当前位置:文档之家› 基于反射式光纤传感器的成品油识别系统

基于反射式光纤传感器的成品油识别系统

基于反射式光纤传感器的成品油识别系统
基于反射式光纤传感器的成品油识别系统

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤传感器使用方法

FS-V21/21G/21RP/21RM/21X 光纤传感器调试方法 1、基本组成 本系列的光纤传感器外观基本由以下几部分组成,从左到右依次为: (1)SET键,此按钮可用于敏感度设定。本传感器的基本原理为:通过光纤探头对不同介质折射率的感应,从而获得数字信号,显示在屏幕上,通过显示数值的大小与设定灵敏值的比较发送开关量。 (2)指示灯,此灯在传感器有信号输出时发生亮灭变化。 (3)“设定灵敏值”,在屏幕上显示为绿色,表明当前设定的灵敏值。当探头采集到的数值变化至此数值时,传感器产生信号。 (4)“当前灵敏值”,在屏幕上显示为红色,显示传感器当前采集的数值。(5)“选择按钮”,及左右箭头,可以实现各种功能的选择,相当于翻页键 (6)“模式选择按钮”,此按钮可用于设定不同的工作模式。 2、接线方法 (1)F S-V21/21G/21R/21RM/21X:棕线:L+24V 黑线:信号线 橙线:1-5V 蓝线:公共端 (2)FS-V21RP:棕线:L+24V 黑线:信号线蓝线:公共端 3、灵敏度校准 (1)全自动校准:在工件进入探头的灵敏区域时,按住“SET”键不放,保持3秒,灵敏值将会被设定,显示为绿色 (2)两点校准:在工件未进入灵敏区域时,按住“SET”键保持三秒,有一个敏感值被记忆,然后将工件放置在敏感区域,按下“SET”键保持三秒,另一个敏感值被记忆,当敏感值从一个值变化为另一值时,传感器产生电平变化。 (3)一般校准:也可以通过按“选择按钮”,及左右键来增减敏感度的设定值。 (4)位置校准:在工件未进入灵敏区域时,按住“SET”键保持

三秒,然后将工件放置在离探头一定距离,按下“SET”键保持三秒,一个敏感值被记忆,当工件每次到达此位置时,传感器产生电平变化。 4、常开常闭设定 按下最右侧的开关选择按钮,可以选择,内部开关为常闭还是常开。

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

光纤传感器

光纤传感器 ①光纤传感器的基本原理 光纤传感器通过光导纤维把输入变量转换成调制的光信号。光纤传感器的测量原理有两种。 (1) 物性型光纤传感器原理 物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。 激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。 (2) 结构型光纤传感器原理 结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 图2 结构型光纤传感器工作原理示意图 (3) 拾光型光纤传感器原理 用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。

图3 拾光型光纤传感器工作原理示意图 ②光纤传感器的优点 与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。 (1) 电绝缘性能好。 (2) 抗电磁干扰能力强。 (3) 非侵入性。 (4) 高灵敏度。 (5) 容易实现对被测信号的远距离监控。 (6) 耐腐蚀,防爆。 (7) 光路有可挠曲性,便于与计算机联接。 (8) 结构简单,体积小,重量轻,耗电少等。 光纤传感器在军事、航空、医学、环境监测、土木工程、电子系统等很多领域都有广泛的应用,尤其适用于以下特殊环境: (1) 在高压、电磁感应噪音条件下的测试; (2) 在危险和环境恶劣条件下的测试; (3) 在机器设备内部的狭小间隙中的测试; (4) 在远距离的传输中的测试。

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

光纤传感器的主要应用领域

关于传感系统中光纤的应用有基本其实本站早就有探讨过。对于光纤的传输特性,在传感器技术中的要求与其在工业中应用中是不同的:邮政,电报等方面的应用中不希望的(如损耗),在传感技术中恰恰是可以利用的。在光纤传感技术中,为了获得所期望的灵敏度,可以将光纤“增敏”或者“去敏”,就是比如果只是采用通讯用普通光纤,那么光纤传感器性能将受到限制。根据传感技术的需虽选用新的材料、设计特殊结构的专用光纤是光纤传感技术发展的一个基础课题。 传感器的概念并不陌生,可以类似人的眼睛就是一种传感器。人步行时,要用眼睛观察道路状况,由大脑作出判断并控制着步行的方向和行动,这样才能保证安全行走。在人类有目的指向的行为中,关于目标的识别和判断都是必不可少的。在工程技术中控制和测量的关系也是如此:要实现准确的自动控制,必须从工程对象那里得到信息,在其基础上作出准确的判断。微型计算机的发展不仅带来了计测技术本身的高度发民同时也促进了高可靠快自动控制机器的发展与普及。无论是计测还是控制,其最重要的部分都是作为来自待测目标的信息入口的传感器。随着对于计测和控制方面的要求越来越民相应的实现各种目的传感器的研制开发都迅速展开。 至于光纤传感器,可以这样定义:一种用来检测光在光纤中传播时,因光纤的全部或部分环节所在环境(物理量或化学置或生物虽等)的变化带来的光传榆特性改变的装置。光纤传感器与传统的各类传感器相比,有独特的优点。光纤本身用作基本传感器,具有高灵敏度,抗电磁干扰,耐腐蚀、防爆及不干扰被测场等特点;光纤作为传感信号的传送系统,与传统的金属线路相比,具有抗电磁场相地球环流的干扰、可靠住高、安全及可长距离传送等优点;并且便于与计算机连接、与光纤传输系统组成遥测网络;加之光纤传感器结构简单、体积小、重量,因此光纤传感器有着广泛的应用潜力。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/5f3840629.html,/

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

传感器原理第九章 光纤传感器

第九章光纤传感器第一节光纤的传光原理与特性 一、光纤的结构 二、光纤的传光原理 三、光纤的传光特性 第二节传输光的调制技术 一、光强度调制 二、光相位调制 三、偏振调制 四、频率调制 第三节强度调制光纤传感器 一、光纤水深探测器 二、透射式光纤温度传感器 三、反射式光纤位移传感器 第四节相位调制光纤传感器 第五节偏振调制光纤电流传感器 第六节频率调制光纤血流传感器

第九章光纤传感器 1970年,美国康宁玻璃公司研制成功传输损耗为20db/km的光导纤维。光导纤维的诞生,是20世纪人类的重要发明。现已广泛应用于工程技术、及通讯技术。 光导纤维作为远距离传输光波信号的媒质,最早用于光通讯技术,但人们在实际光通讯过程中发现,光导纤维受到如压力,温度、电场、磁场等外界环境因素变化的影响时,将引起光纤传输的光波量,如光强、相位、频率、偏振态等的变化。若能测量光波量的变化,就可以知道导致这些光波量变化的压力、温度、电场、磁场等物理量的大小。于是,诞生了光导纤维传感器技术。 光纤传感器亦称光导纤维传感器,光纤传感器技术是70年代末发展起来的一门崭新技术,是传感器技术领域里的新成就。 光导纤维传感器技术是随着光导纤维的实用化和光通讯技术的发展而发展起来的,它与以电为基础的传感器相比有本质的区别。 光纤传感器是以光来作敏感信息的载体,用光导纤维作为传递敏感信息的媒质。

光导纤维传感器同时具有光导纤维及光学测量的一些宝贵的特点: 灵敏度高、结构简单、体积小、耗电量少、耐腐蚀、绝缘性好、光路可弯曲、抗电磁干扰、对被测场不产生影响、易实现对被测信号的远距离测控。 光纤传感器技术是一门多学科性科学,涉及到的知识面广泛,如光纤光学、光电技术、弹性力学、电磁学、电子技术、计算机应用等。本章重点介绍光纤传感器原理、分类、及典型应用。

光纤传感器的组成结构,光纤传感器的应用及其优缺点

光纤传感器的组成结构,光纤传感器的应用及其优缺点 传感技术是当今世界发展最为迅速的高新技术之一。新型传感器不仅追求高精度、大量程、高可靠、低功耗和微型化,并且向着集成化、多功能、智能化和网络化的方向发展,以满足工业、农业、国防和科研等各个领域的需求。光纤传感技术是20世纪70年代随着光纤技术和光通信技术的发展而迅速发展起来的。它代表了新一代传感技术的发展趋势。光纤传感器的产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 光纤最早的出现的目的是用于传输光,在20世纪70年代初生产出低损耗光纤后,光纤用于长距离传递信息,是光纤通信的基石,也可以豪不夸张的说光纤也是现代信息社会的基石。由于光纤不仅可以作为光波的传输媒质,而且光波在光纤中传播的特征参量(振幅、相位、偏振态、波长等)会因外界因素(如温度、压力、应变、振动、声音、磁场、折射率、扭曲、等)的作用而间接或直接地发生变化,分析这些变化就可以得到外界作用的某些性质,从而可将光纤用作传感器元件来探测各种物理量、化学量和生物量,这就是光纤传感器的基本原理。 光纤传感器的基本结构由光源、传输光纤和光检测部分组成。考虑到光纤传输已经很简单,通常一套完整的光纤传感器主要由传感器和解调仪构成。光源发出的光耦合进光纤,经光纤进入调制区;在调制区内外界被测参数作用于进入调制区内的光信号,使其光学性质如光的强度、波长、频率、相位、偏振态等发生变化成为被调制的信号光:再经过光纤送入光检测器,光检测器对进来的光信号进行光电转换,输出电信号;最后对电信号进行信号处理而得到可用信号,从而获得被测参数。 光纤传感器的组成结构光纤传感器网的三种基本构成 光纤传感器网有三种基本构成,其中一个叫单点式传感器。一根光纤在这里仅仅起到传输的作用,另外一种叫多点式传感器,在这里一根光纤把很多传感器串起来,这样很多传感

分布式光纤传感器系统测量原理

分布式光纤传感器系统测量原理 [摘要]: 光在光纤中传播,光与介质中光学声子、声学声子发生碰撞,会产生后向散射的光,这些后向散射的光的频率、强度均会发生改变。其改变量的大小与折射率等有关,而折射率等因素受光纤的应变、温度的影响。 [关键词]:光纤;光纤传感器;测量 中国分类号:TN6 文献标识码:A 文章编号:1002-6908(2007)0110021-01 1.BOTDR的分布式温度和应变测量 BOTDR的分布式应变测量原理,当入射光在光纤中传播时,入射光会与声波声子相互作用,产生布里渊散射。其散射光的传播方向与入射光的传播方向相反。当入射光的波长那布里渊散射的最大能量的频率与入射光的频率之差大约是11GHz。这个频移量就叫做布里渊频移。如果光纤沿径向发生了应变,那布里渊散射对应于应力的频移量,如图1所示: 为了测量分布式的应变,通过使用BOTDR技术,沿着光纤观测布里渊散射光的频谱,确定布里渊频移的大小,从而达到测量应力的目的。如图2所示。在光纤的一端脉冲光入射,同时在这端使用时间域的BOTDR接收布里渊后向散射光。因此,产生布里渊散射的位置与脉冲光发射的位置的距离Z可以由下列登时确定,在这个式中,时间T是发射脉冲光与接收的布里渊散射光的时间差。 为了能获得布里渊散射光的频谱,我们重复上面所做的步骤,我们缓慢的改变入射光的频谱宽度。在布里渊散射光的不同频率段,我们能获得大量的分布式能量。如图2所示。所以,我们能够从获得的布里渊散射光的波形,知道在光纤中任何位置,那散射光的频谱。所以,我们固定频谱到那些Lorentzian弯曲和使用能量峰值的频谱。通过相应弯曲位置的应力。 应变与布里渊频率的改变量的各自联系。在实际的测量中,测量之前,(1)中的系数和布里渊频移可以在无应变时测量出来。然后,频移转换成应变。 注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 1.1光学反射原理 分为镜面反射和漫反射 镜面反射和漫反射情况 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 1.2光学折射原理

1.3光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 1.4光学多普勒效应 θ cos 11f f 02 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。

1.5声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 1.6磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 1.7电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3)

光纤传感器的今日发展概况

光纤传感器的今日的发展概况 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器E DFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到

公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART M ATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。

口罩机光纤传感器组成及特点

口罩作为此次疫情的重要防备工具,市场需求量很大,为响应国家号召,解决医疗物资紧缺的燃眉之急,推出口罩机常用区域光纤传感器,助力口罩等物资复产,从而做到高效抗击疫情。 口罩机光纤传感器主要由光源、传输光纤、光电探测器和信号处理部分等组成。其基本原理是将来自光源的光经过光纤送入传感头(调制器),使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位和偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光电探测器,将光信号转化为电信号,后经过信号处理后还原出被测物理量。光纤传感器一般可分为功能型(传感型)传感器和非功能型(传光型)传感器两大类。 与传统的传感器相比,光纤传感器具有独特的优点: (1)灵敏度高 由于光是一种波长极短的电磁波,通过光的相位便得到其光学长度。以光纤干涉仪为例,由于所使用的光纤直径很小,受到微小的机械外力的作用或温度变化时其光学长度要发生变化,从而引起较大的相位变化 (2)抗电磁干扰、电绝缘、耐腐蚀、本质安全

由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输媒质,并且安全可靠,这使它可以方便有效地用于各种大型机电、石油化工、矿井等强电磁干扰和易燃易爆等恶劣环境中。 (3)测量速度快 光的传播速度最快且能传送二维信息,因此可用于高速测量。对雷达等信号的分析要求具有极高的检测速率,应用电子学的方法难以实现,利用光的衍射现象的高速频谱分析便可解决。 (4)信息容量大 被测信号以光波为载体,而光的频率很高,所容纳的频带很宽,同一根光纤可以传翰多路信号。 (5)适用于恶劣环境 光纤是一种电介质,耐高压、耐腐蚀、抗电磁干扰,可用于其它传感器所不适应的恶劣环境中。 以上内容的介绍,供大家参考了解一下,如有这方面的兴趣或需求,可以咨询一下南京凯基特电气有限公司了解更多详情。

光纤传感器原理与应用

光纤传感器原理与应用 1 引言 传感器技术、通信技术、计算机技术是现代信息技术的三大支柱,传感器作为探测与获取外界信息的重要环节之一而被应用于工业、农业及军事等各个领域。 近20多年来,光纤传感器的发展则大有取代传统传感器的趋势。光纤传感器是光通信和集成光学技术发展的结晶,与以往的传感器不同,它将被测信号的状态以光学的形式取出[1]。光信号不仅能被人所直接感知,利用半导体二极管等小型简单元件还可以进行光电、光学转换,极易与一些电子装备相匹配。此外,光纤不仅是一种敏感元件,还是一种优良的低损耗传输线,因此,光纤传感器还可以用于传统的传感器所不适用的远距离测量。 自从20世纪70年代末光纤传感器诞生以来,便由于其具有的防火、防爆、精度高、损耗低、体积小、重量轻、寿命长、性价比高、复用性好、响应速度快、抗电磁干扰、频带范围宽、动态范围大、易与光纤传输系统组成遥测网络等优点而被广泛地应用于各行各业。随着对其研究的不断深入,光纤传感器势必会对科学研究、国民生产、日常生活等诸多领域产生深远影响。 2 光纤传感器基本构成及原理 光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。 光纤传感器按传感原理可分为两类:一类是传光型(非功能型)传感器[2],另一类是传感型(功能型)传感器[3]。在传光型光纤传感器中,光纤仅作为光的传输媒质,对被测信号的感觉是靠其它敏感元件来完成的,这种传感器中出射光纤和入射光纤是不连续的,两者之间的调制器是光谱变化的敏感元件或其它性质的敏感元件。在传感型光纤传感器中光纤兼有对被测信号的敏感及光信号的传输作用,将信号的“感”和“传” 合而为一,因此这类传感器中光纤是连续的。

相关主题
文本预览
相关文档 最新文档