当前位置:文档之家› 第十一章 三相交流牵引电机

第十一章 三相交流牵引电机

第十一章 三相交流牵引电机
第十一章 三相交流牵引电机

第十一章三相交流牵引电动机简介无换向器的三相交流电动机在制造成本、单位功率重量、运行维修等方面、比有换向器的直流电动机有一系列优点,特别是三相异步电动机结构最为简单、工作最为可靠以及具有优越的防空转性能。近30年来,由于电子技术特别是大功率晶闸管变流技术的迅速发展,研制出体积小、重量轻、功率大、效率高的变流装置——静止逆变器,作为三相交流电动机的变频电源,使三相交流牵引电动机在铁路电力牵引中的应用取得了突破性进展。

由三相交流电动机的优点和直流电动机在牵引运用方面长期积累的经验以及电力交流技术的成就三者完美结合,而研制出来的新型三相交流电传动机车具有更大的牵引能力、更好的牵引特性和更高的经济技术指标。因此,从发展远景来看,它将在未来牵引传动中占据主导地位。

本章结合机车牵引特点,对三相异步牵引电动机和晶闸管同步牵引电动机的运行原理及结构特点作一些介绍。

第一节三相异步牵引电动机

一、异步电动机变频运行的机械特性

由异步电机原理可知:在一定的电压和频率下,异步电动机的机械特性如图11-1所示。

图11-1 一定频率和电压下异步电动机的机械特性

当异步电机作为电动机运行时,电机在0<S<1范围内运行,图中S m为电动机最大转距太时的临界转差率。其中:S=0-S m。一段是电动机的稳定运行范围;当S>S m后,电动机的转矩将明显减少,使电动机转速越来越低,直到停转。所

以S=S

m

--1一段是电动机不稳定运行区。异步电动机在不同频率人下的机械特性

曲线形状都相似,但其机械特性稳定运行的调速范围和最大转矩值是不同的,这

种变化可用最大转矩和对应的临界转差率来表示。由第九章已推导出三相异步电动机最大转矩为:

[]22

1

2

1

1

1

2

1

)

'

(

4

3

δ

δ

πx

x

r

r

f

pU

T

m

+

+

+

=(11-1)

σ

σ

χ

χ

γ

2

1

1

ππ时忽略

1

γ,则:

()σ

σ

χ

χ

π2/

1

1

2

1

4

3

+

=

f

pU

T

m

(11-2)对于结构一定的电机,式(11-2)可写为:

2

1

1

T??

?

?

?

?

=

f

U

K

T

m

(11-3)由式(11-3)可见,异步电动机的最大转矩与

2

1

1

??

?

?

?

?

f

U

成正比。若变频调速是在U1为常数条件下进行,则T m随f12成反比例变化,其机械特性变化如图11-2所示。

图11-2 一定电压、不同频率时异步电动机的机械性能

图11-3 一定气隙磁通、不同频率时异步电动机的机械性能

若变频调速是在???

? ??11f U 为常数条件下进行,则变频调节过程中T m 是一个常数,其机械特性的变化如图11-3所示,即机械特性几乎随f 1的变化而平移。

异步电动机在低频条件下,T m 不变的特性可以满足机车起动时具有较大而稳定不变的牵引力,而在高速运行时机车牵引力较小,使异步电动机输出功率可基本保持不变。显然,这特性很适合铁路牵引动力的要求。

根据异步电动机定子绕组电压平衡方程,可得:

1

111111144.444.4N K f U N K f E W w m ==Φ (11-4) 在U 1/f 1为常数条件下,异步电动机气隙磁通是不变,若这时的磁通接近于饱和状态,可认为异步电动机工作在满磁场状态;在U 1等于常数条件下,气隙磁通随f 1增加而减少,则可认为异步电动机工作在磁场削弱状态。

假如异步电动机在正常工作时,突然降低定子的供电频率,转子的机械惯性将使其维持在高于旋转磁场同步转速的转速上,这时转差率为负值,电机进入发电机状态运行,将电机轴上的机械能转换成电能反馈给电网或消耗在制动电阻上。这样,机车在下坡或高速运行需要制动时,很容易实现再生制动或电阻制动。而当电动机需要改变转向时,只需改变逆变器输出电源的相序即可实现。

上述分析表明,根据机车牵引的要求,只对异步电动机的电压、频率采取不同的调节方式,异步电动机同样具有起动牵引力大、调速范围宽、过载能强等优良的牵引性能。当然,对异步电动机的变频调节必须遵循一定的规律,同时也应考虑控制手段的难易程度。

二、机车牵引中异步电动机的特性调节

异步电动机作为铁路机车的牵引电动机,必须满足牵引性能的要求。一般来说,电力机车的牵引运行可分为:起动加速区、恒功率输出区、提高速度区或恒电压区这三个运行调节区,如图11-4所示。在机车起动加速阶段,一般要求牵引力尽可能接近粘着牵引力,以获得大而稳定的起动牵引力,这时异步动机应按恒转矩要求进行变频调节;起动后,随着速度的提高,牵引电动机输出功率也不断增大,起动过程结束,则希望牵引电动机按在各种运行速度下保持恒功率输出的要求进行变频调节。为了满足机车起动和运行时牵引特性的要求,需要在调节

频率的同时相应调节牵引电动机的电压。下面简要分析异步牵引电动机工作在不同运行区的变频调节规律。

图11-4 机车牵引特性

1.恒转矩特性的变频调节

通常运行在固定频率下的三相异步电动机,其起动电流约为额定电流的5~6倍。但由于此时转子的频率高、漏抗大、功率因数很低,所以起动转矩实际上并不大。而采用变频调节时,则可使异步电动机在较低频率下起动,此时定、转子漏抗都很小,从而改善了转子的功率因数,增大了起动转矩。一般来说,机车起动时,异步电动机低频起动电流大致为二倍额定电流的情况下,可使电机起动转矩为最大转矩的70%左右,并保持不变。由于异步电动机最大转矩正比于(U1/f1)2,U1与f1之比通常称为“伏赫比”。要使机车获得恒定的起动转矩,电机必须保持伏赫比不变,即电机的端电压随频率的提高而正比例增加,这时,电动机的气隙磁通也近似不变。这就是机车起动加速区异步电动机变频调节规律。

图11-5 恒转矩调节特性

(a)转矩T与定子频率的关系(b)电机电流I1、电压U1、电势E1、与定子频率的关系

应当注意的是:电动机起动开始时,频率很低,因此X1

σ和X2σ很小,这时

电阻在阻抗中的比例相当大,忽略r 1会产生较大的误差。若要保持磁通不变,则在起动时必须适当增加电压U 1,以克服r 1所产生电压降。在恒转矩下变频调节时电机电压U 1和定子电流I 1随频率f 1的变化曲线如图11-5所示。

异步电动机定子电流I 1为:

)2121221"()/'('δδx x j s r r U I I +++=

-≈ 即

2

1111'12L L f U I +?≈π (11-5) 所以,恒磁通运行时,在不同的f 1下,定子电流I 1维持不变,这时变频器在恒电流下运行,可以充分利用变频装置的容量,便变频装置的设计更为经济。

2.恒功率特性的变频调节

在恒转矩运行中,随着电动机转速的上升,电压U 1的提高,电机输出功率增大。但电压的提高受到电动机功率或变频器最大电压的限制,当电压升高到一定数值后将维持不变,或者电压不再正比于f 1上升。此后异步牵引电动机将以恒功率输出为条件进行电压和频率的调节。

为使异步牵引电动机有恒定的输出功率,电压和频率的调节方式分为:恒功率变电压变频调节和恒功率恒电压变频调节两种。

(1)恒功率变电压变频调节

恒额定功率运行时,牵引电动机的输出功率不变,即:

==mn Nn AT T 常数 (11-6)

式中A ——电机额定转矩与最大转矩之比。

将式(11-3)代人式(11-6),可得:

=n f U AK T 21

1)(常数 (11-7) 在转差率很小的情况卜,转子转速n 可以近似地认为等于同步转速n 1,因n 1正比于f 1,即可得:

111f K n = (11-8)

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

牵引电机

2.三相交流牵引电动机的结构组成 2.1定子的组成 定子由铁心(电工硅钢片叠成)、定子绕组和机座组成。定子铁心内圆有许多形状相同的槽,用于嵌放定子绕组,机座用于固定和支撑定子铁心,要求有足够的机械强度和刚度。定子外部固定有端盖。 2.2转子的组成 转子由转子铁心(硅钢片叠成)、转子绕组和转轴组成。转子铁心安装在转轴上,表面开有槽,用于放置或浇注转子绕组。在转子的一端安装有风扇,用于转子高速转动时的降温散热。如图2.1所示。 图2.1三相交流电动机 2.3气隙 气隙大小对异步电动机性能有很大的影响。气隙大,则磁阻大,励磁电流(滞后的无功电流)大,功率因数降低。气隙过小,则装配困难,运行不可靠,高次谐波磁场增强,从而使附加损耗增加,起动性能变差。

图2.2 1-轴 10-转子 19-锥形油脂喷嘴 2-电机侧半联轴节 11-深沟球轴承(D端) 20-油脂喷嘴盖 3-进气口盖 12-电缆密封接头(10 Nm) 21-锥形油脂喷嘴 4-接线盒 13-盖板 22-连接线 5-出气口网罩 14-六角头螺钉(8 Nm) 23-接线盒盖 6-轴承保护罩 15-张力垫圈 24-六角头螺钉(8 Nm) 7-圆柱滚子轴承(N端) 16-盖板 25-张力垫圈 8-定子外壳 17-六角头螺钉(8 Nm) 9-定子 18-油脂喷嘴盖 上图所示为3相4极交流异步牵引电动机,在车辆上横向安装,D端为输出端。 此自通风型电机的冷却由安装在N端的内部风扇完成。进气口位于D端前部、进气口盖(3)的上部;出气口网罩(5)位于N端。 定子结构,由绝缘薄钢片叠层组成的定子(9)铁心总成通过热套方法安装在定子外壳内,从而形成了一个固定的定子单元。 定子铁心总成和定子外壳内有轴向通风风道。 定子绕组被嵌入定子铁心总成的槽内。槽上有盖子进行密封。线圈的绕组端部、定子线圈接头和接线条用铜焊连接。接线盒(4)铸造在定子外壳上,上面用接线盒盖盖住。连接线通过电缆接线片和接线条用螺栓连接在绝缘子上,并穿

同步发电机突然三相短路中的几问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减试用磁链守恒原理说明它们是如何产生的 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数’。 为T d 。 b)直流分量(自由分量),其衰减时间常数为T a 。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a 转子电流中出现的分量包含: ’。 a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d b)基频分量(自由分量),其衰减时间常数为T 。 a 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自 由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减

(完整版)同步电动机励磁柜原理

励磁柜 介绍一些同步电动机励磁柜的基本知识,希望大家能了解并多交流一下同步电动机励磁柜的基本知识。 一.KJLF11 具有以下特点: 1.转子励磁采用三相全控整流固接励磁线路; 2.与同步电动机定子回路没有直接的电气联系;3.实现了按同步电动机转子滑差,顺极性自动投励。按到达亚同步转速(95%)时投入励磁,使同步电动机拖入同步运行; 4.具有电压负反馈自动保持恒定励磁; 5.起动与停车时自动灭磁,并在同步电动机异步运行时具有灭磁保护; 6.可以手动调节励磁电流,电压进行功率因数调整,整流电压可以从额定值的10%至125%连续调节;7.交流输入电源与同步电动机定子回路来自同一段母线;8.同步电动机正常停车5 秒钟之内,本设备整流电路和触发电路的同步电源不容许断电;9.灭磁电阻RFD1 和RFD2 的阻值为所配的转子励磁绕组直流电阻的 5 倍,其长期容许电流为同步电动机额定励磁电流的15%;10.当同步机矢步运行时,可以发出矢步信号,用于报警或跳闸;11.输入电源为380V. 二.保护电路:(1).过压保护:1.同步电动机异步运行时,转子感应过电压由灭磁环节将放电电阻RFD1-2 接入,消除开路过电压。 2.主电路可控硅元件的换向过电压由并接于元件两端的阻容电路吸收。(RC4-9) 3.整流变压器一次侧分,合闸引起的操作过电压由RC1-3 组成的阻容吸收装置来抑制。4.为使同相两桥臂上可控硅元件合理的分担自直流侧的过电压,设置了R10-15 均压电阻来保护。(2)过电流保护: 1.与可控硅串联的快速熔断器是作为直流侧短路保护用,快熔熔断时,保护环节可发出声响报警信号,跳开同步电动机定子侧电源开关,切断励磁。 2.短路电流发生在整流变压器二次侧时,其一次侧空气开关脱扣器顺动,切断电源。 3.直流侧过负荷时,空气开关脱扣器或热继电器动作。但整定值应保证强励磁30 秒内不动作。 三. 励磁线路各环节的工作电压均由同步电源变压器供给,其工作原理如下:同步电动机起动过程中,灭磁环节工作,使转子感应交变电流两半波都通过放电电阻,保证电机的正常起动。起动过程中,整流电路可控硅处于阻断状态,当电

第十一章 三相交流牵引电机

第十一章三相交流牵引电动机简介无换向器的三相交流电动机在制造成本、单位功率重量、运行维修等方面、比有换向器的直流电动机有一系列优点,特别是三相异步电动机结构最为简单、工作最为可靠以及具有优越的防空转性能。近30年来,由于电子技术特别是大功率晶闸管变流技术的迅速发展,研制出体积小、重量轻、功率大、效率高的变流装置——静止逆变器,作为三相交流电动机的变频电源,使三相交流牵引电动机在铁路电力牵引中的应用取得了突破性进展。 由三相交流电动机的优点和直流电动机在牵引运用方面长期积累的经验以及电力交流技术的成就三者完美结合,而研制出来的新型三相交流电传动机车具有更大的牵引能力、更好的牵引特性和更高的经济技术指标。因此,从发展远景来看,它将在未来牵引传动中占据主导地位。 本章结合机车牵引特点,对三相异步牵引电动机和晶闸管同步牵引电动机的运行原理及结构特点作一些介绍。 第一节三相异步牵引电动机 一、异步电动机变频运行的机械特性 由异步电机原理可知:在一定的电压和频率下,异步电动机的机械特性如图11-1所示。 图11-1 一定频率和电压下异步电动机的机械特性 当异步电机作为电动机运行时,电机在0<S<1范围内运行,图中S m为电动机最大转距太时的临界转差率。其中:S=0-S m。一段是电动机的稳定运行范围;当S>S m后,电动机的转矩将明显减少,使电动机转速越来越低,直到停转。所

以S=S m --1一段是电动机不稳定运行区。异步电动机在不同频率人下的机械特性 曲线形状都相似,但其机械特性稳定运行的调速范围和最大转矩值是不同的,这 种变化可用最大转矩和对应的临界转差率来表示。由第九章已推导出三相异步电动机最大转矩为: []22 1 2 1 1 1 2 1 ) ' ( 4 3 δ δ πx x r r f pU T m + + + =(11-1) 当 σ σ χ χ γ 2 1 1 + ππ时忽略 1 γ,则: ()σ σ χ χ π2/ 1 1 2 1 4 3 + = f pU T m (11-2)对于结构一定的电机,式(11-2)可写为: 2 1 1 T?? ? ? ? ? = f U K T m (11-3)由式(11-3)可见,异步电动机的最大转矩与 2 1 1 ?? ? ? ? ? f U 成正比。若变频调速是在U1为常数条件下进行,则T m随f12成反比例变化,其机械特性变化如图11-2所示。 图11-2 一定电压、不同频率时异步电动机的机械性能 图11-3 一定气隙磁通、不同频率时异步电动机的机械性能

三相异步牵引电动机的效率计算

三相异步牵引电动机的效率计算 参照日本标准JEC-37-1979《感应电机》,以YQ-420型牵引电动机效率计算为例,介绍了三相异步牵引电动机的效率计算方法。 标签:三相异步牵引电动机;效率;计算。 0 引言 从节约能源,保护环境出发,高效异步电动机是目前国际发展的趋势。随着我国地铁和城市轻轨的快速发展,“绿色、节能、环保、安全”成为城轨车辆市场竞争的主题,而作为城轨车辆的心脏-电动机,也面临国际社会的巨大竞争压力和挑战。从国际和国内发展趋势来看,开发高性能异步电动机是必要的,而电动机的效率又是衡量电动机性能好坏的重要技术经济指标之一。效率计算作为电动机型式试验中重要试验之一,通常都是参照GB/T 1032-2005《三相异步电动机试验方法》中的方法进行计算,本文将以YQ-420型牵引电动机型式试验中效率计算为例,参照日本标准JEC-37-1979《感应电机》中的损耗分离法和圆线图法,介绍三相异步电动机的效率计算方法。 1 概述 YQ-420型异步牵引电动机是南车株洲电机有限公司生产的安装在动车组检测车上的4极鼠笼式三相感应电动机,它采用强迫通风冷却方式(28m3/min), 额定功率是420 kW。正弦波电源供电型式试验采用代用额定电压880V,代用额定电流130A,代用额定频率50 Hz,代用额定转速1457r/min进行试验。要进行效率计算,首先需测量牵引电动机定子绕组的冷态电阻,再进行负载试验和空载试验,测试出相应的参数后,根据相应的公式进行效率计算。 2 计算方法 2.1 冷态电阻的测量 将YQ-420型电动机放置在室内并在稳定的环境温度中持续24小时以上,当绕组温度与环境温度之差不超过2K时,测量电机定子绕组的三相直流线电阻 值R UV=0.1446Ω、R VW=0.1447Ω、R UW=0.1446Ω,环境温度θ1=16.6℃。按式(1)和式(2)计算相电阻值R0。 R0=R med-R vw(1)

牵引电机的常见故障与处理教学文案

牵引电机的常见故障 与处理

目录 前言…………………………………………………………一牵引电机的主要特点……………………………………二牵引电机的结构…………………………………… 1定子………………………… 2转子………………………… 3电刷装置………………………… 4电枢轴承………………………… 三牵引电机的传动和悬挂方式……………………… 1个别传动 2组合传动 四牵引电机的工作原理……………………… 五牵引电动机的维护保养……………………… 六牵引电机的故障分析与处理……………………………… 参考文献……………………………………………………后语………………………………………………………

摘要: 本设计简要主要介绍了牵引电机的工作原理、基本结构、主要特点及维护保养,对ZD114型牵引电机在运用中的常见故障进行了分析,并提出了相应处理方法。 关键词: 牵引电机故障检修措施

前言 牵引电机是驱动机车车辆动轮轴的主电机,是电传动机车、车辆的主要部件之一。是在机车或动车上用于驱动一根或几根动轮轴的电动机。牵引电动机有多种类型,如直流牵引电动机、交流异步牵引电动机和交流同步牵引电动机等。直流牵引电动机,尤其是直流串励电动机有较好调速性能和工作特性,适应机车牵引特性的需要,因此获得广泛应用。 ZD114型牵引电机是SS6B型电力机车的重要部件之一,由于牵引电机在运用中受振动、摩擦、高温和自然老化等原因使机车电机性能总处于自然磨损状态,超过一定限度就会发生故障,影响机车的正常运用,所以,要采取一系列的计划预防修理措施,在电机各零部件损坏以前得到修理,从而减少和防止机车出现先期损坏的可能性,达到保证行车安全和延长机车使用寿命的目的。 一牵引电机的工作特点 1 使用环境恶劣 由于牵引电机安装在车体下面,直接受到雨、雪、潮气的影响,机车运行中掀起的尘土也容易侵入电机内部。此外,由于季节和负载的变化,还经常受到温度和湿度变化的影响。因此,电机绝缘容易受潮、受污,对其性能和寿命产生极为不良的影响。所以,牵引电机的绝缘材料和绝缘结构应具有较好的防潮,防尘性能及良好的通风、散热条件。 2 外形尺寸受限制 牵引电动机悬挂在车体下面,其安装空间受到很大的限制,轴向尺寸受轨距限制,径向尺寸受动轮直径的限制。为了获得尽可能大的功率,要求牵引电机结构必须紧凑,并采用较高等级的绝缘材料和性能较好的导电、导磁材料。 3 动作力大 机车运行通过钢轨不平顺处,因撞击而产生的动力作用会传递给牵引电动机,使牵引电动机承受很大的冲击和振动。 4 换向困难 直、脉流牵引电机换向困难的原因除了受机械振动力方面的影响外,还有电器方面的原因,如牵引电动机经常启动、制动,此时电流可达额定电流的两倍;当机车在长大坡道上运行时,电动机将长时间处于过电流状态;当机车高

交流牵引电动机

第四节、交流牵引电动机 三相交流牵引电动机(包括变频异步牵引电动机和自控同步牵引电动机)是随着现代大力率变流技术的迅速发展而发展起来的,除工业上应用以外,现已被成功地应用于铁道干线车和高速动车上。 异步牵引电动机转子上没有换向器及带绝缘的绕组,不存在换向火花和环火稳定性问题,因此,它结构简单、运行可靠,可以以更高的圆周速度运转,使机车具有很宽的调速范围。 1.交流牵引电动机的技术优越性 由于交流牵引电动机没有换向器工作面圆周速度的限制,因而可以选用高的转速和大的传动比,这样,能显著减轻电机的重量,以获得较大的单位重量功率。另外,交流电动机充分利用了原直流电机换向器所占的空间,热量能沿定子圆周均匀散发,改善了电机的冷却效果,明显地增长了电机的寿命。交流电机的优越性可由下表所示的德国电力机车用的两种电机参数比较中得到证实,也可由日本东洋电机公司制造的交流、直流牵引电机参数比较得到证明。 两种不同类型牵引电动机参数比较表1 电机种类 三相异步电动机 脉流电动机 型号 BQCA843 UZll6—64K 安装机车型号 BRl20 181.2 功率(kW) 1400 1360(5rnin) 持续功率(kW) 1400 810 电机电压(V) 2200

360(相) 830 最大转速(r/min) 3600 1860 转子直径(mm) 930 950 重量(kg) 2380 3630 单位重量功率(kW/kg) 0.588 0.375 由上表可以看出,对于中小型容量的电机,在大致相同的重量和外型尺寸情况下牵引电动机的功率一般比直流电动机的功率大30%。中、小容量交、直流电机参数比较表2 电机类型 交流异步电动机 直流牵引电动机 型号 TDK6200-A TDK8270-A 小时功率(kW) 165 130 小时转速(r/min) 1565 L450 绝缘等级 C

同步电机三相短路电流和转矩计算

同步电机三相短路电流和电磁转矩计算 编写佘名寰 本文是按照陈珩教授所著的‘同步电机运行基本理论与计算机算法’一书介绍的算法和例题计算同步电机的三相短路电流。计算程序用MATLAB语言编写,计算结果与书中结果基本一致。本文可供电力系统电气技术人员和大专院校电力专业学生参考。 1.计算方法 1.1初始数据计算 由短路前的机端电压u[0], 定子绕组电流i[o], 和功率因数角φ[0] 求得短路前的功率角 ?φ[0] δ0=tan?1u[0]sinφ[0]+x q i[0] u[0]cosφ[0]+ri[0] 从而得u[0], i[0]的正、交轴分量 u d[0]=u[0]sinδ0 u q[0]=u[0]cosδ0 i d[0]=i[0]sin(δ0+φ[0]) i q[0]=i[0]cos(δ0+φ[0]) 短路前的空载电势是 E q[0]=u q[0]+ri q[0]+x d i d[0] 励磁电流为 i f[0]= E q[0]/x af 式中x d为同步电机正轴同步电抗 x q同步电机交轴同步电抗 x af定子绕组与劢磁绕组间的互感电抗 r 定子绕组电阻 1.2电流变化量的状态空间方程式 同步电机突然短路时各绕组电流的变化量?i d ?i q?i f?i D?i Q的计算可运用以派克分量表示的状态空间方程式

?u d ?u q ?u f 00 = ?x d x af x aD ?x q x aQ ?x af x f x fD ?x aD x fD x D ?x aQ x Q ?i d ?i q ?i f ?i D ?i Q + ?r x q ?x aQ ?x d ?r x af x aD r f r D r Q ?i d ?i q ?i f ?i D ?i Q 方程中各下标变量的含义为 d---纵轴,q---横轴,f----励磁绕组,D---纵轴阻尼绕组,Q---横轴阻尼绕组,a---定子绕组 上式可简化为 ?u dq 0=X dq 0(3)?I dq 0+Z dq 0(3) ?I dq 0 化作电流变化量的常系数一阶微分方程组形式 ?I dq 0=?X dq 0(3)?1Z dq 0(3)?I dq 0+X dq 0(3)?1 ?u dq 0 在三相短路时若励磁电压不可调,则 ?u dq 0=[?u d 0 ?u q 0 0 0 0 ]t 由于电流不能突变,t=0瞬间电流变化量的初值 ?i dq 0 0=[ 0 0 0 0 0 ]t 将电压变化量和电流变化量的初值代入微分方程,用数值计算的龙格---库塔法即可求出 t=0+Δh 时刻的各电流变化量,反复计算则可求得各个时刻的?i dq 0 ,叠加短路前绕组电流 i dq 0 [0]=[ i d 0 i q 0 i f 0 00]t 可得短路时电流全量 i dq 0=[ i d i q i f i D i Q ]t 用派克逆变换可得定子三相电流,以a 相为例 i a =i d cos t +θ0 ?i q sin t +θ0 θ0 短路t=0时转子位置角 2..同步电机三相短路电流计算例题与程序 电机参数 r=0.005, r f =0.000656,r D =0.00151, r Q =0.00159 x d =1,0, x q =0.60, x f =1.03, x D =0.95, x Q =0.70 x af =0.85, x aD =0.85, x fD =0.85, x aQ =0.45 原始运行条件为额定负载 U [0]=1, i [0]=1, φ[0]=0.5548 (单位为弧度,相对于cos φ=0.8) 短路时的转子位置角

交流牵引电机制造过程中线圈尺寸的调整方法

交流牵引电机制造过程中线圈尺寸的调整方法 在进行交流牵引电机制造的时候,定子线圈的尺寸对后续定子的嵌线的效果影响是十分大的。为了更好的保证线圈的制造和嵌线的效果,在进行电机制造以前,可以使用计算机对线圈成形和嵌线的效果进行模拟分析,然后将模拟的数据同线圈的尺寸和嵌线的端部间隙进行对比,指导电机的制造。通过模拟出的数据可以在电机生产前进行准备的工作,同时对施工的工艺进行准备,对生产中可能出现的问题进行调整方案的制定。 标签:电机制造;线圈尺寸;调整 现在的工业生产中,电机是非常重要的生产设备,在进行电机制造的时候,制造的技术和质量是非常重要的。在进行交流牵引电机的制造时,定子线圈的制造非常重要,定子线圈制造以后不但要符合图纸的设计要求,同时还要保证后续施工中嵌线的制造。线圈在制造成形的时候,成形尺寸是非常重要的,线圈的尺寸一定要考虑到嵌线可能出现的变形情况和嵌线的排布情况。线圈的尺寸不当会增加嵌线为了整形的敲打次数,对嵌线进行过多的敲打会破坏其绝缘性,使得嵌线的下方出现擦伤,对嵌线的端部的间隙均匀性也会带来一定的影响。为了更好的保证线圈的尺寸,可以利用计算机的三围模拟技术对交流电机的定子线圈进行模拟实验,对线圈的尺寸进行计算,同时也可以对变形调整和嵌线过程进行模拟,使定子的线圈尺寸和后续的嵌线间隙的排布在数据上可以对应。在进行生产的时候,工程的技术人员可以根据模拟的数据对线圈的生产进行更好的制造,制定出更加合适的线圈制造工艺和调整方案。对制造的工艺进行理论和实际生产中的验证,这样可以更好的建设材料和人力的投入,使得电机在生产的时候成本可以更低。 1 制造技术方面的准备 在进行电机定子线圈的制造以前,工程的技术人员要对制造技术工艺进行准备。要使用计算机对制造的过程进行模拟,建立定子线圈制造的三维模型,然后对制造过程进行模拟,在模拟完成后对尺寸进行记录。在定子线圈尺寸成型以后,进行嵌线制造过程的模拟,对线圈的端部嵌线间隙进行计算,检验三维模拟出的线圈尺寸在嵌线施工中的效果,如果效果不好,要重新进行尺寸的计算,然后也要对间隙进行计算。通过重复的计算和调整一定可以得到最佳的尺寸,在尺寸确定以后,要结合实际的生产情况对制造的技术进行确定。在进行线圈尺寸的计算的时候,技术人员一定要对一下问题进行掌握。在进行实际生产中,定子线圈的尺寸对下个施工工序的嵌线影响到底有多大。在进行线圈尺寸计算的时候,如果遇到嵌线间隙过大的时候要如何进行处理;如果间隙过小就会导致嵌线的施工难度加大,这个时候要进行怎样的操作可以对成型的尺寸进行调整。 2 计算机三维模型的建立 在使用计算机对定子线圈的制造进行三维模拟实验的时候,首先要建立一个

实验三三相同步电动机

实验报告 实验名称:三相同步电动机 小组成员:许世飞许晨光杨鹏飞王凯征 一.实验目的 1.掌握三相同步电动机的异步起动方法。 2.测取三相同步电动机的V形曲线。 3.测取三相同步电动机的工作特性。 二.预习要点 1.三相同步电动机异步起动的原理及操作步骤。 2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取? 三.实验项目 1.三相同步电动机的异步起动。 ≈0时的V形曲线。 2.测取三相同步电动机输出功率P 2 3.测取三相同步电动机输出功率P =0.5倍额定功率时的V 形曲线。 2 4.测取三相同步电动机的工作特性。 四.实验设备及仪器 1.实验台主控制屏; 2.电机导轨及转速测量; 3.功率、功率因数表(NMCL-001); 4.同步电机励磁电源(含在主控制屏左下方,NMEL-19); 5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18); 6.三相可调电阻器900Ω(NMEL-03); 7.三相可调电阻器90Ω(NMEL-04); 8.旋转指示灯及开关板(NMEL-05A);

9.三相同步电机M08; 10.直流并励电动机M03。 五.实验方法 被试电机为凸极式三相同步电动机M08。 1.三相同步电动机的异步起动 实验线路图如图3-1。 实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。 R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。 开关S 选用NMEL-05。 同步电机励磁电源(NMEL-19)固定在控制屏的右下部。 a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。 b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。 c .当转速接近同步转速时,把开关S 迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程 图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)图3-1 三相同步电动机接线图(MCL-11、MEL-11B )

三相异步电动机的型号及选用

三相异步电动机的型号及选用 三相异步电动机的分类 三相异步电动一般为系列产品,其系列、品种、规格繁多,因而分类也较繁多。 1、按电动机尺寸大小分类 大型电动机:定子铁心外径D>1000mm或机座中心高H>630mm。 中型电动机:D=500~1000mm或H=355~630mm。 大型电动机:D=120~500mm或H=80~315mm。 2、按电动机外壳防护结构分类 3、按电动机冷方式分类 电动机按冷却方式可分为自冷式、自扇冷式、他扇冷式等。可参见国家标准GB/T1993-93《旋转电机冷却方式》。 4、按电动机的安装形式分类 IMB3:卧式,机座带底脚,端盖上无凸缘。 IMB5:卧式,机座不带底脚,端盖上有凸缘。 IMB35:卧式,机座带底脚,端盖上有凸缘。 5、按电动机运行工作制分类 S1;连续工作制 S2:短时工作制 S3~S8:周期性工作制 6、按转子结构形式分类 三相笼型异步电动机 三相绕线型异步电动机 三相异步电动机的型号及选用

我国电机产品型号的编制方法是按国家标准GB4831-84《电机产品型号编制方法》实施的,即有汉语拼音字母及国际通用符号和阿拉伯数字组成,按下列顺序排列。 1 产品(类型)代号 CHANPINGUI 异步电动机同步电动机同步发电机直流电动机直流发电机汽轮发电机水轮发电机测功机潜水电泵纺织用电机交流换向器电动机 产品代号 Y T TF Z ZF QF SF C Q F H 2 特殊环境代号 使用场合热带用湿热带用干燥带用高原用船用户外用化工防腐用 汉语拼音字母 T TH TA G H W F 产品规格代号:L-----长机座;M-----中机座;S-----短机座。 下面为两个产品举例: (1)三相异步电动机 Y2---132M---4 规格代号,中心高132mm,M中机座,4极 产品代号,异步电动机,第二次改型设计 (2)户外防腐型三相异步电动机 Y---100L2---4---WF1 特殊环境代号,W户外用,F化工防腐用,1中等防腐 规格代号,中心高100,长机座第二铁心长度,4极 产品代号,异步电动机 3 常用三相异步电动机产品型号、结构特点及应用场合 序号名称型号机座号与功率范围结构特点应用场合 新老 1 小型三相异步电动机(封闭式) Y2 (IP55) Y(IP44) JO2 JO H80~355

牵引电机知识

HXD3机车牵引电机 1 牵引电机的特点及参数 1.1 概述 YJ85A型电机是逆变器供电的三相鼠笼式异步牵引电机,其整机图片见右图。该机为滚包结构,单端输出;采用 强迫外通风,冷却风从非传动端进 入,传动端排出;采用三轴承结构, 三个轴承均为绝缘轴承;在二端盖 处设有注油口,使用中可补充润滑 脂。 1.2 牵引电机的工作特点 牵引电机是机车的重要部件, 它安装在转向架上,通过齿轮与轮 对相连。机车在牵引运行状态时, 牵引电机将电能转化成机械能,通 过轮对驱动机车运行。机车在制动 状态运行时,牵引电机将机械能转 换成电能,此时机车处于发电状态。图1 YJ85A牵引电机整机图片牵引电机的工作条件十分恶劣:负载变化大,冲击和振动严重,恶劣的风沙、雨雪气候、受酸碱性气体影响侵蚀严重。对于交流变频调速异步牵引电机来说,还有一个特殊之处,就是要在PWM波调制、含有大量谐波和尖峰脉冲的、非标准的正弦波电源供电下工作。 机车在云相中,牵引电机要在启动、爬坡这样的大电流状态下运行;要在平之路上轻载高速下运行;要过弯道、过道岔这样的冲击和振动状态下运行;还要能适应沿海多雨潮湿、内地干燥风沙的环境。 1.3 牵引电机的设计要求 此处省略许多 ·外锥齿轮输出:由于电机的扭矩较大,采用锥柄齿轮将使转轴的内锥孔加工困难,本电机采用外准齿轮输出,该结构由德国的VOITH公司设计,在欧洲和美国有运行经验,证明轴与齿轮的强度是安全可靠的。 ·耐电晕绝缘材料的采用,是针对PWM波调制的供电电源下工作的交流变频调速异步电机,为仿制绝缘失效所采取的一项有效措施。这是经过实验室实验证明和其他多种电机的多年生产经验证明的。但是本机车的PWM波调制的电源由于开关频率较低,供电电源的谐波和尖峰脉冲含量较小,电机的主绝缘系统未

异步牵引电动机工作原理

异步牵引电动机工作原理 1.牵引电机的主要运行原理 定子通上三相交流电后,在气隙中产生旋转的磁场,该磁场切割转子导条后在转子导条中产生感应电流,带电的转子导条处于气隙旋转磁场中就要产生电动力,使转子朝定子旋转磁场的同一方向旋转。由于转子导条中的电流是因转子导条切割由定子绕组产生的气隙磁场才感应产生的,所以转子的转速只能低于气隙旋转磁场的转速,永远不可能与其同步,否则转子导条与气隙磁场同步旋转,转子导条不再切割磁场产生感应电流和产生电动力了,转子也不可能旋转了,所以称按这种原理运行的电机为异步电动机。 2.牵引电机的调速原理 现在机车用异步牵引电机调速普遍采用变频变压调速技术。异步电机转速、电动势和电磁转矩公式如下: 转差率s=(n1-n)/n 转速n=60f/p(1-s) 电动势E1=4K1 f N s K dp1φ 电磁转矩T em=CφI r COS? n1:同步转速(旋转磁场)n:转子转速;f:定子频率;s:转差率;p:电机极对数;E1:电动势;K1:波形系数; N s:每相串联匝数;K dp1:绕组系数;φ:磁通;T em:电磁转矩;C:常数;I r:转子电流;COS?:功率因数。 改变定子频率即可改变电机转速,随着定子频率的增加,电机转速相应增加,如果电压不增加,将导致电机磁场减弱,电机转矩将降低,电机磁场降到很低时,电机不能输出足够的转矩,不能满足负载要求;另一方面,低频起动时,如果电压很高,将导致电机过分饱和。因此异步电机变频时,电压也应在一定范围内保持一定比例的变化,这种调速方式称之为变频变压调速。异步牵引电机变频调速主要采用了恒转矩变频调速(恒磁通变频调速的一个区段,磁通和电流不变)、恒磁通变频调速、恒功率变频调速等调速方式。 3. 异步电机牵引与再生制动原理: 在1>s>0的范围内,电磁转矩与转子转向相同,它拖动转子旋转,电机从逆变器吸收电能转换为机械能,克服机车阻力驱动机车运行,处于电动机运行状态。 s=1为起动运行状态(启动瞬间,转子转速n=0,s=1)。

6.3 同步发电机突然三相短路的物理过程及短路电流分析.

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17) 若在时,定子绕组突然三相短路,在这一瞬间匝链定子三相磁链的瞬时值为

相关主题
文本预览
相关文档 最新文档