当前位置:文档之家› 平行线与相交线测试题及答案

平行线与相交线测试题及答案

平行线与相交线测试题及答案
平行线与相交线测试题及答案

知识要点

一.余角、补角、对顶角

1,余角:如果两个角的和是直角,那么称这两个角互为余角.

2,补角:如果两个角的和是平角,那么称这两个角互为补角.

3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.

4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3

=90°,则∠2=∠3.

5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.

6,对顶角的性质:对顶角相等.

二.同位角、内错角、同旁内角的认识及平行线的性质

7,同一平面内两条直线的位置关系是:相交或平行.

8,“三线八角”的识别:

三线八角指的是两条直线被第三条直线所截而成的八个角.

正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.

三.平行线的性质与判定

9,平行线的定义:在同一平面内,不相交的两条直线是平行线.

10,平行线的性质:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.

11,过直线外一点有且只有一条直线和已知直线平行.

12,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.

13,如果两条直线都与第三条直线平行,那么这两条直线互相平行.

14,平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行. 这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.

15,常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的

角平分线平行;(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行. 四.尺规作图

16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已

知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.

《相交线与平行线》综合测试题

答题时间:90分钟 满分:120分

一、选择题:(每小题3分,共30分)

1.若三条直线交于一点,则共有对顶角(平角除外)( ) 对 对 对 对

2.如图1所示,∠1的邻补角是( )

A.∠BOC

B.∠BOE 和∠AOF

C.∠AOF

D.∠BOC 和∠AOF

3. 如图2,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°

4. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐

弯的角度是( )

A .第一次右拐50°,第二次左拐130°

B .第一次左拐50°,第二次右拐50°

C .第一次左拐50°,第二次左拐130°

D .第一次右拐50°,第二次右拐50° 5. 如图3,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°

C.∠A+∠P+∠C=360°

D.∠P+∠C=∠A

图1

F E

O 1

C B

A D 图3

D

A

P

C B

6. 一个人从点A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( ) ° ° ° °

7.如图4所示,内错角共有( ) 对 对 对 对

C

B

A

D

1

C

B

A

32

4

D

O F

E D

C

B

A

8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( ) A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 ∥CD 9.下列说法正确的个数是( )

①同位角相等; ②过一点有且只有一条直线与已知直线垂直;

③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;

⑤若a ∥b ,b ∥c ,则a ∥c. 个 个 个 个

10. 如图6,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,?△OAF ,?△OAB ,其中可由△OBC 平移得到的有( ) 个 个 个 个

二、填空题(每小题3分,共30分)

11.?命题“垂直于同一直线的两直线平行”的题设是?____________,?结论是__________. 12.三条直线两两相交,最少有_____个交点,最多有______个交点.

13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1?和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.

5

4

32

1 43

2

1A

C

D

B

图7 图8 图9

14.如图8,已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=_______.

15.如图9所示,在铁路旁边有一李庄,现要建一火车站,?为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________________. 16.如图10所示,直线AB 与直线CD 相交于点O ,EO ⊥AB ,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.

图4 图5

图6

A

E

C

D

O

B

2

1

A

C

D

B

图10 图11

17.如图11所示,四边形ABCD 中,∠1=∠2,∠D=72°,则∠BCD=_______.

18.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿铁轨方向_________”.

19. 根据图12中数据求阴影部分的面积和为_______.

20. 如果一个角的两边与另一个角的两边分别平行,那

么这两个角的关系是_________. 图12

三、解答题(每小题8分,共40分)

21. 已知a 、b 、c 是同一平面内的3条直线,给出下面6个命题:a ∥b , b ∥c ,a ∥c ,a ⊥b ,b ⊥c ,a ⊥c ,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。举例如下: 因为a ∥b , b ∥c ,所以a ∥c (平行于同一条直线的两条直线平行)

22. 画图题:如图(1)画AE ⊥BC 于E ,AF ⊥DC 于F. (2)画DG ∥AC 交BC 的延长线于G.

(3)经过平移,将△ABC 的AC 边移到DG ,请作出平移后的△DGH.

D

C

B A

23. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数

1

3

1

5

24. 如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F 的关系,并说明理由.

25. 如图,在方格中平移三角形ABC,使点A移到点M,点B,C应移动到什么位置再将A 由点M移到点N分别画出两次平移后的三角形.如果直接把三角形ABC?平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗

B

C

N

M

A

四、解答题(每小题10分,共20分)

26. 已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系试说明理由.

27. 如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果

P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在

C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间

的关系又是如何

l1

l

C

B D

P

l2

A

参考答案:

题号 1 2 3 4 5 6 7 8 9 10 答案

A

B

C

B

C

C

B

D

B

B

二、

11.两条直线都和同一条直线垂直,这两条直线平行; ,3 ;

13.邻补;对顶;同位;内错;同旁内; °,70°,110°; 15.垂线段最短; °,65°,115°; °; 18.平移; ;

20.相等或互补; 三、 21.略; 22.如下图:

G

H F

E D

C B

A

23. 如图,过点P 作AB 的平行线交EF 于点G 。

因为AB ∥PG ,所以∠BEP =∠EPG (两直线平行,内错角相等), 又EP 是∠BEF 的平分线,所以∠BEP =∠PEG ,所以 ∠BEP =∠EPG=∠PEG ;同理∠PFD =∠GFP=∠GPF 。 又因为AB ∥CD ,所以∠BEF+∠DFE=180o(两直线平行,同旁内角互补), 所以∠BEP+∠PFD=90o,故∠EPG+∠GPF=90o,即∠P=90o.

24. 解: ∠A=∠F. 理由是:

因为∠AGB=∠DGF ,∠AGB=∠EHF , 所以∠DGF=∠EHF , 所以BD25.略; 四、

26. 解:∠BDE=∠C.

理由:因为AD ⊥BC ,FG ⊥BC (已知), 所以∠ADC=∠FGC=90°(垂直定义).

所以AD ∥FG (同位角相等,两直线平行). 所以∠1=∠3(两直线平行,同位角相等) 又因为∠1=∠2,(已知), 所以∠3=∠2(等量代换).

G

所以ED ∥AC (内错角相等,两直线平行). 所以∠BDE=∠C (两直线平行,同位角相等).

27. 解 若P 点在C 、D 之间运动时,则有∠APB =∠PAC +∠PBD .理由是:如图4,过点P 作PE ∥l 1,则∠APE =∠PAC ,又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD ,所以∠APE +∠BPE =∠PAC +∠PBD ,即∠APB =∠PAC +∠PBD .

若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),则有两种情形:

(1)如图1,有结论:∠APB =∠PBD -∠PAC .理由是:过点P 作PE ∥l 1,则∠APE =∠PAC ,又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD ,所以∠APB =∠BAE +∠APE ,即∠APB =∠PBD -∠PAC .

(2)如图2,有结论:∠APB =∠PAC -∠PBD .理由是:过点P 作PE ∥l 2,则∠BPE =∠PBD ,又因为l 1∥l 2,所以PE ∥l 1,所以∠APE =∠PAC ,所以∠APB =∠APE +∠BPE ,即∠APB =∠PAC +∠PBD .

E 图2

C

D

l 2 P l 3

l 1 A

B 【 E 图1

C

D l 2 P

l 3

l 1 A

B

最新初中数学相交线与平行线技巧及练习题

最新初中数学相交线与平行线技巧及练习题 一、选择题 1.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=?则D ∠=( ) A .40? B .100? C .80? D .110? 【答案】B 【解析】 【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D. 【详解】 ∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线 ∴EF ∥AC ∵∠1=40°,∴∠CAB=40° ∵CD ∥BA ∴∠DCA=∠CAB=40° ∵CD=DA ∴∠DAC=∠DCA=40° ∴在△DCA 中,∠D=100° 故选:B 【点睛】 本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线. 2.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为 A .80° B .50° C .30° D .20°

【答案】D 【解析】 【分析】 【详解】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D . 考点:平行线的性质;三角形的外角的性质. 3.如图,直线AB AC ⊥,AD BC ⊥,如果4AB cm =,3AC cm =, 2.4AD cm =,那么点C 到直线AB 的距离为( ) A .3cm B .4cm C .2.4cm D .无法确定 【答案】A 【解析】 【分析】 根据点到直线的距离是指垂线段的长度,根据AB ⊥AC ,得出点C 到直线AB 的距离为AC . 【详解】 解:∵AB ⊥AC , ∴点C 到直线AB 的距离是指AC 的长度,即等于3cm . 故选:A . 【点睛】 此题考查点到直线的距离,解题关键在于掌握点到直线的距离是指垂线段的长度,难度适中.

人教版初一下册相交线与平行线专项练习题及测试题精选

人教版初一下册相交线与平行线专项练习题及测试题 1.相交线 同一平面中,两条直线的位置有两种情况: 相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4; 邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线.像∠1和∠2这样的角我们称他们互为邻补角; 对顶角:∠1和∠3有一个公共的顶点O,并且∠1的两边分别是∠3两边的反向延长线,具有这种位置关系的两个角,互为对顶角; ∠1和∠2互补,∠2和∠3互补,因为同角的补角相等,所以∠1=∠3. 所以,对顶角相等 例题: 1.如图,3∠1=2∠3,求∠1,∠2,∠3,∠4的度数. 2.如图,直线AB、CD、EF相交于O,且AB CD 2_______, ⊥,∠=? 127,则∠= FOB__________. ∠= C E A 2 O B 1 F D 垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足.如图所示,图中 AB⊥CD,垂足为O.垂直的两条直线共形成四个直角,每个直角都是90?. 例题: 如图,AB⊥CD,垂足为O,EF经过点O,∠1=26?,求∠EOD,∠2,∠3的度数.(思考:

∠EOD可否用途中所示的∠4表示?) 垂线相关的基本性质: (1)经过一点有且只有一条直线垂直于已知直线; (2)连接直线外一点与直线上各点的所有线段中,垂线段最短; (3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离. 例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么? *线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线.如何作下图线段的垂直平分线? 2.平行线:在同一个平面内永不相交的两条直线叫做平行线. 平行线公理:经过直线外一点,有且只有一条直线和已知直线平行. 如上图,直线a与直线b平行,记作a//b 3.同一个平面中的三条直线关系: 三条直线在一个平面中的位置关系有4中情况:有一 个交点,有两个交点,有三个交点,没有交点. (1)有一个交点:三条直线相交于同一个点,如 图所示,以交点为顶点形成各个角,可以用角的相关

第五章相交线与平行线单元试卷测试卷附答案

第五章相交线与平行线单元试卷测试卷附答案 一、选择题 1.在同一坐标平面内,图象不可能... 由函数2 21y x =+的图象通过平移变换、轴对称变换得到的函数是( ) A .22(1)1y x =+- B .223y x =+ C .221y x =-- D .2 112 y x = - 2.下列命题是真命题的是( ) A .直角三角形中两个锐角互补 B .相等的角是对顶角 C .同旁内角互补,两直线平行 D .若a b =,则a b = 3.如图,已知直线a ∥b ,∠1=100°,则∠2等于( ) A .80° B .60° C .100° D .70° 4.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为( ) A .115° B .65° C .35° D .25° 5.如图,AB CD ∥,154FGB ∠?=,FG 平分EFD ∠,则AEF ∠的度数等于 ( ). A .26° B .52° C .54° D .77° 6.下列命题中,假命题的个数为( ) (1)“是任意实数,”是必然事件; (2)抛物线 的对称轴是直线; (3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为; (4)某件事情发生的概率是1,则它一定发生; (5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;

(6)函数 与轴必有两个交点. A .2 B .3 C .4 D .5 7.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( ) A .BD ⊥AC B .∠A =∠EDA C .2A D =BC D .B E =ED 8.如图,直线a ∥b ,则∠A 的度数是( ) A .28° B .31° C .39° D .42° 9.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( ) A .35° B .45° C .55° D .125° 10.下列选项中,不是运用“垂线段最短”这一性质的是( ) A .立定跳远时测量落点后端到起跳线的距离 B .从一个村庄向一条河引一条最短的水渠 C .把弯曲的公路改成直道可以缩短路程 D .直角三角形中任意一条直角边的长度都比 斜边短 11.如图,直线//a b ,直线AB AC ⊥,若150∠=,则2∠=( ) A .50 B .45 C .40 D .30 12.下列说法中不正确的个数为( ). ①在同一平面内,两条直线的位置关系只有两种:相交和垂直. ②有且只有一条直线垂直于已知直线. ③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.

相交线与平行线典型例题及拔高训练

相交线与平行线典型例 题及拔高训练 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五章相交线和平行线典型例题及强化训练课标要求 ①了解对顶角,知道对项角相等。 ②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。 ③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。 ④知道两直线平行同位角相等,进一步探索平行线的性质 ⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。 ⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 典型例题 1.判定与性质 例1判断题: 1)不相交的两条直线叫做平行线。() 2)过一点有且只有一条直线与已知直线平行。() 3)两直线平行,同旁内角相等。() 4)两条直线被第三条直线所截,同位角相等。() 答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。 (2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。 (3)错,应为“两直线平行,同旁内角互补”。 (4)错,应为“两条平行线被第三条直线所截,同位角相等”。 例2已知:如图,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED 变成两个角的和。如图5,过E 点引一条直线EF ∥AB ,则有∠B =∠1,再设法 证明∠D =∠2,需证 EF ∥CD ,这可通过已知AB ∥CD 和EF ∥AB 得到。 证明:过点E 作EF ∥AB ,则∠B =∠1(两直线平行,内错角相等)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作), ∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D =∠2(两直线平行,内错角相等)。 又∵∠BED =∠1+∠2, ∴∠BED =∠B +∠D (等量代换)。 变式1已知:如图6,AB ∥CD ,求证:∠BED =360°-(∠B +∠D )。 分析:此题与例1的区别在于E 点的位置及结论。我们通常所说的∠BED 都是指小于平角的角,如果把∠BED 看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。 证明:过点E 作EF ∥AB ,则∠B +∠1=180°(两直线平行,同旁内角互补)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作), ∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D +∠2=180°(两直线平行,同旁内角互补)。 ∴∠B +∠1+∠D +∠2=180°+180°(等式的性质)。 又∵∠BED =∠1+∠2, A B E D F

人教版七年级数学下册相交线与平行线测试题

第五章相交线与平行线单元测试卷 姓名 班级考号 一、填空题(共9小题,每题3分,共27分) 1.同一平面内,两条直线的位置关系是. 2.把“等角的补角相等”写成“如果……,那么……”形式. 3.如图,如图,要从小河引水到村庄A ,请设计并作出一最佳路线,理由是:__________. 4.如图,∠1和∠3是直线、被直线所截得到的角; ∠3和∠2是直线、被直线所截得到的角; 5.如图,用吸管吸易拉罐内的饮料时, 1101=∠,则=2∠(易拉罐的上下底面互相平行) 6.如图,∠1=700,a ∥b 则∠2=_____________, 7.一棵小树生长时与地面所成的角为80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2等于°. 8.猜谜语:(打本章两个几何名称)剩下十分钱:;斗牛. 9.两条平行线被第三条直线所截,同旁内角的比是7:11,则这两个角分别为. 二、选择题题(共5小题,每题3分,共15分) 10.如图,∠1=62°,若m ∥n ,则∠2的度数为( ) (A)118° (B)28° (C)62° (D)38° 11.如图,直线m 、n 相交,则∠1与∠2的位置关系为( ) (A)邻补角 (B)内错角 (C)同旁内角 (D)对顶角 12.下面的每组图形中,右面的平移后可以得到左面的是( ) A . B . C . D . 13.下列说法中不正确的是( ) 1 2 m n 2 3 4 n m 1 2 1第( 6)题b a 1 280° 第题 第8题 2 1 图①第(5)题A 第3题 第4题 第5题

A .垂线是直线 B .互为邻补角的两个角的平分线一定垂直 C .过一个已知点有且只有一条直线与已知直线垂直 D .直线外一点与直线上各点连线中垂线最短 14.下面推理正确的是( ) A . //,//,a b b c ∴//c d B .∵//,//,a c b d ∴//c d C .∵//,//a b a c ∴//b c D .∵//,//a b c d ,∴//a c 三、解答题(共58分) 15.按要求作图(每小题5分,共10分) (1)已知点P 、Q 分别在∠AOB 的边OA ,OB 上. ① 作直线PQ , ② 过点P 作 OB 的垂线, ③ 过点Q 作OA 的平行线. (2)将字母A 按箭头所指的方向,平移3㎝ 作出平移后的图形 16.推理填空:(10分) 如图: ① 若∠1=∠2,则∥( ) 若∠DAB+∠ABC =1800 ,则∥( ) ②当∥时,∠ C+∠ABC=1800 ( ) 当∥时,∠3=∠C( ) 17.如图,直线a 、b 被直线c 所截,且a ∥b , 若∠1=118°求∠2为多少度?(10分) 18.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。(10 分) H G 2 1 E D C B A 32 1 D C B A

相交线与平行线单元测试卷(含答案)

1 23 4 5 67 8 (第4题) a b c A B C D (第7题) ¥ 第五章《相交线与平行线》测试卷 姓名 _______ 成绩 _______ 一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( ) A B C D 1 2 1 2 1 2 1 2 2、如图,在正方体中和AB 垂直的边有( )条. , 3、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( ) ° ° ° ° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) 、 A 、①② B 、①③ C 、①④ D 、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130° · 6、下列哪个图形是由左图平移得到的( )

A B C D E (第10题) 水面 运动员 (第14题) A B C D E F G H 第13题 B D 7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( ) ① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B 、②③ C 、①②④ D 、①②⑤ 9、下列说法正确的是( ) 】 A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直 C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。 D 、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠ E =( ) A 、23° B 、42° C 、65° D 、19° 二、填空题(本大题共40分) 11、直线AB 、CD 相交于点O ,若∠AOC =100°,则∠AOD =___________。 12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由 — 是_______________________。 13、如图,在正方体中,与线段AB 平行的线段有______ ____________________。 14、如图,奥运会上,跳水运动员入水时,形成的水花是评委 评分的一个标准,如图所示为一跳水运动员的入水前的 路线示意图。按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花 15、把命题“等角的补角相等”写成“如果……那么……” ? 的形式是:_________________________。 16、如图,当剪子口∠AOB 增大15°时,∠COD 增大 . 17、如果两条平行线被第三条直线所截,一对同旁内角的

七年级(下)相交线与平行线知识点及典型例题

相交线与平行线知识点整理及测试题 一、相交线 1、邻补角与对顶角 两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 注意点: [1]顶角是成对出现的,对顶角是具有特殊位置关系的两个角; ⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与 ∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。 [4]两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。 练习: 1.如图所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角? 3.如图1-2,若∠AOB 与∠BOC 是一对邻补角, OD 平分∠AOB ,OE 在∠BOC 内部, 并且∠BOE = 1 2 ∠COE ,∠DOE =72°。 求∠COE 的度数。 1 21 2 1 2 2 1 (图1-2)

2、垂线 ⑴定义,当两条直线相交所成的四个角中,有一个角是 直角时,就说这两条直线互相垂直,其中的一条直线叫 做另一条直线的垂线,它们的交点叫做垂足。 符号语言记作:如图所示:AB ⊥CD ,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 简称:垂线段最短。 3、垂线的画法: ⑴过直线上一点画已知直线的垂线; ⑵过直线外一点画已知直线的垂线。 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线; ②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。 画法:⑴一靠:用三角尺一条直角边靠在已知直线上, ⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。 4、点到直线的距离:直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离记得时候应该结合图形进行记忆。 如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。 PO 是垂线段。PO 是点P 到直线AB 所有线段中最短的一条。 现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。 5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 ⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质) ⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。 ⑶线段与距离:距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。 例已知:如图,在一条公路l 的两侧有A 、B 两个村庄. <1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. . <2>为方便机动车出行,A 村计划自己出资修建 一条由本村直达公路l 的机动车专用道路,你能帮 助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在 后面的横线上用一句话说明道理. . A B C D O P A B O

相交线与平行线测试题

全章测试(一) 一、选择题 1.在同一平面内,如果两条直线不重合,那么它们( ). (A)平行 (B)相交 (C)相交、垂直 (D)平行或相交 2.如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线( ). (A)垂直 (B)相交 (C)平行 (D)不能确定 3.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ). (A)30° (B)60° (C)150° (D)30°或150° 4.如图,已知∠1=∠2=∠3=55°,则∠4的度数是( ). (A)110° (B)115° (C)120° (D)125° 5.将一直角三角板与两边平行的纸条如图所示放置,下列结论: (1)∠1=∠2; (2)∠3=∠4; (3)∠2+∠4=90°; (4)∠4+∠5=180° 其中正确的个数是 (A)1 (B)2 (C)3 (D)4 6.下列说法中,正确的是( ). (A)不相交的两条直线是平行线. (B)过一点有且只有一条直线与已知直线平行. (C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离. (D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直. 7.∠1和∠2是两条直线l 1,l 2被第三条直线l 3所截的同旁内角,如果l 1∥l 2,那么必有 ( ). (A)∠1=∠2 (B)∠1+∠2=90° (C) o 9022 1121=∠+ ∠ (D)∠1是钝角,∠2是锐角 8.如下图,AB ∥DE ,那么∠BCD =( ).

(A)∠2-∠1 (B)∠1+∠2 (C)180°+∠1-∠2 (D)180°+∠2-2∠1 9.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( ). (A)3个(B)2个 (C)1个(D)0个 10.在5×5的方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是( ) 图1图2 (A)先向下移动1格,再向左移动1格 (B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格 二、填空题 11.如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=______°,∠3=______°,∠4=______°. 12.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为______. 13.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______. 14.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.

第五章相交线与平行线单元试卷测试卷(含答案解析)

第五章相交线与平行线单元试卷测试卷(含答案解析) 一、选择题 1.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( ) A .4cm B .2cm ; C .小于2cm D .不大于2cm 2.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为 ( ) A .26° B .36° C .46° D .56° 3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是 ( ) A .∠4,∠2 B .∠2,∠6 C .∠5,∠4 D .∠2,∠4 4.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为( ) A .115° B .65° C .35° D .25° 5.如图,AB CD ∥,154FGB ∠?=,FG 平分EFD ∠,则AEF ∠的度数等于 ( ). A .26° B .52° C .54° D .77° 6.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=?,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;

④1 2 DFB CGE ∠= ∠.其中正确的结论是( ) A .①③④ B .①②③ C .②④ D .①③ 7.两条平行线被第三条直线所截,则下列说法错误的是( ) A .一对邻补角的平分线互相垂直 B .一对同位角的平分线互相平行 C .一对内错角的平分线互相平行 D .一对同旁内角的平分线互相平行 8.如图,25AOB ?∠=,90AOC ?∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( ) A .65 B .25 C .115 D .155 9.交换下列命题的题设和结论,得到的新命题是假命题的是( ) A .两直线平行,同位角相等 B .相等的角是对顶角 C .所有的直角都是相等的 D .若a=b ,则a ﹣3=b ﹣3 10.下列命题是真命题的有( )个 ①对顶角相等,邻补角互补 ②两条直线被第三条直线所截,同位角的平分线平行 ③垂直于同一条直线的两条直线互相平行 ④过一点有且只有一条直线与已知直线平行 A .0 B .1 C .2 D .3 11.下列定理中有逆定理的是( ) A .直角都相等 B .全等三角形对应角相等 C .对顶角相等 D .内错角相等,两直线平行 12.下列命题中,属于假命题的是( ) A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形 B .内错角不一定相等 C .平行于同一直线的两条直线平行 D .若数a 使得a a >-,则a 一定小于0 二、填空题 13.如图,A 、B 、C 表示三位同学所站位置,C 同学在A 同学的北偏东50方向,在B 同学

(word完整版)北师大数学七年级下册第二章相交线与平行线拔高题

北师大数学七年级下第二章拔高题 一.选择题(共7小题) 1.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是() A.∠ABE=3∠D B.∠ABE+∠D=90° C.∠ABE+3∠D=180°D.∠ABE=2∠D 2.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为() A.55°B.60°C.65°D.70° 3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为() A.60°B.65°C.72°D.75° 5.下列生活实例中,数学原理解释错误的一项是() A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有 一条直线垂直于已知直线 B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短 C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线 D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上 各点的所有线段中,垂线段最短 6.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=() A.30°B.40°C.50°D.60° 7.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()

A.120°B.108°C.126°D.114° 二.填空题(共8小题) 8.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=°. 9.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为. 10.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=度. 11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为. 12.如图,BE∥CF,则∠A+∠B+∠C+∠D=度. 第9题第10题第11题第12题13.如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:. 14.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是. 15.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是. 第13题第14题第15 题 三.解答题(共11小题) 16.如图,AB∥CD,直线EF与AB,CD交于点G,H,GM⊥GE,∠BGM=20°,HN 平分∠CHE,求∠NHD的度数.

第五章相交线与平行线综合测试题(有答案)

一、选择题:(每小题3分,共30分) 1.若三条直线交于一点,则共有对顶角(平角除外)( ) A.6对 B.5对 C.4对 D.3对 2.如图1所示,∠1的邻补角是( ) A.∠BOC B.∠BOE 和∠AOF C.∠AOF D.∠BOC 和∠AOF 3. 如图2,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180° 4. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平 行前进,那么两次拐弯的角度是( ) A .第一次右拐50°,第二次左拐130° B .第一次左拐50°,第 二次右拐50° C .第一次左拐50°,第二次左拐130° D .第一次右拐50°,第二次右拐50° 5. 如图3,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180° C.∠A+∠P+∠C=360° D.∠P+∠C=∠A 6. 一个人从点A 点出发向北偏东60°方向走到B 点,再从B 点出发 图1 F E O 1 C B A D 图3 D A P C B

向南偏西15°方向走到C 点,那么∠ABC 等于( ) A.75° B.105° C.45° D.135° 7.如图4所示,内错角共有( ) A.4对 B.6对 C.8对 D.10对 C B A D 1 C B A 32 4 D E 8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( ) A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB ∥CD 9.下列说法正确的个数是( ) ①同位角相等; ②过一点有且只有一条直线与已知直线垂直; ③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点; ⑤若a ∥b ,b ∥c ,则a ∥c. A.1个 B.2个 C.3个 D.4个 10. 如图6,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,?△OAF ,?△OAB ,其中可由△OBC 平移得到的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(每小题3分,共30分) 11.?命题“垂直于同一直线的两直线平行”的题设是?____________,?结论是__________. 12.三条直线两两相交,最少有_____个交点,最多有______个交点. 13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1?和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角. 图5 图6

新人教版七年级数学相交线与平行线单元测试题

七年级数学单元目标检测题(一) (相交线与平行线) 班别 姓名 座号 成绩 一、选择题:(每小题3分,共30分。) 1.下列说法中错误.. 的个数是( ) (1)过一点有且只有一条直线与已知直线平行。 (2)过一点有且只有一条直线与已知直线垂直。 (3)在同一平面内,两条直线的位置关系只有相交、平行两种。 (4)不相交的两条直线叫做平行线。 (5)有公共顶点且有一条公共边的两个角互为邻补角。 A. 1个 B. 2个 C. 3个 D. 4个 2.下列所示的四个图形中,1∠和2∠是同位角...的是( ) A. ②③ B. ①②③ C. ①②④ D. ①④ 3.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. ο 180=∠+∠ACD D 4.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐ο 30,第二次向右拐ο 30 B. 第一次向右拐ο 50,第二次向左拐ο 130 C. 第一次向右拐ο 50,第二次向右拐ο 130 D. 第一次向左拐ο 50,第二次向左拐ο 130 5.两条平行直线被第三条直线所截,下列命题中正确.. 的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 ① 2 121② 1 2 ③ 1 2 ④ E D C B A 432 1

6.下列说法中,正确.. 的是( ) A. 图形的平移是指把图形沿水平方向移动。 B. 平移前后图形的形状和大小都没有发生改变。 C. “相等的角是对顶角”是一个真命题。 D. “直角都相等”是一个假命题。 7.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD < 8.如右图,CD AB //,且ο 25=∠A ,ο 45=∠C ,则E ∠的度数是( ) A. ο 60 B. ο 70 C. ο 110 D. ο 80 9.在一个平面内,任意四条直线相交,交点的个数最多有( ) A. 7个 B. 6个 C. 5个 D. 4个 10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 二、填空题。(每小题3分,共27分) 1.用吸管吸易拉罐内的饮料时,如图①,ο 1101 =∠,则=2∠ (易拉罐的上下底面互相平行) 2.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的=1∠ °时,电线杆与地面垂直。 3.如图③,按角的位置关系填空:A ∠与1∠是 ; A ∠与3∠是 ; 2∠与3∠是 。 D C B A E D C B A E D C B A 2 1 图① 1 图② 30? 图③ C B A 3 2 1

相交线和平行线 典型例题及强化训练(通用)

4.2 相交线和平行线典型例题 及强化训练 课标要求 ①了解对顶角,知道对项角相等。 ②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意 义。 ③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点 画一条直线的垂线。 ④知道两直线平行同位角相等,进一步探索平行线的性质 ⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已 知直线外一点画这条直线的平行线。 ⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 典型例题 1.判定与性质 例1 判断题: 1)不相交的两条直线叫做平行线。( ) 2)过一点有且只有一条直线与已知直线平行。( ) 3)两直线平行,同旁内角相等。( ) 4)两条直线被第三条直线所截,同位角相等。( ) 答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。 (2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。 (3)错,应为“两直线平行,同旁内角互补”。 (4)错,应为“两条平行线被第三条直线所截,同位角相等”。 例2 已知:如图,AB∥CD,求证:∠B+∠D=∠BED。 分析:可以考虑把∠BED变成两个角的和。 如图5,过E点引一条直线EF∥AB,则有∠B=∠Array 1,再设法证明∠D=∠2,需证 EF∥CD,这可通过已知AB∥CD和EF∥AB得 到。 证明:过点E作EF∥AB,则∠B=∠1(两直 线平行,内错角相等)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠D=∠2(两直线平行,内错角相等)。

相交线与平行线-提高练习题

①21 21 ② 12③ 1 2 ④ 《相交线与平行线》提高练习题 一、选择题: 1.下列所示的四个图形中,1∠和2∠是同位角... 的是( ) A. ②③ B. ①②③ C. ①②④ D. ①④ 2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. ο 180=∠+∠ACD D 3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐ο 30,第二次向右拐ο 30 B. 第一次向右拐ο 50,第二次向左拐ο 130 C. 第一次向右拐ο50,第二次向右拐ο130 D. 第一次向左拐ο50,第二次向左拐ο 130 4.两条平行直线被第三条直线所截,下列命题中正确.. 的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误.. 的个数是( ) (1)过一点有且只有一条直线与已知直线平行。 (2)过一点有且只有一条直线与已知直线垂直。 (3)在同一平面内,两条直线的位置关系只有相交、平行两种。 (4)不相交的两条直线叫做平行线。 (5)有公共顶点且有一条公共边的两个角互为邻补角。 E D C B A 432 1

A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确.. 的是( ) A. 图形的平移是指把图形沿水平方向移动。 B. 平移前后图形的形状和大小都没有发生改变。 C. “相等的角是对顶角”是一个真命题。 D. “直角都相等”是一个假命题。 7.如右图,CD AB //,且ο 25=∠A ,ο 45=∠C ,则E ∠的度数是( ) A. ο60 B. ο70 C. ο110 D. ο 80 8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD < 9.在一个平面内,任意四条直线相交,交点的个数最多有( ) A. 7个 B. 6个 C. 5个 D. 4个 10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 二、填空题 1.把命题“等角的余角相等”写成“如果……,那么……。”的形式为 。 2.用吸管吸易拉罐内的饮料时,如图①,ο 1101 =∠,则=2∠ (拉罐的上下底面互相平行) 3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的 D C B A E D C B A 2 1 图① 1 图② 30? 图③ C B A 3 2 1E D C B A

精华版相交线与平行线练习题含答案

《相交线与平行线》 1.如图,用一吸管吸吮易拉罐的饮料时,吸管与易拉罐上部夹角174∠=?,那么吸管与易拉罐下部夹角2∠=________度. 2 1 2.如图,已知AE BD ∥,1130∠=?,230∠=?,则C ∠=________. 2 1 D A B C E 3.将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与1∠互余的角是_______. 1 23 4 56 4.如图,AD EG BC ∥∥,AC EF ∥,则图中与1∠相等的角(不含1∠)有______个; 若150∠=?,则AHG ∠=________. 1F E C B A H G D

5.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52?,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( ). A .北偏西52? B .南偏东52? C .西偏北52? D .北偏西38? 6.如图,直线l m ∥,将含有45?角的三角板ABC 的直角顶点C 放在直线m 上,若125∠=?,则2∠的度数为( ). A .20? B .25? C .30? D .35? 2 1m l C B A 7.如图,已知AB CD ∥,那么A C AEC ∠+∠+∠=( ). D A B C E A .360? B .270? C .200? D .180? 8.如图,D 、G 是ABC △中AB 边上的任意两点,DE BC ∥,GH DC ∥,则图中相等的角共有( ). A .4对 B .5对 C .6对 D .7对 D G H A B C E 9.如图,已知FC AB DE ∥∥,::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.

《相交线与平行线》单元测试题

春初一下单元质量检测 数 学 试 卷 姓名: 学号: (内容:相交线与平行线 满分100分,90分钟完卷) 一、填空题:(每小题3分,共30分)把每小题的正确答案填在各题对应的横线上。 1、空间内两条直线的位置关系可能是 或 、 。 2、“两直线平行,同位角相等”的题设是 ,结论是 。 3、∠A 和∠B 是邻补角,且∠A 比∠B 大200,则∠A = 度,∠B = 度。 4、如图1,O 是直线AB 上的点,OD 是∠COB 的平分线,若∠AOC =400,则∠BOD = 0。 5、如图2,如果AB ∥CD ,那么∠B +∠F +∠E +∠D = 0。 6、如图3,图中ABCD-D C B A ''''是一个正方体,则图中与BC 所在的直线平行的直线有 条,与B A ''所在的直线成异面直线的直线有 条。 图1 O D C B A F E 图2D C B A A ' B ' C ' D ' 图3D C B A b a 1 2 C 图4B A 7、如图4,直线a ∥b ,且∠1=280,∠2=500,则∠ACB = 0。 8、如图5,若A 是直线DE 上一点,且BC ∥DE ,则∠2+∠4+∠5= 0。 9、在同一平面内,如果直线1l ∥2l ,2l ∥3l ,则1l 与3l 的位置关系是 。 10、如图6,∠ABC =1200,∠BCD =850,AB ∥ED ,则∠CDE 0。 二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内(每 小题3分,共30分) 11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是( ) A 、700 B 、600 C 、500 D 、400 12、已知:如图8,下列条件中,不能判断直线1l ∥2l 的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=1800 54321A B C D E 图5 A B C D E 图6 2 l 1 l 4 3 2 1图7 2 l 1 l 54 321图8 13、如图9,已知AB ∥CD ,HI ∥FG ,EF ⊥CD 于F ,∠1=400,那么∠EHI =( )

相关主题
文本预览
相关文档 最新文档