当前位置:文档之家› 纳米羟基磷灰石_HAP_的制备方法及应用 (1)

纳米羟基磷灰石_HAP_的制备方法及应用 (1)

纳米羟基磷灰石_HAP_的制备方法及应用 (1)
纳米羟基磷灰石_HAP_的制备方法及应用 (1)

!""#年第$期(第$$期)佛山陶

瓷!!!!!!!

%&&前言

’()由于其成份与生物机体骨骼的无机成份相近,因而引起了人们的广泛的关注。上世纪#"年代,就有人合成了’()。随着科学技术的进步和人们认识的不断提高,许多研究结果表明,’()是一种无毒、无致癌、无副作用和具有良好生物相容性的生物活性材料;人们还发现’()具有固体碱性能*%+和较强的离子交换能力,因此在催化载体、离子交换领域得到了广泛的应用;同时还能吸附有毒的离子*!+和具有温敏、湿敏效应*#+,因此还是绿色环保材料和智能材料。此外,武汉理工大学生物中心研究发现纳米’()能抑制癌细胞的生长,而对正常的细胞没有副作用,为制备新一代抗癌药物提供了新的途径。

’()具有许多优良的特性,除与本身特性有关外,还与其制备方法和制备工艺有密切的关系。

!&&’()的晶体结构

羟基磷灰石英文名称’,-./0,12134356分子式为71%"

8)9:;<=9’;!&>简写为’(或’()?>钙磷比71@)AB@#!%C<$(当71@)小于%C<$称为钙亏’()>当71@)大于%C<$称为钙盈’()>当71@)为%C<$称为正常’())>属磷酸钙=D7);陶瓷中的一种生物活性材料。从分子式可以看出,71!E位置=(位;易被%、!、#价和FGG#E等离子替换;*)9:+#H 位置=I位;易被*(J9:+#H、*K9:+#H、*L49:+!H、*L9:+!H、*79#+!H等基团替换;*9’+H位置=M位>通道离子;易被卤素元素替代,并且置换速度非常快;它还可以与含羧基=799’;的氨基酸、蛋白质、有机酸等反应。(、I、M还能相互耦合替代*:+。

D.N5O1P*B+等研究发现’()与氟磷灰石具有同样结构属于六方晶系,空间群为)<#@O。其结构为六角柱体,与Q 轴垂直的面是一个六边形,1、R轴的夹角为%!"",晶胞常数1ARASC:#!!,QA

#??制备方法

’()的制备方法很多,大致可以分为三类:干法(固相反应法)、水热法和湿法(溶液反应法)

等。

目前通常的方法是71#8)9:;!或7179#和71:)!9S在%!"""的高温下通入水蒸气,通过固相反应合成’()。必须严格控制反应的温度,因为在%!"""烧结温度下,反应的

纳米羟基磷灰石(’())的制备方法及应用X 朱晏军王玮竹闫玉华

(武汉理工大学生物中心武汉:#""$"

??’()是一种活性陶瓷材料,由于其成份接近生物机体骨骼的无机成份,能诱发新骨生长和具有良好的生物相容性等特点,作为替代材料已广泛应用于人体硬组织的

修复。本文主要介绍’()

的晶体结构和几种常用的制备方法及其应用。

?’(),晶体结构,制备方法,应用

注Y湖北省重点项目资助(编号:!""%((#"

晶体结构示意图

S

!"#$%&’()*%+,(#’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’-./012’&.34(#5678/9&.344)晶相为!"#;而在$%&’!烧结温度下,晶相为!"#和()#

两种混合物。这是由于!"#在$%&’!烧结温度下发生如

下的分解反应*+,*-,:

).$’/#012+/0!3%4!).$’5#013+0467!%04(气)

%).$’8#013+04!%).9/#013%464).%#%0-4649).1#%0:

4444从上面的反应式可以看出反应生成水蒸气。根据化学

反应平衡原理,通入水蒸气,可以阻止反应向右进行。因此

必须在高温下通入水蒸气,抑制!"#的分解。该法的优点

是可以得到无晶格缺陷和结晶程度高的!"#晶体。缺点是

原料粉末需要长时间混磨,易污染,反应速度慢,产物粒径

大,

产物的活性较差。

4444水热合成法是在一个密闭的压力容器中,用水溶液作

为反应介质,通过对反应容器加热,使得在通常条件下难

溶或不溶的物质溶解并重结晶。将).8=093%与!9#014按钙

磷比).>#?$;+-混合均匀@放入特制密闭的高压锅内@加

入蒸馏水。按-!>ABC加热速度升至不同温度8%’’"

1’’!3@在指定温度下进行水热反应,从而使*0!,D加入晶

格中生成!"#。

其反应方程式如下:

).8=093%767!9#01767!%07!).$’8#013+80!3%

7777待反应容器冷却至室温取出!"#晶体,用去离子水反

复清洗干净,在$$’!干燥即可。

该法最大的优点是产物直接为晶态,无须烧结晶化,

可以减少在烧结过程中难以避免的团聚。粒度均匀、形态

比较规则;而且改变反应条件可以得到不同晶体结构和结

晶形态的产物。随着水热合成温度的提高和时间的延长@

晶粒发育越完整、粒度越大。但此法对设备要求很高,而且

成本也很高。

湿法反应包括酸碱反应法、水解法、电化学沉积法、溶

胶D凝胶法及微乳液法等。

9;9;$7酸碱反应法*$$,

7777酸碱反应法是根据酸碱中和反应生成!"#。如用).

80!3%与!9#01反应生成!"#。先将一定量).80!3%的粉体

用水调成糊状,在加入蒸馏水并加热至-’!左右的烧杯

中,加入糊状).80!3%并搅拌,缓慢滴加!9#01,调节E!值,

即可生成!"#。

其反应方程式为:

).80!3%767!9#017!).$’8#013+80!3%767!%0

7777此法操作简单方便而且最经济,不需要复杂的设备,

比较适合工业化生产。

7777水解法和水热合成法原理相似。在水解法中,通常

).!#01在-’!左右和#!为<;&的条件下使*0!D,加入晶

格中生成!"#。

其反应方程式为:

).!#01767%!%07!).$’8#013+80!3%7

9;9;97溶胶D凝胶法*$9,*$1,*$&,

7777溶胶D凝胶法的基本原理是将金属醇盐或无机盐水

解,然后使溶质聚合凝胶、干燥和焙烧。其技术方法是将

).溶胶缓慢滴入#0196溶胶中@体系中分别加入不同量的

=!1!)09@用氨水调节E!值@生成的)!"#凝胶经%1F陈

化!洗涤!干燥!焙烧。其工艺流程如图%所示。

该方法工艺过程简单,产物组成容易控制且无需大型

设备,因此被广泛应用于制备各种高纯和均匀的超细粉

体。

9;9;17微乳液法*$+,*$-,

7777新加坡国立大学材料系GBA采用微乳液法制备纳米

!"#,其技术方法是将).)H%与5=!12%!#01分别制成微乳液,

油相为环己醇,表面活性剂为正己烷,将两种微乳液混合

后放置一定的时间,将沉淀物用无水乙醇洗涤,可获得粒

径为%’"1’CA的!"#粉体。其工艺流程如图9所示。

此外,还有电化学沉积法。根据电化学的基本原理,从

).95#012%水溶液中把!"#粒子电沉积在阴极上,其反应式

为*$<,:

!%06I D7!$>%!%"6*0!,D

7777*!%#01,D6*0!,D!*!#01,%66!%0

7777).%66*!#01,%66*0!,D!).$’5#012+50!2%#67!%06!6

77777!66I D!$>%!%"

图%7777溶胶D凝胶法制备!"#流程图

$’

!""#年第$期(第$$期)佛山陶瓷

图#%%%%微乳液法制备&’(流程图

)%%应用

自&’(问世以来,人们对这种材料的研究进展很快。在医学方面,目前&’(颗粒材料已用于骨缺损修复和口腔外科,&’(陶瓷作为人工牙齿植入后,能与骨组织形成牢固结合。&’(陶瓷机械强度高,生物相容性好,安全无毒,在临床应用中,取得了非常成功的效果*+,-。块状的&’(鼻骨、锁骨和骸骨等各种形状的人工骨也已在临床中使用。研究结果表明材料无位移、不变形、无破碎和无溶解吸收,整复后的功能与美容效果均令人满意*!"-。由于&’(具有良好的化学亲和性和生物相容性,因此可作为一种有效的药物牙膏。临床实践充分证明*!+-*!!-,&’(具有止血和消炎作用。将其用于牙膏可有效地防治牙槽脓肿和牙出血等多种牙病。可以加速牙齿的矿化,防止牙齿因脱矿而致龋。同时它又是一种良好的摩擦洁齿剂。这种物质呈针状晶体,能增强摩擦效果。从另一方面看,牙釉的硬度为$,而&’(硬度为.,因而它又是一种温柔的摩擦剂,不会对牙齿造成机械磨损。人们用&’(制作陶瓷基片*!#-,开发灵敏、可靠及

耐用的陶瓷湿度敏感器已取得了巨大的成功。

+%%/01%0234567%8%9:;71%0<=07%/>’?@<0<4A@%34B%6@<@CD5<%03 %%%5D38E41%H46E2C:

%%%+,$I:+!A.I.J.I,;

!%%K0D03F%L:M2F@3%H%G:H=@03@%/%G>M4@N%0112O0C0P@<023%%%Q=21%@R74275%52C7<0235%@3N%623<@1%03@<4N%520C5%7503F %%%?E25?E@<4%=26S5*G->T3U0=23%/60%@3N%H46E32C:

%%%+,,.:!,A+++IJ++!V;

#%%W7S0%9:W2S21%0P2%W>932=F@306%?E25?E@<4%1@<4=0@C5*G-> %%%/435@%XD3<53:+,I+:+A!#J!$;

)%%8212N0%(:M07%W:/<2??@%Y:4<%@C>’%17C<014L034 %%%L@F:+,,,:V#[.\AVV+JV$!;

.%%H=741@3%]%’>HE4%5<=76<7=@C%2Q%EDN=2^D@?@<0<4*G-> %%%]@<7=4:+,,V:+!+"A,#$J,#I;

V%%_E27%G>L:PE@3F%‘;:4<%@C>G>L@<4=>/60>L@<4=>L4N:+,,+: %%%![.\AI#JIV;

$%%姚秀敏等>多孔羟基磷灰石的制备>无机材料学报,!"""年V %%%月,第+.卷第#期

I%%伍源等>用水热合成羟基磷灰石*G->无机盐工业,+,,+,!(.):I#JIV;

,%%廖其龙等>水热合成纳米羟基磷灰石粉末及其结构表征>四川大学学报(工程科学版),!""!年.月,第#卷第#)期+"%李玉峰等>水溶液合成纳米羟基磷灰石的动物实验研究>攀枝花大学学报,!""!年!月,第+,卷第+期

++%应波等>饮水降氟材料J羟基磷灰石合成方法的优化>卫生研究,!""+年$月,第#"卷第)期

+!%任卫等>纳米羟基磷灰石合成及表面改性的途径和方法>硅酸盐通报,!""!年第+期

+#%黄志良等>溶胶J凝胶法合成羟基磷灰石的热稳定性研究>武汉化工学院学报,!""!年V月,第!)卷第!期

+)%袁缓>溶胶J凝胶法制备纳米羟基磷灰石>中国医学院学报,!""!年V月,第)$卷第)期;

+.%童义平>羟基磷灰石工艺研究>化学研究与应用,!""!年!%月,第+)卷第+%期

+V%M01%X%a:b@3F%G:]F%/%8:4<%@C>(=2645503F%2Q%EDN=2^D@?@<0<4 %%%U0@%%106=24%17C5023%@3N%417C5023%=27<45>c021@<4=0@C5: %%%+,,$:+I[!+\A+)##J+)#,

+$%任卫等>纳米羟基磷灰石合成及表面改性的途径和方法>硅酸盐通报,!""!年第+期

+I%黄志良等>羟基磷灰石(&’()的制备方法及其研究进展>

%%%武汉化工学院学报,!""+年,月,第!#卷第#期

+,%谢建林等>羟基磷灰石陶瓷人工牙齿的研究;

!"%张德正等>医用羟基磷灰石陶瓷的制备与应用>中国陶瓷,+,,I年+!月,第#)卷第V期

!+%’>/C25@=6PDS等>羟基磷灰石牙膏>日用化学工业译丛,+,,!年,第!期

!!%王菊如等>生物活性羟基磷灰石牙膏的研制>齐齐哈尔轻工学院学报,+,,V年V月,第+!卷第!期

!#%戴怡等>羟基磷灰石陶瓷在室温下的湿敏性能>大连轻工业学院学报,+,,I年,月,第+$卷第#

++

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

羟基磷灰石研究进展

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个 [ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

DuoFlow 层析系统简明使用教程

BioLogic DuoFlow
层析系统简明使用教程

DuoFlow 层析系统
一、 仪器名称:BioLogic DuoFlow 层析系统 二、 规格型号:DuoFlow 10/40,QuadTec 10/40,Maximizer 20/80,Pathfinder 20/80 三、 生产厂家:Bio-Rad Laboratories, Inc 四、 产品简介 随着生命科学研究进入后基因组时代,以蛋白质为主要对象的研究成为各实验室研究的主 题,其中,对单个蛋白质的分离纯化是蛋白质研究的基础工作,也是非常重要的工作。对纯度均 一蛋白质的研究是揭示生命规律的重要手段,也是新药研发的必要途径,因为只有获得一定量的 蛋白质纯品,才能满足结构和功能的分析、物理化学参数测定、生物活性、毒理和药理实验等等, 乃至大量制备用于诊断和治疗。 蛋白质分离纯化的重要问题是如何在纯化过程中保持温和的条件,从而保证在此过程中蛋白 质的结构和活性不受影响。层析技术(Chromatography)为蛋白质纯化提供了这样的条件,大都 在室温或低温下操作,所用的流动相可以是与生理液相似的具有一定 pH 值、离子强度的缓冲水 溶液,所用的填料表面修饰各种基团,可与蛋白质分子温和接触,从而保持了蛋白质分子的原有 构象和生物活性。层析系统以及各种分离纯化所需的填料和层析柱是保证该纯化过程的稳定性、 重现性和自动化进行所必需的设备。 五、 技术原理 将一种混合物分成单个组份是一个熵减的过程,故外界必须要给此过程提供能量。如下图所 示,完整的层析系统主要包含泵、各种阀门、层析柱、各种在位检测器和收集器。

层析柱 阀门
检测器
组分收集器 其主要过程是:由泵推动溶液;各种阀门控制溶液流向,或者进样,或者洗脱层析柱;样 品经过层析柱并洗脱后,以样品各组分在流动相和固定相(层析介质)中的分配系数不同而保 留不同,从而分开;不同组分经过各种在位检测器,如紫外检测器、电导检测器、pH 检测器等 确定各组分的位置和浓度;最后各组分由收集器自动收集。 其中,泵是层析系统的心脏,用以推动溶液流动,DuoFlow 的泵是双柱塞双泵,可提供精 确稳定,双向变速可调的液流,并可根据层析柱的不同而提供一定的压力。检测器是层析系统 的眼睛,必须具有足够的灵敏度。在层析中需要检测的指标有 pH,离子强度,紫外/可见光吸收 值,折光度,荧光值等。 层析系统为层析技术及其过程提供了稳定、准确、可靠的自动化平台,而各种层析介质和 层析柱则是层析技术的核心。各种层析技术简介如下: 1、离子交换(ion exchange chromatography, IEC) :利用蛋白质在一定缓冲液和 pH 条件下不同蛋

羟基磷灰石的制备及表征

羟基磷灰石的制备及表征 一、实验目的 1.掌握纳米羟基磷灰石的制备及原理 2.了解羟基磷灰石的表征方法及生物相容性 二实验原理 羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法。水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。 化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。此法制备纳米HAP大多采用无机钙盐和磷酸盐反应得到。常采用的钙盐有:CaCl2、Ca(OH)2、Ca(NO)2等,常采用的磷酸盐有:K2HPO4、Na3PO4、(NH4)2HPO4、和H3PO4,发生酸碱中和反应反应生成HAP纳米颗粒。沉淀法的影响因素主要有HP值、合成温度、反应原料纯度、反应原料浓度、反应物的混合步骤、沉淀剂的选择和添加速率等。采用化学沉淀法制备HAP纳米颗粒,需要的设备简单,相应的生产的经济成本也较低,很容易实现工业上大批量的生产。但化学沉淀法制备HAP也存在问题,制备所得的纳米HAP颗粒粒径均匀性差,并且团聚现象严重。化学沉淀法制备HAP的主要原理是在含有可溶性钙盐和磷酸盐的水溶液中,加入适量的沉淀剂,在特定条件,使溶液中两种溶剂发生化学反应,形成不溶性的水合氧化物从溶液中析出,再进行加入脱水对得到的溶液进行离心干燥,进而得到HAP纳米粉体。反应方程式如下: 10Ca(OH)2+6H3PO4→Ca10(PO4)6(OH)2+18H2O 三实验设备及材料

纳米羟基磷灰石_HAP_的制备方法及应用 (1)

!""#年第$期(第$$期)佛山陶 瓷!!!!!!! %&&前言 ’()由于其成份与生物机体骨骼的无机成份相近,因而引起了人们的广泛的关注。上世纪#"年代,就有人合成了’()。随着科学技术的进步和人们认识的不断提高,许多研究结果表明,’()是一种无毒、无致癌、无副作用和具有良好生物相容性的生物活性材料;人们还发现’()具有固体碱性能*%+和较强的离子交换能力,因此在催化载体、离子交换领域得到了广泛的应用;同时还能吸附有毒的离子*!+和具有温敏、湿敏效应*#+,因此还是绿色环保材料和智能材料。此外,武汉理工大学生物中心研究发现纳米’()能抑制癌细胞的生长,而对正常的细胞没有副作用,为制备新一代抗癌药物提供了新的途径。 ’()具有许多优良的特性,除与本身特性有关外,还与其制备方法和制备工艺有密切的关系。 !&&’()的晶体结构 羟基磷灰石英文名称’,-./0,12134356分子式为71%" 8)9:;<=9’;!&>简写为’(或’()?>钙磷比71@)AB@#!%C<$(当71@)小于%C<$称为钙亏’()>当71@)大于%C<$称为钙盈’()>当71@)为%C<$称为正常’())>属磷酸钙=D7);陶瓷中的一种生物活性材料。从分子式可以看出,71!E位置=(位;易被%、!、#价和FGG#E等离子替换;*)9:+#H 位置=I位;易被*(J9:+#H、*K9:+#H、*L49:+!H、*L9:+!H、*79#+!H等基团替换;*9’+H位置=M位>通道离子;易被卤素元素替代,并且置换速度非常快;它还可以与含羧基=799’;的氨基酸、蛋白质、有机酸等反应。(、I、M还能相互耦合替代*:+。 D.N5O1P*B+等研究发现’()与氟磷灰石具有同样结构属于六方晶系,空间群为)<#@O。其结构为六角柱体,与Q 轴垂直的面是一个六边形,1、R轴的夹角为%!"",晶胞常数1ARASC:#!!,QA

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

日用化学品期末复习资料整理

日用化学品期末复习资料整理 (7#301) 一、选择题、填空题、名词解释 第一章:绪论 1、牙膏清洁牙齿的功能主要是通过摩擦剂来实现的,摩擦剂在牙膏配方中的比例占45w%~55w%。国际上通用的四种摩擦剂为碳酸钙、磷酸氢钙、氢氧化铝和二氧化硅。 2、美国牙膏配方中磷酸氢钙和二氧化硅占97w%,我国碳酸钙占86w%。 第二章:表面活性剂 1、表面活性剂具有分散、增溶、乳化、起泡、洗涤、匀染、润滑、渗透、抗静电、防腐蚀和杀菌等功能。(记4个即可) 2、表面张力:把液体表面任意单位长度上的收缩力称之为表面张力。(名词解释3) 3、元素表面活性剂:指的是含有氟、硅、磷和硼等元素的表面活性剂,由于这些元素的引入从而赋予表面活性剂更独特、优异的性能。(名词解释2) 4、临界胶束浓度(CMC):表面活性剂在溶液中形成胶束的最低浓度,低于此浓度,表面活性剂以单分子体方式存在于溶液中,高于此浓度表面活性剂以单体和胶束的动态平衡状态存在于溶液中。当表面活性剂浓度达到CMC时,继续加入表面活性剂,单体分子浓度不再增加,而只能增加胶束的数量。 5、表面活性剂按照亲水基团是否为离子型分为阴离子型(羧酸盐、硫酸酯盐、磺酸盐、磷酸酯盐)、阳离子型(伯、仲、叔胺盐、季铵盐)、两性离子型(甜菜碱型、咪唑啉型)和非离子型(失水山梨醇脂肪酸酯、聚氧乙烯失水山梨醇脂肪酸酯)。 6、HLB:表示了表面活性剂的亲水基团和亲油基团所具有的亲水亲油平衡值。(名词解释1) 7、规定石蜡为0,十二烷基硫酸钠为40,表面活性剂的HLB一般在1~40之间,转折点为10,HLB小于10的乳化剂具有亲油性,大于10的乳化剂具有亲水性。 第三章:家用洗涤用品 1、污垢分为固体污垢、液体污垢和特殊污垢。

纳米羟基磷灰石的制备及其在医学领域的应用

纳米羟基磷灰石的制备及其在医学领域的应用 漳州师范学院 化学与环境科学系 08科学教育

摘要: 生物陶瓷纳米羟基磷灰石在自然界中以自然骨、牙中的无机矿物成分为主要形式。人工合成的纳米羟基磷灰石材料具有与自然矿物相似的结构、形态、成分,表现出良好的生物相容性和生物活性,广泛应用于医学领域。本文综合论述了纳米羟基磷灰石在物理化学方面的应用并对其在医学领域的应用进行了详细的论述和展望。 关键词:纳米羟基磷灰石、医学领域、合成方法及应用 Abstract: Biological nanometer hydroxyapatite ceramics in nature to natural bone and tooth the inorganic mineral composition as the main form. Synthetic nano hydroxyapatite orbital implant material has and natural mineral similar structure、shape、composition、show good biocompatibility and biological activity,widely used in medical field. The paper discusses the nano hydroxyapatite in physical chemistry and its application in medical field of applied discussed in detail and prospected. Keywords: nano hydroxyapatite,medical field,synthesis method and application

羟基磷灰石在生物医用材料中的研究进展

《生物医用材料》期末论文 学院:材料与化工学院 专业:材料科学与工程 学生姓名: 学号: 任课教师:唐敏 2010年6月20日

羟基磷灰石在生物医用材料中的研究进展 材料与化工学院 07材料科学与工程卢仁喜 摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。 关键字:羟基磷灰石生物医用材料进展 1.引言 生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。 2.羟基磷灰石及特点 羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。目前有关羟基磷灰石的研究已经取得了很大的进展,人工合成HA的方法主要有沉淀法、水热反应法和溶胶一凝胶法。然而,羟基磷灰石的烧结性能差,力学性能特别是冲击韧性不足以作为骨替代的理想材料,因此必须通过与其它材料复合来提高有关性能,使之得以在临床上推广应用。所以,基于羟基磷灰石在力学上的性质,它在生

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

纳米羟基磷灰石及其复合生物材料的特征及应用_李瑞琦

中国组织工程研究与临床康复 第 12 卷 第 19 期 2008–05–06 出版
Journal of Clinical Rehabilitative Tissue Engineering Research May 6, 2008 Vol.12, No.19
学术探讨
纳米羟基磷灰石及其复合生物材料的特征及应用★
李瑞琦,张国平,任立中, 沙子义,高宏阳,董 威, 赵 峰,王 伟
Characteristics and application of nano-hydroxyapatite and its composite biomaterials
Li Rui-qi, Zhang Guo-ping, Ren Li-zhong, Sha Zi-yi, Gao Hong-yang, Dong Wei, Zhao Feng, Wang Wei Abstract: Pubmed database and China Journal Full-text Database were both retrieved to screen out the articles, which
summarize and review the advanced progress of nano-hydroxyapatite (nHA) and its composite biomaterials. The nHA biomaterials are compounded with secondary phase or multiphase materials, contributing towards favourable histological reaction, together with satisfactory intensity and rigidity. Furthermore, the biomaterials may produce the scaffold of tissue regeneration. The nHA composite biomaterials are divided into nHA/natural polymer composites and nHA/artificial polymer composites. The former consists of nHA compounded with collagen, bone morphogenetic protein and polysaccharide materials, while the latter comprises the composites of nHA/polyamide, polyester or polyvinyl alcohol. Although the biocompatibility and bioactivity of nHA composites have been ensured, it is still a problem of tissue engineering materials that how to match the degradation velocity of composite biomaterials with bone growth speed. Li RQ, Zhang GP, Ren LZ, Sha ZY, Gao HY, Dong W, Zhao F, Wang W.Characteristics and application of nano-hydroxyapatite and its composite biomaterials.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12(19):3747-3750 [https://www.doczj.com/doc/5e7480538.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China Li Rui-qi ★ , Studying for master's degree, Associate chief physician, Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China li_ruiqi2008@126. com Received:2008-04-24 Accepted:2008-05-04
摘要:检索 Pubmed 数据库和中国期刊全文数据库文献,对应用较为广泛的纳米羟基磷灰石及其复合生物材料研究进展
加以总结。纳米羟基磷灰石复合生物材料是在纳米羟基磷灰石中加入第二相或多相材料,以获得有利的组织学反应、满 意的强度和刚性,并为组织再生合成支架材料。纳米羟基磷灰石复合生物材料大致分为纳米羟基磷灰石 /天然高分子复合 材料和纳米羟基磷灰石 /人工高分子复合材料 2 类。前者包括纳米羟基磷灰石与胶原、骨形态发生蛋白、多糖类材料复合 而成的生物材料,并各具特点。后者是由纳米羟基磷灰石与聚酰胺、聚酯、聚乙烯醇等多种人工高分子生物材料复合而 成。在保证复合材料良好生物相容性和活性的前提下,如何使复合生物材料的降解速率与骨生长速度相匹配是组织工程 材料研究中有待解决的一个主要问题。 关键词:生物材料;羟基磷灰石类;纳米技术;复合体;综述文献 李瑞琦,张国平,任立中 , 沙子义,高宏阳,董威 , 赵峰,王伟.纳米羟基磷灰石及其复合生物材料的特征及应用[J].中国组 织工程研究与临床康复,2008,12(19):3747-3750 [https://www.doczj.com/doc/5e7480538.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
加,提高了粒子的活性,从而有利于组织的结 0 引言 羟基磷灰石因其化学成分和晶体结构与 人体骨骼组织的主要无机矿物成分基本相同, 引入人体后不会产生排异反应,故其作为骨修 复替代材料在国内外的临床应用历史已有几 十年。并已被动物实验及临床研究证实具有无 毒、无刺激性、良好的生物活性、良好的生物 相容性和骨传导性、较高的机械强度及化学性 质稳定等特点,是较好的生物材料[1]。但因羟 基磷灰石的颗粒和脆性较大、缺乏可塑性、体 内降解缓慢、生物力学强度和抗疲劳破坏强度 较低,难于被机体完全替代、利用,使其临床 应用受到限制。近年来,随着纳米知识与技术 的不断发展,人们发现人体骨骼中的羟基磷灰 石主要是纳米级针状单晶体结构 。纳米级的 羟基磷灰石与人体内组织成分更为相似,具有 更好的生物学性能。根据“纳米效应”理论, 单位质量的纳米粒子表面积明显大于微米级 粒子,使得处于粒子表面的原子数目明显增
ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH
[2]
合[3]。基于此,纳米羟基磷灰石及其复合生物材 料成为当今研究的重心和热点。 1 问题的提出:
问题1:什么是纳米羟基磷灰石复合生物材料? 问题2:纳米羟基磷灰石复合生物材料的分类? 问题3:纳米羟基磷灰石选择天然高分子材料进行复 合的原因,复合生物材料的特点及用途如何? 问题4:纳米羟基磷灰石选择人工高分子材料进行复 合的原因,复合生物材料的特点及用途如何?
河 北医 科大学 第 一医院骨科 河 北省石家庄市 050031 李 瑞琦 ★,男 , 1966 年生,山西 省岚县人,汉族, 1990 年山西医科 大学毕业, 在读硕 士,副主任医师, 主 要从 事骨与 软 骨 缺损 的修复 研 究。 li_ruiqi2008@ https://www.doczj.com/doc/5e7480538.html,
中图分类号:R318 文献标识码:A 文章编号:1673-8225 (2008)19-03747-04 收稿日期:2008-04-24 修回日期:2008-05-04 (54200804240026/J·Y)
2
问题的解决
问题1:纳米羟基磷灰石复合生物材料的定义
纳米羟基磷灰石复合生物材料主要是指在 纳米羟基磷灰石中加入第二相或多相材料, 从而 获得有利的组织学反应、满意的强度和刚性,并 为组织再生合成支架材料[4]。羟基磷灰石以纳米 级纤维填充于有机基质, 有机基质为骨修复材料
3747

化学沉淀法制备纳米羟基磷灰石粉体

化学沉淀法制备纳米羟基磷灰石粉体 1、实验目的: 熟练使用化学沉淀法制备纳米粉体; 2、实验原理 化学沉淀法为制备纳米粉体的常用方法,本实验以Ca(NO3)2、(NH4)2HPO4和NH3·H2O 为原料,制备纳米羟基磷灰石粉体,基本原理如下: (NH4)2HPO4+NH3·H2O (NH4)3PO4+ H2O 3(NH4)3PO4+ NH3·H2O (NH4)10(PO4)3·OH 2(NH4)10(PO4)3·OH+10Ca(NO3)2Ca10(PO4)6(OH)2+20NH4NO3 3、试剂和仪器 Ca(NO3)2·4H2O,分析纯;(NH4)2HPO4,分析纯;氨水,分析纯;无水乙醇,分析纯;蒸馏水,实验室自制。 电动搅拌器;三口瓶;烧杯,分液漏斗,量筒,玻璃棒,天平,抽滤装置等。 4、实验过程 (1)安装实验装置。将三口烧瓶,铁架台,水浴锅,冷凝管,搅拌器等安装成需要的装置形式; (2)配料。按n(Ca)/n(P)=1.67的配比分别称取相应量的Ca(NO3)2·4H2O和(NH4)2HPO4,放入500ml烧杯中,迅速加入250ml蒸馏水,用玻璃棒进行搅拌直至溶解完毕; (3)加料、反应。将硝酸钙溶液加入三口烧瓶中,开动搅拌器进行搅拌,加入一定量氨水,调节pH>12,将(NH4)2HPO4溶液加入250ml分液漏斗中,慢慢滴入三口瓶中,控制时间为1小时,整个过程保持搅拌并在室温下进行; (4)升温反应。(NH4)2HPO4溶液滴加完毕后,使水浴升温至90℃,并保温反应3小时,整个过程保持搅拌; (5)降温冷却。保温3小时完成后,使其降温冷却至室温; (6)抽滤、洗涤。将所得反应物用抽滤装置进行抽滤、洗涤,过程中用蒸馏水不断冲洗,直至溶液p H≈7; (7)干燥。将所得粉体放入真空干燥箱中进行干燥,于80℃保温4小时,120℃保温4小时; (8)研磨、过筛。将干燥后的粉体研磨后过200目筛; (9)煅烧。将过筛后的粉体于800℃保温30分钟进行煅烧处理,得纳米羟基磷灰石粉体。 本实验具体要求: (1)配制 3.0mol/lCa(NO3)2·4H2O溶液250ml,按n(Ca)/n(P)=5:3配置相应浓度的(NH4)2HPO4溶液250ml,要计算出Ca(NO3)2·4H2O和(NH4)2HPO4的具体称量重量; (2)氨水按120ml加入。

羟基磷灰石的研究进展及其应用--盛亚雄

羟基磷灰石的研究进展及其应用 课程:材料科学前沿 姓名:盛亚雄 学号:1026010127 班级:10级材料科学1班 完成时间:2013年6月13日

目录 摘要 (2) 前言 (2) 1 羟基磷灰石的组成和晶体结构 (2) 2 羟基磷灰石的制备 (3) 3 羟基磷灰石复合材料 (4) 4 羟基磷灰石的应用 (5) 5羟基磷灰石的发展趋势 (7) 6结语 (8) 参考文献 (8)

羟基磷灰石的研究进展及其应用 摘要羟基磷灰石具有良好的生物活性,是较好的生物材料,故被广泛应用于 骨组织修复和替代技术。而又因具有特殊晶体化学特点,除作为医用生物材料外,还用作无机生物材料和激光器基质材料,尤其在环境治理、湿度传感器等研究领域具有重要意义。目前,羟基磷灰石的制备方法有溶胶-凝胶法、沉淀法、水热法、干式法和微乳液法等。对于制备要求较高,具有表面活性的吸附材料羟基磷灰石而言,溶胶-凝胶法是较为合适的方法。此外,本文还对羟基磷灰石复合材料进行了研究。以及对羟基磷灰石的应用了做出介绍和展望。 关键词羟基磷灰石制备复合材料环境材料生物陶瓷发展趋势 前言 磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟磷灰石和氯磷灰石等不同亚种矿物。其中,羟基磷灰石的研究和应用最广泛。由于羟基磷灰石(HA)不但与人体骨骼的晶体成分和化学结构基本一致,而且生物相容性和界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极其良好的骨传导性和骨结合的能力,无毒副作用,无致癌作用,因此被广泛用于作为硬组织修复和骨填充材料的生物支架及疾病、意外事故中的修复材料,是目前生物材料研究的热点。此外,大量研究表明,羟基磷灰石具有良好的离子交换性能,能吸附并回收利用地方饮用水中过量的氟离子和工业废水中的重金属离子,可以用作一种新型的环境功能矿物材料。多孔羟基磷灰石陶瓷耐热、耐湿范围广,灵敏度高,是一种新型的湿敏半导体陶瓷材料。本文的目的主要是介绍羟基磷灰石的制备,以及简单介绍一下羟基磷灰石复合材料,并且对其在生物材料和功能材料等方面的应用做出展望,这对今后羟基磷灰石的进一步的开发和研究具有重大意义。 1 羟基磷灰石的化学组 成和晶体结构 羟基磷灰石的化学式为 Ca10PO46OH2简写为HA或HAP, Ca/P的物质的量之比为1.67。其分 子结构为六方晶体,属于P63/m空 间群。晶胞常数为晶胞常数a= b= 9. 324 A , c= 6. 881A。单位晶胞含有

羟基磷灰石的使用方法

羟基磷灰石的使用方法-CAL-FENGHAI.-(YICAI)-Company One1

羟基磷灰石填料 ——纯化蛋白、多肽、核酸 分离机理:羟基磷灰石具有独特的分离机理,是唯一直接用于蛋白质和核酸纯化的无机层析填料,高度耐碱,生物安全性最高。其中磷酸离子与带正电的蛋白质以离子键结合,具有离子交换特性,可由NaCl浓度梯度或磷酸钠浓度梯度洗脱,其中的Ca2+离子与带负电蛋白质的自由羧基以金属螯合方式结合,该结合方式对NaCl不敏感,可由磷酸钠浓度梯度洗脱。因此该填料既可以用磷酸钠单梯度洗脱,也可以采用NaCl梯度洗脱后以低浓度磷酸钠缓冲液平衡,再以磷酸钠浓度梯度洗脱的双梯度洗脱模型,以达到更高的分辨率。 羟基磷灰石类型选择:羟基磷灰石因陶瓷化工艺不同分为2种类型:I型和II 型,I型对蛋白质具有更大的保留,对普通蛋白质具有更大的动态载量,主要纯化大部分蛋白质(分子量一般在100kd一下);II型由于孔径较I型大,因而对抗体和部分重组疫苗等大分子量蛋白质的动态载量更高,而对HSA几乎无保留,因而更适合于抗体的纯化,同时II型对核酸具有更大的保留,能够分辩单、双链、超螺旋等各种高级结构的DNA,因而也适合纯化核酸。 ●高动态载量、高流速、高产率 ●更好的化学稳定性和机械强度,更长的寿命 ●刚性结构,保证了其在PH>的范围内使用,可用NaOH清洗 ●良好的批次重现性,容易放大化 ●可随意选用阳离子和金属螯合两个模式分离纯化蛋白或其他分子 ●能用于层析系统、重力流柱、AcroPrep多孔板等 应用 ●碱性蛋白的纯化(免疫球蛋白) ●抗体纯化 ●酸性蛋白(白蛋白) ●去除DNA和内毒素 ●纯化磷多肽 ●分离纯化复杂的蛋白混合物 ●纯化质粒 流动相:平衡液:5mM的磷酸钠缓冲液,PH= 洗脱液:的磷酸钠缓冲液,或2M的氯化钠缓冲液,PH= 使用步骤:建议使用干法填柱

羟基磷灰石的制备及其表征实验方案

实验方案 课题六 纳米羟基磷灰石的制备与表征 小组成员 段东斑、陆文心、耿明宇 1.背意义景 羟基磷灰石(Hydroxyapatite,简称HA,化学分子式:(Ca10 (PO4)6(OH)2)是人体和动物骨骼的主要无机成份。在人体骨中,HA 大约占60%,它是一种长度为20~40nm,厚1.5~3.0nm 的针状结晶,其周围规则地排列着骨胶原纤维[36]。齿骨的结构也类似于自然骨,但齿骨中HA 的含量高达97%。医学领域长期以来广泛使用的金属和有机高分子等生物医学材料,其成分和自然骨完全不同,用来作为齿骨的代材料(人工骨、人工齿)填补骨缺损材料,其生物相容性和人体适应性尚不令人满意。而羟基磷灰石具有无毒、无刺激性、无致敏性、无致突变性和致癌性,是一种生物相容性材料,可与骨发生化学作用,有很好的骨传导性。因此,近二十年来,研究接近或类似于自然骨成份的无机生物医学材料极其活跃,其中特值得重视的是与骨组织生物相容性最好的HA 活性材料的研究、临床应用。近年来,随着人们对纳米领域的认识与关注,医学界也相继开始了对纳米HA 粒子(或称超细HA 粉)的研究,HA 纳米粒子与普通的HA 相比具有不同的理化性能:如溶解度较高、表面能较大、生物活性更好、具有抑癌作用等,可以作为药物载体用于疾病的治疗,是一种生物相容性良好的治疗材料。 目前,人们已经开发出多种方法来制备纳米HA,如水解法、水热反应法、溶胶一凝胶法及最近发展的微乳液法等,其中化学沉淀法是各种水溶性的化合物经混合、反应生成不溶性的沉淀,然后将沉淀物过滤、洗涤、煅烧处理,得到符合要求的粉体。化学沉淀法因工艺简单、成本低、颗粒小等优点被广泛应用。但是目前对这种方法的研究还处于初级阶段,制备出的纳米粒子粒径不均一,分散性差且有易团聚的现象。为此,我们希望对化学沉淀法制备HA纳米粒子的条件的进行深入研究,分析各种因素对纳米HA晶型与粒径的影响,为HA的工业化生产提供依据。 2.1实验基本原理 目前报道,常用的制备羟基磷灰石粉体的钙的反应物有Ca(NO3)2、Ca(OH)2、CaCl2、CaO、Ca(OC2H5)2等,常用的磷的反应物有(NH4)2HPO4、H3PO4、K2HPO4、Na2HP04和((CH3O)3PO)等。 以硝酸钙和磷酸氢二氨为例,反应方程式为: Ca(N03)2·4H20+6(NH4)2HP04+8NH3·H20=Ca10 (P04)6(OH)2+20NH4N03+6H20 以氢氧化钙和磷酸盐为例,反应方程式为: 10Ca(OH)2+6H3P04= Ca10(PO4)6(OH)2+18H20 不同反应物合成HA的方法有一定差异,但总体而言,化学沉淀法的实质是羟基磷灰石的溶解平衡的逆反应,即 10Ca2++6PO43-+2OH- = Ca10(PO4)6(OH)2 Ksp=2.34*10-59 2.2实验条件的选择与调控。 影响化学沉淀法的工艺参数主要有:Ca/P 摩尔比、pH 值、磷酸的加入速度、反应温

相关主题
文本预览
相关文档 最新文档