9, 109.2, 109.4, 124.6, 124.8, 125.0, 125.5, 126.4, 126.6, 126.8, 127.0, 127.6, 127.7, 128.3, 128.4, 128.5, 128.8, 130.3, 133.1, 133.2, 136.3, 153.1, 153.8. HRMS calcd for C21H23NO2 (M++1) 322.1802, found 322.1774. 1-苄基-2-苄氧羰基-1,2-二氢异喹啉(1d): 1H NMR (CDCl3, 400 MHz) δ: 2.74~2.97 (m, 2H), 4.76~5.16 (m, 2H), 5.37~5.52 (m, 1H), 5.81, 5.97 (d, J=7.8 Hz, 1H), 6.59, 6.84 (d, J=7.8 Hz, 1H), 6.97~7.38 (m, 14H); 13C NMR (CDCl3, 100 MHz) δ: 41.0, 41.6, 57.4, 58.1, 68.0, 68.1, 108.9, 109.4, 124.4, 124.7, 125.0, 125.1, 126.6, 127.0, 127.8, 128.0, 128.2, 128.3, 128.5, 128.7, 129.9, 130.1, 131.7, 137.2, 152.8, 153.6. HRMS calcd for C24H21NO2 (M++1) 356.1645, found 356.1620. 1-苯基-2-苄氧羰基-1,2-二氢异喹啉(1e): 1H NMR (CDCl3, 400 MHz) δ: 5.16~5.29 (m, 2H), 5.86, 5.92 (d, J=7.4 Hz, 1H), 6.33, 6.52 (s, 1H), 6.89~7.34 (m, 15H). 1-(2-甲氧基苯基)-2-苄氧羰基-1,2-二氢异喹啉(1f): 1H NMR (CDCl 3 , 400 MHz) δ: 3.67 (s, 3H), 3.94 (s, 1H), 5.05~5.26 (m, 2H), 5.78, 5.86 (d, J=7.7 Hz, 1H), 6.78~7.51 (m, 14H); 13C NMR (CDCl3, 100 MHz) δ: 52.6, 55.4, 55.9, 68.0, 107.6, 107.8, 110.8, 111.3, 121.1, 121.3, 125.1, 125.2, 126.0, 126.6, 126.8, 127.3, 127.5, 127.6, 127.8, 128.1, 128.3, 128.5, 128.7, 129.2, 133.5, 136.1, 152.9, 154.0, 154.1, 154.9. HRMS calcd for C24H21NO3 (M++1) 372.1594, found 372.1573. 1-(3-甲氧基苯基)-2-苄氧羰基-1,2-二氢异喹啉(1g): 1H NMR (CDCl 3 , 400 MHz) δ: 3.68 (d, J=24.2 Hz, 3H), 5.17~5.29 (m, 2H), 5.85, 5.92 (d, J=7.7 Hz, 1H), 6.29, 6.49 (s, 1H), 6.73~ 7.35 (m, 14H); 13C NMR (CDCl3, 100 MHz) δ: 55.2, 5 8.2, 5 9.3, 68.3, 108.8, 109.1, 112.6, 112.9, 113.3, 119.0, 119.7, 125.0, 125.2, 125.4, 125.9, 127.3, 127.4, 127.5, 128.1, 128.3, 128.5, 128.7, 129.6, 130.3, 131.7, 136.0, 143.6, 144.3, 153.3, 159.7. HRMS calcd for C24H21NO3 (M++1) 372.1594, found 372.1572. 1-(4-甲氧基苯基)-2-苄氧羰基-1,2-二氢异喹啉(1h): 1H NMR (CDCl 3 , 400 MHz) δ: 3.74 (s, 3H), 5.16~5.29 (m, 2H), 5.85, 5.94 (d, J=7.6 Hz, 1H), 6.29, 6.49 (s, 1H), 6.72~6.87 (m, 2H), 7.05~7.35 (m, 12H); 13C NMR (CDCl3, 100 MHz) δ: 55.4, 57.7, 58.6, 68.3, 109.0, 113.9,

对苯二酚的合成方法研究

【摘要】本文主要介绍了利用一种用1,4-二甲氧基苯作为反应的起始原料,用氢气作为还原剂,在金属钯复合催化剂的作用下反应直接生成产物对苯二酚。此工艺简单方便易行,副产物少,反应条件相对比较温和。本文对反应的催化剂的种类进行了帅选并且对催化剂的用量、反应温度、反应压力和反应时间进行了优化,最终优化的结果可以使得对苯二酚的产率达到90%。 【关键词】 1,4-二甲氧基苯对苯二酚氢气 对苯二酚是一个重要的有机化工原料,用途非常广泛。酚主要用于制取黑白显影剂、蒽醌染料和偶氮染料、合成气脱硫工艺的催化剂、橡胶和塑料的防老剂单体阻聚剂、食品及涂料清漆、橡胶和汽油的稳定剂和抗氧化剂、石油抗凝剂、洗涤剂的缓蚀剂、稳定剂和抗氧剂等,还用于化妆品的染发剂。 目前世界上生产对苯二酚的方法主要分为以下四种(1)苯胺氧化法;(2)对二异丙苯氧化法;(3)苯酚丙酮法;(4)苯酚羟基化法。 路线1:苯胺氧化法。 目前我国大部分生产厂家仍沿用苯胺氧化法,这是对苯二酚最早的生产方法,至今已有70多年的历史。该法反应过程为:在硫酸中(将138g的1,4-二甲氧基苯和5%不同的催化剂加入烧瓶中,往体系中加入氢气,在压力10mpa和120℃的温度下反应,取样分析对苯二酚的产率。结果如表3所示。 从上表可以看出一共四种催化剂,pd/sio2-al2o3和pd/al2o3的催化效果基本上没有什么差别,分别为81%和80%,但是在产率上都低于催化剂pd/caco3和pd/deloxan apii。pd/caco3 和pd/deloxan apii的催化效果都非常好。下面对催化剂的用量进行了一些实验,结果如表4所示。 从实验结果看出,随着催化剂用量的增加,产率得到了提高,但当用量达到5%的时候,再增加用量,产率基本上没有变化,使用6%pd/caco3为催化剂的产品最终产率为96%,使用6%pd/deloxan apii为催化剂的最终产率为93%。 2.4 反应时间对反应的影响 将138g的1,4-二甲氧基苯和5% pd/caco3催化剂加入烧瓶中,往体系中加入氢气,在压力10mpa和120℃的温度下反应,取样分析对苯二酚的产率,研究反应时间对产率的影响。结果如表5所示。 从上表可以看出反应时间在2小时以下,随着时间的推移对苯二酚的产率渐渐的提高,当反应时间大于2小时的时候,对苯二酚的产率基本没有什么变化,所以反应时间规定在2小时。 3 结语 本文比较了不同种类的催化剂对此反应的影响,确定以pd/caco3或pd/deloxan apii 为反应的催化剂,并且经过对pd/caco3和pd/deloxan apii的用量进行对比实验,确定pd/caco3 和pd/deloxan apii的用量比为5%,并对温度、压力和反应时间进行了对比。最终确定最佳工艺条件为:1. pd/caco3的用量比为5%;2.反应的温度为120℃;3.反应的压力为10mpa;4.反应的时间2小时。

一种钴配合物的制备及表征

1 实验9 一种钴III配合物的制备及表征一、实验目的1. 掌握制备金属配合物的最常用的方法――水溶液中的取代反应和氧化还原反应2. 学习使用电导率仪测定配合物组成的原理和方法二、实验原理 1. 合成运用水溶液的取代反应来制取金属配合物是在水溶液中的一种金属盐和一种配体之间的反应。实际上是用适当的配体来取代水合配离子中的水分子。氧化还原反应是将不同氧化态的金属配合物在配体存在下使其适当的氧化或还原制得金属配合物。CoII的配合物能很快地进行取代反应是活性的而CoIII配合物的取代反应则很慢是惰性的。CoIII的配合物制备过程一般是通过CoII实际上是它的水合配合物和配体之间的一种快速反应生成CoII的配合物然后使它被氧化成为相应的CoIII配合物配位数均为六。常见的CoIII配合物有CoNH363黄色、CoNH35H2O3粉红色、CoNH35Cl2紫红色、CoNH34CO3紫红色、CoNH33NO23黄色、CoCN63-紫色、CoNO263黄色等。2. 组成分析用化学分析方法确定某配合物的组成提出先确定配合物的外界然后将配离子破坏再来看其内界。配离子的稳定性受很多因素影响通常可用加热或改变溶液酸碱性来破坏它。本实验先初步推断一般用定性、半定量甚至估量的分析方法。推定配合物的化学式后可用电导率仪来测定一定浓度配合物溶液的导电性与已知电解质溶液进行对比可确定该配合物化学式中含有几个离子进一步确定该化

学式。游离的CoII离子在酸性溶液中可与硫氰化钾作用生成蓝色配合物CoSCN42-。因其在水中离解度大固常加入硫氰化钾浓溶液或固体并加入戊醇和乙醚以提高稳定性。由此可用来鉴定CoII离子的存在。其反应如下Co2 4SCN CoNCS42-蓝色游离的NH4离子可由奈氏试剂来鉴定其反应如下NH4 2HgI42- 4OH O NH2I↓ 7I 3H2O 奈氏试剂红 褐色电解质溶液的导电性可以用电导G表示KG 式中γ为电导率常用单位为S·cm1K为电导池常数单位为cm1。电导池常数K的数值并不是直接测量得到的而是利用已知电导率的电解质溶液测定其电导然后根据上式即可求得电导池 常数。一般采用KCl溶液作为标准电导溶液Hg Hg 2 三、实验用品仪器与材料电子台秤、烧杯、锥形瓶、量筒、研钵、漏斗、铁架台、酒精灯、试管15mL、滴管、药勺、试管夹、漏斗架、石棉网、温度计、电导率仪、pH试纸、滤纸等。固体药品氯化铵、氯化钴、硫氰化钾液体药品浓氨水、硝酸浓、盐酸6 mol/L、浓、H2O230、AgNO32 mol/L、SnCl20.5 mol/L、新配、奈氏试剂、乙醚、戊醇等。四、实验内容 1. 制备CoIII配合物在锥形瓶中将1.0g氯化铵溶于6 mL浓氨水中待完全溶解后持锥形瓶颈不断振荡使溶液均匀。分数次加入2.0g氯化钴粉末边加边摇动加完后继续摇动使溶液呈棕色稀浆。再往其中滴加过氧化氢302-3mL边加边摇动加完后再摇动当溶液中停止起泡时慢慢加入6 mL浓盐

联苯型双邻苯二甲腈 制备 酞菁铜

超支化酞菁铜的制备与性能研究 赵鑫,杜荣华,刘孝波 电子科技大学电子薄膜与集成器件国家重点实验室,成都(610054) E-mail:zhao1987xin1001@https://www.doczj.com/doc/5f707601.html, 摘 要:通过联苯型双邻苯二甲腈预聚物和CuCl制备得到超支化酞菁铜(HBCuPc)。通过紫外测试结果表明随着反应时间的延长成环率增大(2h-39.52%, 4h-41.68%, 6h-43.00%)。红外的表征显示出随反应时间的延长,2229cm-1处腈基的特征吸收峰逐渐减小,1010cm-1处酞菁环的特征吸收峰逐渐增大,也说明了成环率随时间的延长增大。同时,超支化酞菁铜的在氮气与空气气氛中的起始分解温度分别为400-424o C和357-390o C。产物的介电常数在3.5-4.2之间,介电损耗在0.012-0.022之间,综合各项性能分析显示该聚合物具有优良的热性能和介电性能等。 关键词:超支化;酞菁铜;成环率;热性能;介电性能 1.前言 随着材料开发研究的发展以及人们对材料要求的提高,多功能材料越来越受到关注,对多功能材料的研究也越来越受到重视。最近对使用具有高介电反应的新型高分子材料的兴趣有所增加,因为它们可能适用于高能量密度的脉冲电容器[1-2]。酞菁铜是一种常见的化学染料,其结构与血红素、叶绿素等生物的基本结构具有相似之处。由于酞菁铜分子具有大的共扼体系致使它不仅具有优异的化学稳定性、热稳定性,而且还具有导电性、光电导性、电致发光性等,目前正发展成为一种多功能材料,在工业和日常生活中将得到广泛的应用[3]。酞菁铜的合成工艺从原料可分为邻苯二腈法和苯酐法。目前占统治地位的是苯酐法。苯酐法是在催化剂及三氯苯 ,硝基苯等惰性溶剂或过量尿素存在下,加热苯酐、尿素和铜盐而得到酞菁铜。较多的厂家主要用三氯苯为溶剂生产酞菁铜,但是三氯苯毒性比较大,特别是生产的酞菁铜含致癌物质三氯联苯,影响产品的使用安全性;邻苯二腈法是在溶剂、无机盐等惰性稀释剂存在,加热邻苯二腈和铜盐。邻苯二腈路线生产的优点是反应时间短;温度低;产品质量好;三废少。目前世界上除BASF公司实现以邻苯二腈为原料工业化生产酞菁铜以外,其它生产者均采用苯酐、尿素及氯化亚铜为原料生产酞菁铜[4-6]。为了探究用邻苯二腈法以及实验条件对产物性能的影响,本课题将用邻苯二腈法制备酞菁铜,N-甲基吡咯烷酮作为溶剂进行实验,并研究产物的热性能及介电性能等。 2.实验部分 2.1 原料与仪器 联苯型双邻苯二甲腈,自制;N-甲基吡咯烷酮(NMP),分析纯,天津市博迪化工有限公司;氯化亚铜(CuCl),分析纯,天津市博迪化工有限公司;无水乙醇,分析纯,上海有机化工试剂研究所;丙酮,分析纯,天津市博迪化工有限公司。 紫外分析(UV-vis)采用北京普析通用仪器有限责任公司生产的TU-1800型紫外-可见光分光光度仪。热重分析(TG)采用美国TA公司生产的Q50型热重分析仪,在N2和空气气氛中,以20o C/min从室温升至800o C;红外表征使用日本岛津公司生产的8400S型傅立叶红外光谱仪。核磁共振氢谱的测试采用德国Bruker公司生产的A V400型核磁共振仪。产物的介电常数与介电损耗采用HP 4284A精密LCR测试仪测定,测试频率为1KHz~1MHz。

金属酞菁

金属酞菁 金属酞菁配合物是一类独特的二维p-π共轭大环体系物质,具有很好的热稳定性和化学稳定性。过去几十年的研究表明:酞菁由于其比较特殊的结构特点,显示出良好的二阶和三阶非线性光学性质[3,4],以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。目前,酞菁环内已经和70 多种金属或非金属结合而得到不同中心原子的酞菁配合物[5],而且,在酞菁的苯环上也能方便地引入多种取代基,从而通过对内部中心原子和外围取代基的化学修饰,可以得到不同光学性能的新材料。 紫外-可见光谱由于金属酞菁配合物在多种有机溶剂中的溶解性很差,研究选择浓硫酸来溶解它们。通过表3 可以知道,所有合成的金属酞菁配合物300~900 nm 的紫外-可见区内都有两个较强的吸收溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。研究表明:过渡金属离子影响酞菁的π-共轭时涉及一些电荷转移机理。其中包括金属离子-配体(d-π) 电荷转移机理、配体-金属离子(π-d)电荷转移机理和金属-金属(d-d)电荷转移机理。这些电荷转移机理将在HOMO-LUMO 之间产生新的能级差,从而改变酞菁的光电性能[15,16]。铁,钴,镍,铜作为过渡金属元素,也存在上述电荷转移机理,由于本研究用溶液法测量,所以可以不考虑d-d 电荷转移机理。但是随着原子序数的增加,金属离子的d 电子也相应增加。在电荷转移过程中,原子序数大的金属离子与酞菁环之间的d-π电子共轭水平也要比原子序数低的金属离子的共轭水平高一些。所以随着金属的原子序数的增加,酞菁环的紫外吸收也会发生红移。金属离子与酞菁环平面的扭曲程度、即非共面程度越高,越有利于酞菁环上电子云的流动,从而更容易使电子发生跃迁。 d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非线性光学系数。而主族元素铝为中心的酞菁配合物的非线性光学系数的大小则处于这四个过渡金属为中心的酞菁配合物的中间,即大于酞菁亚铁(II)和酞菁钴(II)的三阶非线性系数而小于酞菁镍(II)和酞菁铜(II) 的系数。这是因为分子构型呈金字塔锥型的酞菁铝的酞菁环平面受Al3+离子的影响发生扭曲、非共面程度比较高,这种构型有利于酞菁环上电子云的流动,所以酞菁铝同过渡金属铁、钴等d 电子较少的金属离子为中心的金属酞菁配合物相比时,扭曲的平面对三阶非线性光学性能的促进作用大于 d 电子与酞菁环共轭造成的对非线性光学系数的提高效果;当与d 电子数目较多的镍、铜为中心离子的金属酞菁配合物比较时,扭曲平面的作用就小于再共轭的效果。

酞菁铜有机半导体调研报告

实习(调研)报告 一、课题的来源及意义 1907 年Braun和Tchemiac两人在一次实验中偶然得到了一种蓝色物质,当时他们两人正在研究邻氰基苯甲酰胺的化学性质,当他们将这种无色的物质加热后得到了微量的蓝色物质,这就是现在被人们称为酞菁的化合物。1923 年Diesbach等人发现可以用邻二苄溴与氰化亚铜反应制得邻二苄腈,于是他们想用邻二溴苯与氯化亚铜反应来制备邻苯二腈。可实验结果出乎他们的意料,他们并未得到所期望的邻苯二腈,而是得到一种深蓝色的物质,并且产率达到 23%。这种蓝色物质就是现在被称为酞菁铜的化合物。至此,酞菁和金属酞菁化合物被发现。 二、国内外发展状况及酞菁类物质性质 1929年,在英国的ICI公司的资助下,伦敦大学的Linstead教授和他的合作者开始进行这类新物质的结构测定工作。1933 年他们用综合分析法测定了该类化合物的结构后,便用phthalocyanine一词来描述这类新化合物。1935 年Linstead教授和他的合作者采用 500℃以上的高温和低气压,用CO2作载气制得了酞菁化合物的单晶,Robertson教授用X射线衍射分析法对酞菁及金属酞菁化合物的单晶进行结构分析,至此,酞菁自正式被发现到首个单晶生成共经历了12 年。根据他的报道,酞菁及金属酞菁分子组成的晶体属单斜晶系,空间群为 P2/a。每个晶胞中有两个分子,每个分子都呈现出高度平面的结构。所得分子结构的结果与Linstead教授的结果完全一致,从而酞菁的化学结构得到了进一步的证实。酞菁分子的这种结构使得它具有非常稳定的特性,耐酸、耐碱、耐水浸、耐热、耐光以及耐各种有机溶剂。一般酞菁化合物的热分解温度在 500℃以上,在有机溶剂中的溶解度极小,并且几乎不溶于水。相对而言,铜酞菁在冷的浓硫酸中较稳定,它可以溶解在其中,并且当硫酸浓度降低时又可从中析出来。铜酞菁的这种特性常常被用来提高它的纯度。由于上述代表性的工作,酞菁及金属酞菁化合物的化学结构才为世人所知,从此,酞菁及金属酞菁化合物的研究及应用也进入了一个崭新的阶段。 酞菁铜(CuPc)最早由瑞士化学家Diesbach等[1]制得,其优越的耐光耐辐射、光/暗电导比、热稳定和化学稳定等特性,预期在太阳能电池、电致发光器件、光记录存储、化工染料、静电复印感光鼓、气敏传感器件等方面有广泛的应用潜力。近年来,基于酞菁环面的共轭π-π*电子跃迁而产生的可见光及近红外区域的强

新型羧酸配体与过渡金属配合物合成及结构研究

摘要 摘要 配位聚合物作为一种新型的分子功能材料,凭借其独特的结构可剪裁性、多样的拓扑结构和在离子交换、吸附、分子识别、催化以及光、点磁、手性拆分等领域的巨大应用潜力受到各界科学家们越来越多的关注。羧酸配合物和配位聚合物具有性质独特、结构多样化、不寻常的性质等特点,它们在非线性光学材料、磁性材料、催化材料、分子载体、存储气体、生物工程等诸多领域具有广泛的应用前景。因此,对羧酸配合物和配位聚合物的研究具有理论意义和潜在应用价值。 本文主要的研究内容为过渡金属Cu、Cd的金属盐与内型降冰片烯-顺5.6-二羧酸反应为配体邻菲罗啉、2,2-联吡啶为辅助配体在相同温度下反应构筑出具有新颖拓扑结构的金属—有机配位聚合物的相关反应进行研究。 关键词:二羧酸铜配合物,二羧酸镉配合物,合成,晶体结构 I

ABSTRACT ABSTRACT Polymer as a novel molecular functional materials, by virtue of its unique structure, building materials of various topologies and in ion exchange, adsorption, molecular recognition, catalytic and optical, magnetic, chiral resolution field potential application is more and more attention from all walks of life scientists. Carboxylic acid complexes and coordination polymers with unique properties, structural diversification, unusual characters, they are in nonlinear optical materials, magnetic materials, catalytic materials, molecular carrier, gas storage, biological engineering and other fields have broad application prospects. Therefore, the carboxylic acid complexes and coordination polymers research has theoretical significance and potential application value. The main research contents of this article as transition metals Cu, Cd metal salt and type of norbornene and endo-norbornene-cis-5,6-dicarboxylate anion response to ligand phenanthroline,2,2 - bipyridine as assistant ligand at the same temperature response to build a novel topological structure of metal organic coordination polymers related reactions research. Key words:acid Copper Complex, acid cadmium complex, synthesis, crystal structure II

聚合物纳米复合电介质

聚合物纳米复合电介质 背景:聚合物复合材料是一类重要的商业材料,广泛应用于交通、电气电子、航空航天、流体输送以及包装等领域。然而,随着技术标准的提高,传统的聚合物微米复合材料在很多领域已经难以满足要求。纳米技术的出现使复合材料的发展进入了一个崭新的时代。与聚合物微米复合材料相比,纳米复合材料具有许多优异、奇特的性能:质量分数为10-4的纳米Ag 粒子可以使聚乙烯醇(PVA)的常温介电强度提高2倍;O .05m %的碳纳米管可以使环氧树脂的电导率提高7个数量级。 定义:聚合物纳米复合材料可以定义为通过一定方式在聚合物基体中引入至少在一个维度上是纳米尺度的填充物所组成的材料。这种材料通常具有3个特性:第一,少量的纳米填充物即可以引起聚合物性能上大的变化;第二,当填充物在聚合物基体中均匀分散时,填充物彼此之间具有更短的距离;第三,填充物与聚合物基体之间具有非常大的接触面积。正是由于聚合物纳米复合材料的这些特征给研究者设计、制备先进电介质材料提供了机会。已经发现,聚合物纳米复合材料在电导,介电强度,介电损耗,空间电荷和局部放电等方面具有显著优势。 聚合物纳米复合电介质的电导:填充剂和聚合物本身的电学性质、填充剂之间距离以及复合材料的微观结构等是决定聚合物复合体系电导的主要因素。对于颗粒填充的聚合物复合体系,颗粒与颗粒之问的距离l 可用下述公式表示:1/3[(4/3)2]l r v π=-,r ,v 分别是填充颗粒的半径、体积分数。根据该式,在填充剂含量相同的情况下,纳米复合材料中颗粒之间的距离比微米复合材料要小得多;填充剂的电学性质与自身的尺寸有关,当微粒子的尺寸减小到纳米尺度时,组成颗粒的原子、分子数嚣大幅度减步,颗粒本身的电学性质可能会发嫩一些奇异的变化。 聚合物纳米复合电介质的介电常数:具有高介电常数、高介电强度、低介电损耗的聚合物复合材料是应用前景非常广泛的绝缘材料,这类材料具有均匀电场和储能的作用,可应用于电缆终端,集成电容器以及电机绝缘中。这类材料对保证电力系统的正常运行具有举足轻重的作用。在聚合物中加入高介电常数的钛酸钡,钛酸锶钡、铌镁酸铅.钛酸铅等无机粒子以及金属、碳纳米管、炭黑等导电、半导电颗粒是获得高介电复合材料的重要手段。这些体系是典型的逾渗体系。对于这类体系,理解与把握逾渗理论对于高介电复合材料的设计是极为重要的。逾渗体系的有效介电常数可表示成:1()c p p βεε-=-。其中,ε、ε1分别为复合材料、聚合物的介电常数,p 为孤立分散相的体积分数,p c 为逾渗阈值,且p

产能转移吡喹酮唯我独大.doc

产能转移吡喹酮唯我独大 吡喹酮上市使用至今已有30多年历史,多年来,吡喹酮一直作为抗血吸虫病的主力药物和抗其他寄生虫的有效药物在临床一线应用,为人类健康起到了重要的作用。一线抗寄生虫药物吡喹酮最先由Seubere等人于1975年首先合成,德国默克(即现在的默克雪兰诺)和拜耳两药厂成功开发出药物制剂。1980年德国默克公司以商品名“Cesol”率先上市的吡喹酮,目前已在全世界范围内广泛应用。吡喹酮上市后,因其高效、低毒、抗寄生虫谱广、口服方便等特点,深受患者欢迎,销售额不断增加,市场占有率迅速扩大,很快成为世界上治疗血吸虫病和多种寄生虫病的主要药物。除用于人体外,它也广泛用作动物、家禽等的抗寄生虫治疗。吡喹酮又名环吡异喹酮、8440,为广谱抗寄生虫病用药,其抗蠕虫谱很广,对日本血吸虫、埃及血吸虫、曼氏血吸虫等均有杀灭作用。此外,它对并殖吸虫(肺吸虫)、华支睾吸虫、包虫、囊虫、孟氏裂头蚴、姜片虫、绦虫等也有杀灭作用。其作用特点是疗效高、剂量小、疗程短、代谢快、毒性小和口服方便。毋庸置疑,吡喹酮的问世是寄生虫病化疗史上的一项重大突破,现在,它仍是治疗多种寄生虫病的首选药物。 《中国药典》自1985年版以来,修订的历版均将吡喹酮收载其中,同时亦被收载于美国、英国等许多国家的药典以及《欧洲药典》、《国际药典》等。目前,吡喹酮已被列入我国《基本医疗保险及工伤保险药品目录》中抗吸虫病药物的甲类品种。多年来,每当我国长江流域以及其他南方广大地区遭受洪水袭击后,吡喹酮作为预防和治疗血吸虫的一线药物,均发挥了很大的作用。产能占全球近半. 目前,全世界有多家公司生产吡喹酮,如德国默克、拜耳、Miles、韩国大宇等,产量最大的是拜耳公司,年产量达50多吨。但是,近年来因环保等各种原因,这些公司的产量均有不同程度的减少甚至停产。前几年,吡喹酮全世界年总产量为200吨左右。 我国于1977年研发成功吡喹酮并开始临床试验,1982年正式投放市场。30余年来,我国吡喹酮年生产能力和产量均稳步上升。20世纪80年代,我国吡喹酮年生产能力不到20吨,年产量仅为10余吨,到20世纪90年代,年生产能力达到30多吨,年产量20余吨。20世纪末,我国吡喹酮的年生产能力已达到近50吨,年产量为35吨左右。多年来,南京制药厂、上海制药六厂为吡喹酮的主要生产企业,年产量和出口量占据全国80%以上的份额。21世纪以来,江苏、浙江、安徽等地有多家企业先后投入吡喹酮的生产,前些时候,浙江海正药业又与国外合作,兴建了年产40吨规模的吡喹酮生产线,这使我国的年生产能力增至150余吨,年产量80余吨,从而成为世界吡喹酮的主要生产国。现在全国共有吡喹酮生产批准文号25个,其中吡喹酮片剂生产批准文号有18个,吡喹酮原料药生产批准文号7个,原料药主要生产企业有:南京制药厂、浙江海正药业、常州亚邦制药、上海新华联制药、绍兴民生医药、江苏红豆杉药业、安徽省润康药业等。 此外,全国还有多家化工企业也生产吡喹酮原料药作为兽用药并出口,如石家庄嘉一药业和上海嘉一药业最近共同打造了国内规模最大的吡喹酮原料药产销集团。上海嘉一公司的吡喹酮原料药已于2011年4月通过农业部GMP认证,产品质量符合USP、EP、CVP等最新版

比拉斯汀的合成工艺研究

比拉斯汀的合成工艺研究 发表时间:2017-10-30T17:35:09.573Z 来源:《医药前沿》2017年10月第29期作者:徐连德1 徐琪琪2 徐英明2 [导读] 比拉斯汀(Bilastine),中文化学名为2-[4-(2-(4-(1-(2-乙氧基乙基)苯并咪唑-2-基)哌啶-1-基)乙基)苯基]-2-甲基丙酸。(1沂水县第一中学山东临沂 276405) (2山东罗欣药业集团股份有限公司山东临沂 276017) 【摘要】α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯[2]经过还原反应制得α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3],3与1-(2-乙氧基-乙基)-2-哌啶-4-基-1H-苯并咪唑[4]发生烷基化反应,再经水解得到比拉斯汀[1],总收率约76%。 【关键词】比拉斯汀;组胺H1受体拮抗剂;合成 【中图分类号】R976 【文献标识码】A 【文章编号】2095-1752(2017)29-0353-01 比拉斯汀(Bilastine),中文化学名为2-[4-(2-(4-(1-(2-乙氧基乙基)苯并咪唑-2-基)哌啶-1-基)乙基)苯基]-2-甲基丙酸,是西班牙FAES制药公司开发的第2代组胺H1受体拮抗剂,2012年欧盟批准其用于治疗变应性鼻炎及慢性特发性荨麻疹[1]。本品安全性良好,无常用抗组胺药物存在的镇静作用及心脏毒性,口服给药吸收迅速,具有良好的耐受性、安全性和较高的生物利用度[2]。 已有文献报道了1的合成路线[3-5]。本文选择以下路线α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯[2]经过还原反应制得α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3],3与1-(2-乙氧基-乙基)-2-哌啶-4-基-1H-苯并咪唑[4]发生烷基化反应,再经水解得到比拉斯汀[1],并进行了工艺优化。 文献[5]报道了由2制备3的过程,用三乙基硅烷-三氟乙酸进行还原,反应时间长达72h,收率91%。本研究通过调整三乙基硅烷-三氟乙酸的用量,控制回流反应温度,缩短了反应时间,收率90%。文献[5]由3制备1的过程中,3依次与2-(4-哌啶基)-1H-苯并咪唑和2-氯乙基乙醚发生亲核取代反应后,水解得比拉斯汀,反应步骤长,且操作繁琐,且3在与2-(4-哌啶基)-1H-苯并咪唑发生亲核取代反应时,咪唑环上的氮-氢不可避免的会与哌啶基上的氮-氢进行竞争,生成副产物,影响收率和纯度。本研究在文献基础上进行了改进,将3直接与4进行烷基化反应,再进行水解,一锅法制备1,方法工艺简单,操作简便,收率及产品纯度均有较大幅度提高,总收率为76%,适合工业化生产。 图1 1的合成路线 Fig.1 Synthetic Route of 1 1.实验部分 1.1 α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3]的制备 冰浴冷却下分别向反应瓶内加入20mL二氯甲烷、α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯(30.0g,100.7mmol,采用文献方法[5]制得,纯度99.1%)、三氟乙酸(36mL,484.6mmol)、三乙基硅烷(18mL,112.7mmol)。冰浴下搅拌30min后,升温至60℃回流反应20h。反应结束,滴加饱和碳酸溶液(约150ml),加入乙酸乙酯(100ml*2)萃取,有机相浓缩干燥,得无色油状物(25.7g,90%)(文献:91%[5])。ESI-MS,m/z(%):307[M+Na]+,283[M-H]+。元素分析:C13H17BrO2,实测值(计算值)%:C54.96(55.00);H6.02(6.04);Br28.11(28.14);O11.27(11.27)。 1.2 比拉斯汀[1]的合成 在反应瓶中加入3(99.36g,0.35mol)和4(82.01g,0.3mol,购自:江苏弘和药物研发有限公司,纯度98%),搅拌下加入10ml聚乙二醇-400和45ml水,在冰水浴的冷却下慢慢加入混合碱(0.25molNaOH+0.1molNa2CO3),于40℃下快速搅拌3.5小时后放置,使反应液冷却至室温,加入3N丁二酸溶液2.1L,加热回流24小时,用10%氢氧化钠水溶液调至pH=7,用乙醚(450ml*2)萃取,旋出溶剂,得到固体1(116.83g,84%),mp291~293℃(文献:295-296[5])。纯度为99.8% [HPLC归一化法:同文献[5]。ESI-MS,m/z(%):487[M+Na]+,463[M-H]+。元素分析:C28H37N3O3,实测值(计算值)%:C72.50(72.54);H8.01(8.04);N9.07(9.06); O10.38(10.35)。 【参考文献】 [1] Corc6stegui R,Labeaga L,Inneririty A,et a1.Preclinical pharmacology of bilastine,a new selective histamine Hl receptor antagonist:receptor selectivity and in vitro anti-histaminic activity[J].Drugs R D,2005,6(6):371-384. [2] Carter NJ.Bilastine:in allergic rhinitis and urticaria [J].Drugs,2012,72(9):1257-1269. [3] Lee CH,Khoo JH,Kwon KC,eta1.Process for preparation of 2-methyl-2-phenylpropionic acid derivatives and novel intermediate compounds:WO,2009102155[P].2009-02-12. [4]王蕾,李科,王倩,等.2-(4-卤乙基)苯基-2-甲基丙酸酯的制备方法及合成比拉斯汀的方法:中国,102675101[P].2012-09-19. [5]孔昊,耿海明,梅玉丹,等.比拉斯汀的合成[J].中国医药工业杂志,2015,46(7):677-679.

铜酞菁的生产工艺设计

一目标化合物的概述 1. 产品名称、化学结构及理化性质 铜酞菁的分子式为C32H16CuN8,相对分子质量为574。铜酞菁的热稳定性 分解温度高达400℃[3],其化学结构: 铜酞菁又名粗酞菁蓝,是生产酞菁蓝B、酞菁蓝BGs、酞菁绿、直接耐晒翠蓝等多种颜料、染料产品的基本原料,是重要的有机颜料中间体.酞菁蓝具有鲜艳的蓝色,高度的着色力和优良的牢度,耐光、耐热、耐酸碱、耐有机溶剂等稳定性极好的特点,广泛用于涂料、油墨、油漆、橡胶、塑料等方面,此外,在半导体、原子能、激光等工业中也有特殊的用途[1]。 二、目标化合物已有合成线路简介 目前生产铜酞菁的方法主要有三种:邻苯二腈法[6]和苯酐尿素法.前者是用邻苯二腈和铜盐,在触媒作用与饱和氨气的环境中加热得到;后者是以苯酐、尿素、氯化亚铜、钼酸铵等为原料加热制得,苯酐尿素法又有固相法[1]和液相法[7、9].液相法是将原料溶解在三氯化苯等有机溶剂中进行反应;固相法是将原料加热至140℃熔化后再装入金属盘内在240~260℃下反应4-5h制得。 现在在原有的方法上通过改进有几个不同的方法。料浆法即采用加入少量溶剂和固体垫底物生产铜酞菁的生产工艺,结合了固相法和溶剂法的优点[6]。溶剂油法是以溶剂油和煤油代替溶剂法中三氯苯[8]。其中,溶剂油无毒、无异味,化学性质稳定,其最大的优点就是对大气、地表不会造成污染,极微量的残留物质中不存在致癌物质,而且资源丰富,成本低;因此溶剂油完全可以代替现在生产所用的三氯苯或硝基苯,它是一种物美价廉的好溶剂。干法合成铜酞菁工艺是继烘焙法、固相法、溶剂法之后的又一合成铜酞菁的新型生产方法[17]。通过选用快速紊流混合及素流反应等专用设备和装置,提高传热传质效率,增加反应质点接触和碰撞机率,达到提高反应效率和铜酞菁合成品纯度之效果。 一.邻苯二腈法 铜酞菁的制备:称量计算量的邻苯二腈、氢氧化铜和酞菁在一定量的乙二醇中混和,先在100。C反应2 h,然后在160℃反应5 h。得到的固体产物与溶剂分离后,再在稀盐酸中于90℃处理l h,过滤,水洗涤后干燥得铜酞菁。

相关主题
文本预览
相关文档 最新文档