当前位置:文档之家› 阿波罗尼斯圆中的数学压轴题

阿波罗尼斯圆中的数学压轴题

阿波罗尼斯圆中的数学压轴题

阿波罗尼斯圆中的数学压轴题

到两点点的距离之和为定值(大于两定点距离)的点的轨迹是椭圆.到两点点的距离之差为定值(小于两定点距离)的点的轨迹是双曲线.那么到两定点的距离之比为定值的点的轨迹是什么呢?没错就是阿氏圆.阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P到两定点A、B

的距离之比等于定比m:n,则P点的轨迹,是以定比m:n 内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.【分析】令B为坐标原点,A的坐标为(a,0).则动点P(x,y).满足PA/PB=k(为实数,且不为±1)得(k2-1)(x2+y2)+2ax-a2=0,当k不为±1时,它的图形是圆.当k为±1时,轨迹是两点连线的中垂线.【典型例题】问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+1/2BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=1,则有CD/CP=CP/CB=1/2,又∵∠PCD =∠BCP,∴△PCD∽△BCP.∴PD/BP=1/2,∴PD=1/2BP,∴AP +1/2BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+1/2BP的最小值为.(2)自主探索:在“问题提出”的条

件不变的情况下,1/3AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,求2PA+PB的最小值.【解题过程】我爱压轴题中考数学压轴题全解析¥37.4 京东购买

(完整版)阿波罗尼斯圆及其应用

阿波罗尼斯圆及其应用 数学理论 1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。 (1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明及相关性质 定理:B A ,为两已知点,Q P ,分别为线段AB 的定比为)1(≠λλ的内外分点,则以PQ 为直径的圆O 上任意点到B A ,两点的距离之比为.λ 证 (以1>λ为例) 设λ===QB AQ PB AP a AB ,,则 1 ,1,1,1-=-=+=+=λλλλλλa BQ a AQ a PB a AP . 由相交弦定理及勾股定理知 ,1,1222222222 -=+=-=?=λλλa BC AB AC a BQ PB BC 于是,1,122-=-=λλλa AC a BC .λ=BC AC 而C Q P ,,同时在到B A ,两点距离之比等于λ的曲线(圆)上,不共线的三点所确定的圆是唯一的,因此,圆O 上任意一点到B A ,两点的距离之比恒为.λ 性质1.当1>λ时,点B 在圆O 内,点A 在圆O 外; 当10<<λ时,点A 在圆O 内,点B 在圆O 外。 性质2.因AQ AP AC ?=2 ,过AC 是圆O 的一条切线。 若已知圆O 及圆O 外一点A ,可以作出与之对应的点,B 反之亦然。 性质3.所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,面积为.12 2?? ? ??-λλπa 性质4.过点A 作圆O 的切线C AC (为切点),则CQ CP ,分别为ACB ∠的内、外角平分线。 性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF ∠

阿氏圆问题归纳

阿氏圆题型的解题方法和技巧 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A、B的距离之比等于定比 n m (≠1),则P 点的轨迹,是以定比n m 内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简 称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型. PA +kPB,(k≠1)P 点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m,0),D(0,n).点P 是平面内一动点,且OP=r,求P C+kPD 的最小值. 阿氏圆一般解题步骤: 第一步:确定动点的运动轨迹(圆),以点O为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接O P、OD; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ; 第五步:在OD 上取点M ,使得O M:OP =OP:OD=k; 第六步:连接CM,与圆O 交点即为点P .此时CM 即所求的最小值. 【补充:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k 提到括号外边,将其中一条线段的系数化成 k 1 ,再构造△相似进行计算】

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

阿波罗尼斯圆专题汇编(史上最全原创)

阿波罗尼斯圆性质及其应用 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一 (人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比为,求点M 的轨迹方程。 (人教A 版144页B 组第2题)已知点M 与两个定点 距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形(考虑m=1和m )。 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆) 定义:一般的平面内到两顶点A ,B 距离之比为常数( )的点的轨迹为圆,此圆称为阿波罗尼斯圆 类型一:求轨迹方程 1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为21,求点M 的轨迹方程 2.已知()02>=a a AB ,()0≥=λλMB MA ,试分析M 点的轨迹 3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件 ,则点P 的轨迹所包围的图形面积等于( ) A . B. C. D.9 类型二:求三角形面积的最值 4.(2008江苏卷)满足条件AB = 2,AC = BC 的?ABC 的面积的最大值是 5.(2011浙江温州高三模拟)在等腰 ABC 中,AB=AC ,D 为AC 的中点,BD=3,则 ABC 面积的最大值为 6.在ABC 中,AC=2,AB=mBC(m>1),恰好当B=时 ABC 面积的最大,m=

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

阿波罗尼斯圆性质及其应用探究

阿波罗尼斯圆性质及其应用探究 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一。 1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足 ,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。 (1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明. . 角坐标系中点为原点建立平面直轴,所在的直线为证明:以AB x AB ()()(), 不妨设y x P a B a A ,,0,,0,-()()22 222222,,,,PA PA PB PA PB x a y x a y PB λλλ??=∴==∴++=-+??Q ()( )()() 0112112222222=-++--+-∴a ax y x λλλλ ( ) () 2 22 2 222222 221211,01112??? ??-=+??? ? ??-+-∴=-+-+-+∴λλλλλλλa y a x a ax y x λλλλλ=??? ??-=+???? ? ?-+-∴PB PA a y a x 的解都满足又以上过程均可逆,2 22 2 221211 .120,11222为半径的圆上运动为圆心,以在以综上,动点-=???? ??-+λλλλa r a C P 3.阿波罗尼斯圆的性质. 性质1 点A 、点B 在圆心C 的同侧; 当1>λ时,点B 在圆C 内,点A 在圆C 外; 当10<<λ时,点A 在圆C 内,点B 在圆C 外。 (). ,1 1 ,012111122222的右侧当然也在点的右侧, 在点点所示,时,如图证明:当A B C a a a a a ∴>-+∴>-=--+>λλλλλλ

(完整版)高考数学文化题目:阿波罗尼斯圆问题

高考数学文化内容预测三:阿波罗尼斯圆问题 一、高考考试大纲数学大纲分析及意义: 普通高考考试大纲数学修订,加强了对数学文化的考查。针对这一修订提出以下建议: 建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。 其主要意义为: (1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用. (2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求. 二、往年新课标高考实例解析及2017年高考数学文化试题预测: 往年新课标高考实例分析: 分析一:古代数学书籍《九章算术》、《数书九章》等为背景 近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景. (1)2015年高考全国卷Ⅰ,此题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合. (2)2015年高考全国卷Ⅱ,此题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”. (3)2015年高考湖北卷,此题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出. 分析二:课后阅读或课后习题如阿波罗尼圆为背景 从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等. 数学文化题型背景预测: 预测1:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目. 预测2:高等数学衔接知识类题目.如微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接. 预测3:课本阅读和课后习题的数学文化类题目.如必修3中,辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。 预测4:中外一些经典的数学问题类题目.如:回文数、匹克定理、角谷猜想、哥尼斯堡七桥问题、四色猜想等经典数学小问题值得注意。

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

“阿波罗尼斯圆”的应用举例

“阿波罗尼斯圆”的应用举例 【例】 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果击中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A 、B 的距离之比为 λ(0λ>, 1λ≠) ,那么点M 的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆: 221x y +=和点1,02A ??- ??? ,点()1,1B , M 为圆O 上动点,则2MA MB +的最小值为( ) A. 6 B. 7 C. 10 D. 11答案 C 解析 令2=MA MC ,则12 MA MC =. 由题意可得圆221x y +=是关于点A,C 的阿波罗尼斯圆,且1=2 λ。 设点C 坐标为(),C m n , 则()()2 2221212 x y MA MC x m y n ??++ ???==-+-。 整理得2222 2421333m n m n x y x y ++-+++=。

由题意得该圆的方程为221x y +=, ∴2224020113m n m n +==+-????? =???? ,解得2{ 0m n =-=。 ∴点C 的坐标为(-2,0)。 ∴2MA MB MC MB +=+, 因此当点M 位于图中的12,M M 的位置时, 2MA MB MC MB +=+的值最小,且为10,故选C. 【练习】 1.设椭圆与双曲线有共同的焦点F 1(-1,0),F 2(1,0),且椭圆长轴是双曲线实轴的2倍,则椭圆与双曲线的交点轨迹是( ) A .双曲线 B .一个圆

2019中考数学热点,阿氏圆问题讲义无答案.doc

定义:已知平面上两点A,B,则所有满足 PA/PB=k 且不等于 1 的点 P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,具体的描述:一动点P 到两定点A、B 的距离之比等于定比m:n,则 P 点的轨迹,是以定比m: n 内分和外分定线段AB 的两个分点的连线为直径的圆。该圆称为阿波罗尼斯圆,简称阿氏圆。 解题策略:利用两边成比例且夹角相等构造相似三角形(简称美人鱼相似) “阿氏圆”一般解题步骤 第一步 :连接动点至圆心0(将系数不为 1 的线段的两个端点分别与圆心相连接),则连接 0P、 OB; 第二步 :计算出所连接的这两条线段OP、 OB 长度 ; 第三步 :计算这两条线段长度的比=k; 第四步 :在 0B 上取点 C,使得; 第五步 :连接 AC,与圆 0 交点即为点P. 阿氏圆最值问题例题精讲 例 1:问题提出 :如图 1,在 R△ ABC中 ,∠ ACB=90 ,CB=4,AC=6圆. C 半经为 2,P 为圆上一助点,连结 AP,BP求 AP+ BP 的最小值 尝试解决:为了解块这个间题,下面给出一种解题思路、如图2,连接 CP,在 CB 上取点D,使 CD=1 则有 ,又∵∠ PCD=∠BCP,∴△ PCD △ BCP,

∴,∴ PD=,∴ AP+AP+PD 请你完成余下的思考,并直接写出答案:AP+BP的最小值为。 自主探索 :在“间题提出”的条件不变的情况下,AP+BP的最小值为。 拓展延伸 :已知扇形COD中 ,∠ COD=90 ,0C=6,OA=3,0B=5,点 P 是弧 CD 上一点 ,求 2A+PB 的最小值。 强化训练 向内构造类型 1,如图 ,已知 AC=6,BC=8,AB=10,圆 C 的半经为4,点 D 是圆 C 上的动点 ,连接 AD、 BD, 则 AD+ BD 的最小值为。 2.在 Rt△ABC 中 ,∠ ACB=90° AC=4,BC=3,点 D 为△ ABC内一动点 ,且满足 CD=2, 则 AD+ BD 的最小值为。 3、如图 ,在 R△ ABC中 ,∠C=90° ,CA=3,CB=4⊙.C 的半径为2,点 P 是⊙ C 上一 动点 ,则 AP+ PB 的最小值为。 4、如图 ,四边形 ABCD为边长为 4 的正方形 , ⊙ B 的半径为 2,P是⊙ B 上一动点 ,则 PD+ PC的最小值为。 PD+4PC的最小值为。

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

阿波罗尼斯圆性质及其应用 1

阿波罗尼斯圆性质及其应用 背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一 (人教A版124页B组第3题)已知点M与两个定点O(0,0),A(3,0)点距离的比为,求点M的轨迹方程。 (人教A版144页B组第2题)已知点M与两个定点距离的比是一个正数m,求点M的轨迹方程,并说明轨迹是什么图形(考虑m=1和m)。 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆) 定义:一般的平面内到两顶点A,B距离之比为常数()的点的轨迹为圆,此圆称为阿波罗尼斯圆

类型一:求轨迹方程 1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为2 1 ,求点M 的轨迹方程 2.已知()02>=a a AB ,()0≥=λλMB MA ,试分析M 点的轨迹 3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件,则点P 的轨迹所包围的图形面积等于( ) A . B. C. D.9 类型二:求三角形面积的最值 4.(2008江苏卷)满足条件AB = 2,AC = BC 的?ABC 的面积的最大值是 5.(2011浙江温州高三模拟)在等腰ABC 中,AB=AC ,D 为AC 的中点,BD= 3,则ABC 面积的最大值为 6.在ABC 中,AC=2,AB=mBC(m>1),恰好当B=时 ABC 面积的最大,m= 类型三:定点定值问题

从课本中的阿波罗尼斯圆问题

从课本中的阿波罗尼斯圆问题 探讨数学文化在教学中的渗透 靖江市第一高级中学 数学组 印栋 E-mail: yde2003@https://www.doczj.com/doc/5f17092785.html, 邮编:214500 克莱因在其名著《西方文化中的数学》中指出:数学是一种精神,一种理性的精神.正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵.因此,美国数学学会主席魏尔德说:“数学是一种会不断进化的文化”.正是数学与文化以及数学文化的不断交融及相互促进,才使数学在人类文明的发展中起到了举足轻重的作用并获得了如此多的赞誉.在新课程改革中,数学文化不再是被孤立的装饰品,而是渗透在相关模块和专题中. 新课标《苏教版·必修2》在第2章平面解析几何初步第2.2节圆与方程介绍了圆的标准方程和一般方程后编排了这样一道习题: 习题2.2(1)10.已知点)(y x M ,与两个定点)03()00(,,, A O 的距离之比为2/1,那么点M 的坐标应满足什么关系?画出满足条件的点M 所形成的曲线. 分析:由于有了课上推导圆标准方程的过程可作为参照,大部分学生不需费太多的气力就可以解出上述的问题,解法如下. 解析:由题知2/1/=MA MO ,将距离公式代入可得 12 =, 化简整理即得到该曲线的方程为: 4)1(22=++y x . 因此,所求点M 所形成的曲线是以(-1,0)为圆心,2为半径的圆(图略). 这道题实际上源自约公元前262~前190的古希腊人阿波罗尼斯(Apollonius of Perga ,也有文献上将其名字翻译为“阿波罗尼奥斯”)在其巨著《圆锥曲线论》给出的一个著名的几何问题:“在平面上给定两点A 、B ,设P 点在同一平面上且满足λ=PB PA /,当λ大于0且λ≠1时,P 点的轨迹是个圆”,这个圆我们称之为“阿波罗尼斯圆”,这个结论称作“阿波罗尼斯轨迹”. 同上题一样,我们用解析法完全可以证明:与A 、B 距离之比等于λ的动点轨迹为圆.但如果每题都先用解析法求出圆的方程,再根据圆心及半径作出圆,显然很费事,特别是对一些选择题或填空题如此解法实在小题大做,能 否找出阿 波罗尼斯圆的简捷作法?下述定理可给出明 确答案. 定理:A 、B 为两已知点,P 、Q 分别为 线段A B 的定比为λ(λ≠1)的内、外分点,则以P 、Q 为直径的

最新中考数学超好几何证明压轴题汇编

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. E B F C D A 图13-2 图13-3 图13-1 A ( E )

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。 (1)若sin∠BAD=3 5 ,求CD的长; (2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π)。 5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB 于点G. (1)求证:点F是BD中点; (2)求证:CG是⊙O的切线; (3)若FB=FE=2,求⊙O的半径. 6、如图,已知O为原点,点A的坐标为(4,3), ⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动. (1)当点P在⊙O上时,请你直接写出它的坐标; (2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.

完整阿氏圆问题归纳2

阿氏圆题型的解题方法和技巧对于此类问以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,. 题的归纳和剖析显得非常重要具体内容如下:的距离P到两定点A、B(阿氏圆定理全称:阿波罗尼斯圆定理),具体的描述:一动点mm nn的两个分点的连内分和外分定线段是以定比之比等于定比≠(1),则P点的轨迹,AB简线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,称阿氏圆.1)P≠,(k定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB. 点的运动轨迹是圆或者圆弧的题型 PA+kPB,(k≠1)P点的运动轨迹是圆或圆弧的题型 母子三角形相似阿氏圆基本解法:构造是平面n).点PC(m,0),D(0,轴分别有点问题【】在平面直角坐标系xOy中,在x轴、y. ,求PC+kPD的最小值内一动点,且OP=r 阿氏圆一般解题步骤:若圆已经画出则可省为半径画圆;(,以点O为圆心、r)第一步:确定动点的运动轨迹(圆) 略这一步 OD;即连接OP、的线段的固定端点与圆心相连接第二步:连接动点至圆心O(将系数不为1),长度;OP、OD第三步:计算出所连接的这两条线段;第四步:计算这两条线段长度的比k OM:OP=OP:OD=k,使得;第五步:在OD上取点M. 即所求的最小值P交点即为点.此时CMCM第六步:连接,与圆O提到先把k直接计算,【补充:若能直接构造△相似计算的,不能直接构造△相似计算的,1,再构造△相似进行计算】括号外边,将其中一条线段的系数化成k 1 习题的中点,将线段为BDACB=90°,D为AC的中点,MRt【旋转隐圆】如图,在△ABC中,∠,那么在旋转,BC=3点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4AAD绕 ___________. CM长度的取值范围是过程中,线段2BD为△ABC内一动点,满足CD=2,则AD+ABC1.Rt△中,∠ACB=90°,AC=4,BC=3,点D3_______. 的最小值为上任取一,在⊙A与°,⊙ABC相切于点E2.如图,菱形ABCD的边长为2,锐角大小为603________. 的最小值为点P,则PDPB+2

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决 》 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求AB AD 的值. | > , F

2.如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75o,以CD为一边的等边△DCE的另一顶点E在腰AB上. (1)求∠AED的度数; (2)求证:AB=BC; ] (3)如图2所示,若F为线段CD上一点,∠FBC=30o. 求DF FC的值. & ` A $C D E 图1 A B C D E 图2 F

3.如图①,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E,DF⊥BC于点F.AD=2cm,BC =6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M.若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终 ..为10cm2.设EP=x cm,FQ=y cm,解答下列问题: … (1)直接写出当x=3时y的值; (2)求y与x之间的函数关系式,并写出自变量x的取值范围; (3)当x取何值时,图形M成为等腰梯形图形M成为三角形 (4)直接写出线段PQ在运动过程中所能扫过的区域的面积. —· A B C D E! (备用图) A B C D E F Q P | 图①

超级名圆—阿波罗尼斯圆及应用

超级名圆——阿波罗尼斯圆 一、问题背景 1.(苏教版选修2-1,P63例2)求平面内到两个定点A,B 的距离之比等于2的动点M 的轨迹. 【解】以B A ,所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系xOy , 令a AB 2=,则B A ,两点的坐标分别为()()0,,0,a a -. 设M 点坐标为()y x ,,依题意,点M 满足 2=MB MA , 由2 2 22)(,)(y a x MB y a x MA +-=++=得2)()(2 2 22=+-++y a x y a x , 化简整理,得0310332 2 2 =+-+a ax y x , 所以动点M 的轨迹方程为0310332 22=+-+a ax y x . 2.(苏教版必修2,P112第12题)已知点M(x,y)与两个定点O(0,0),A(3,0)的距离之比为1:2, 那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线. 【解】由两点间距离公式得22y x MO += ,22)3(y x MA +-=, 则2:1)3(:2 222=+-+y x y x ,化简得4)1(2 2 =++y x , 即点M 是以(-1,0)为圆心,2=r 的圆.(图略) 二、阿波罗尼斯圆 阿波罗尼斯(Apollonius of Perga Back ),古希腊人(262BC~190BC ),与阿基米德、欧几里德一起被誉为古希腊三大数学家,他写了八册《圆锥曲线论》(Conics ),其中有七册流传下来,书中详细讨论了圆锥曲线的各种性质,如切线、共轭直径、极与极轴、点到锥线的最短与最长距离等,圆锥曲线的性质几乎囊括殆尽,阿波罗尼斯曾研究了众多的平面轨迹问题,阿氏圆是他的论著中的一个著名问题: 已知平面上两定点A 、B ,则所有满足 ()1≠=λλPB PA 的点P 的轨迹是一个以定比n m :内分和外分定线段AB 的两个分点的连线为直径的圆. 这是著名的阿波罗尼斯轨迹定理,以内外分点为直径的圆被后人称为阿波罗尼斯圆,简称阿氏圆.

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆) 【知识背景】 阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。 【定 义】 阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。即: )1(≠=k k PB PA ,如下图所示: 上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。 【几何证明】 证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理

若AD 是∠BAC 的角平分线,则有: CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是∠BAC 的角平分线。 知识点2:外角平分线定理及其逆定理 若AD 是△ABC 外角∠EAC 的角平分线,则有 CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是外角∠EAC 的角平分线。 【阿氏圆的证明】 有了上述两个知识储备后,我们开始着手证明阿氏圆。

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

相关主题
文本预览
相关文档 最新文档