当前位置:文档之家› 基于回归分析的人口预测.doc

基于回归分析的人口预测.doc

基于回归分析的人口预测.doc
基于回归分析的人口预测.doc

统计系课程实验论文基于回归分析的人口数量预测

学号:2014962005

姓名:李洋

年级:2014级

专业:统计学

课程:回归分析

指导教师:姜喜春

完成日期:2016年6月19日

摘要 .................................................................................................................................... I 前言 .. (1)

第1章一元线性回归 (2)

1.1 指标的选择 (2)

1.2 样本确定 (2)

1.3 一元回归分析 (3)

1.3.1 绘制总人口与粮食产量的散点图 (3)

1.3.2 设定理论模型 (4)

1.3.3 回归诊断 (4)

第2章多元线性回归 (5)

2.1 数据中心化标准化 (5)

2.2 多元回归模型建立 (5)

2.3 逐步回归法 (6)

2.4 多重共线性 (7)

2.3.1 多重共线性检测 (8)

2.4 主成分分析 (9)

2.4.1 主成分分析模型建立 (9)

第3章非线性模型 (11)

3.1 曲线回归 (11)

3.1.1 曲线拟合 (11)

3.2 Logistic模型 (13)

结论 (15)

参考文献 (16)

回归分析法是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。同时依据事物发展变化的因果关系来预测事物未来的发展走势,它是研究变量间相互关系的一种定量预测方法,又称回归模型预测法或因果法,应用于经济预测、科技预测和企业人力资源的预测等。回归分析可以说是统计学中内容最丰富、应用最广泛的分支。这一点几乎不带夸张。包括最简单的t检验、方差分析也都可以归到线性回归的类别。而卡方检验也完全可以用logistic回归代替。

众多回归的名称张口即来的就有一大片,线性回归、logistic回归、cox回归、poission回归、probit回归等等。

关键词:线性回归;非线性回归;logistic回归

最早的形式回归的方法是最小二乘法,这是在1805年出版的勒让德,和高斯在1809年。勒让德和高斯都采用的方法确定的问题,从天文观测,有关Sun的机构(主要是彗星,但后来也新发现的小行星)的轨道。1821年,高斯发表最小二乘法理论的进一步发展,在包括高斯-马尔可夫定理的一个版本。

弗朗西斯·高尔顿在十九世纪的“回归”是杜撰来描述一种生物现象。这种现象是高度高大的祖先的后代往往倒退下来,对一个正常的平均水平(这种现象也被称为向均值回归)。对高尔顿,,回归只有这个生物意义,Udny圣诞节和皮尔逊但他的工作,后来扩展到更一般的统计范围内。在圣诞节和Pearson,工作的响应和解释变量的联合分布被假定为高斯。这个假设RA费舍尔在1922年和1925年,他的作品被削弱。费舍尔认为的响应变量的条件分布为高斯分布,但联合分布不一定要。

在这方面,费舍尔的假设是高斯1821年制定的。

在20世纪50年代和20世纪60年代,经济学家旧机电台计算器,计算回归。

1970年以前,有时长达24小时接收从一个回归的结果。

回归方法继续是一个活跃的研究领域。在最近的几十年中,新的方法已经制定了稳健回归,回归涉及的相关反应,如时间序列曲线和增长曲线,回归的预测或响应变量的曲线,图片,图表或其他复杂的数据对象,容纳不同的回归方法丢失的数据,非参数回归,贝叶斯方法进行回归,回归的预测变量的测量误差,预测变量的观测回归,回归和因果关系的推论与类型。

第1章一元线性回归

1.1 指标的选择

影响人口增长的主要因素经济因素,经济因素对人口自然增长的作用主要表现在它决定了人口的增殖条件和生存条件,通过改变人口的出生率和死亡率来影响人口的自然增率。一般情况下,当人口数量不能满足经济发展对劳动力的需求时,人口自身的再生产必将会刺激;当人口数量超越了经济发展所能提供的消费总数后,人口自身的再生产必将受到遏制。在现代生产力水平下,人口的自然增长率往往随着经济水平的提高而下降。经济因素对人口机械增长也有重要影响。通常情况下,经济发达或发展速度较快的地区,对人口具有一种吸引力和凝聚力,人口机械增长为正值;相反,经济落后或经济发展速度缓慢的地区,对人口会产生一种排斥力和离散力,人口机械增长一般为负值。与此同时粮食产量、出生率、死亡率,也是影响人口增长的因素。

符号说明:用1x、2x、3x、4x表示粮食产量、GDP、出生率、死亡率。y表示总人口。

1.2 样本确定

通过查阅中国政府网,得到了1980年到2014年各因素的数据。

表1-1 样本数据

1995 46661.8 61129.8 17.12 6.57 121121

1994 44510.1 48459.6 17.7 6.49 119850

1993 45648.8 35524.3 18.09 6.64 118517

1992 44265.8 27068.3 18.24 6.64 117171

1991 43529.3 21895.5 19.68 6.7 115823

1990 44624.3 18774.3 21.06 6.67 114333

1989 40754.9 17090.3 21.58 6.54 112704

1988 39408.1 15101.1 22.37 6.64 111026

1987 40297.7 12102.2 23.33 6.72 109300

1986 39151.2 10308.8 22.43 6.86 107507

1985 37910.8 9039.9 21.04 6.78 105851

1984 40730.5 7226.3 19.9 6.82 104357

1983 38727.5 5975.6 20.19 6.9 103008

1982 35450 5333 22.28 6.6 101654

1981 32502 4898.1 20.91 6.36 100072

1980 32055.5 4551.6 18.21 6.34 98705

1.3 一元回归分析

定义1.1回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

1.3.1 绘制总人口与粮食产量的散点图

相关分析与回归分析的异同

问:请详细说明相关分析与回归分析的相同与不同之处 相关分析与回归分析都是研究变量相互关系的分析方法,相关分析是回归分析的基础,而回归分析则是认识变量之间相关程度的具体形式。 下面分为三个部分详细描述两种分析方法的异同: 第一部分:相关分析 一、相关的含义与种类 (一)相关的含义 相关是指自然与社会现象等客观现象数量关系的一种表现。 相关关系是指现象之间确实存在的一定的联系,但数量关系表现为不严格相互依存关系。即对一个变量或几个变量定一定值时,另一变量值表现为在一定范围内随机波动,具有非确定性。如:产品销售收入与广告费用之间的关系。 (二)相关的种类 1. 根据自变量的多少划分,可分为单相关和复相关 2. 根据相关关系的方向划分,可分为正相关和负相关 3. 根据变量间相互关系的表现形式划分,线性相关和非线性相关 4.根据相关关系的程度划分,可分为不相关、完全相关和不完全相关 二、相关分析的意义与内容 (一)相关分析的意义 相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。其目的是揭示现象之间是否存在相关关系,确定相关关系的表现形式以及确定现象变量间相关关系的密切程度和方向。 (二)相关分析的内容 1. 明确客观事物之间是否存在相关关系 2. 确定相关关系的性质、方向与密切程度 三、直线相关的测定 (一)相关表与相关图 1. 相关表 在定性判断的基础上,把具有相关关系的两个量的具体数值按照一定顺序平行排列在一张表上,以观察它们之间的相互关系,这种表就称为相关表。 2. 相关图

把相关表上一一对应的具体数值在直角坐标系中用点标出来而形成的散点图则称为相关图。利用相关图和相关表,可以更直观、更形象地表现变量之间的相互关系。 (二)相关系数 1. 相关系数的含义与计算 相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。相关系数的理论公式为: y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差 (2)xy 2δ 协方差对相关系数r 的影响,决定:???<>数值的大小正、负)或r r r (00 简化式 ()()2222∑∑∑∑∑∑∑-?--= y y n x x n y x xy n r 变形:分子分母同时除以2 n 得 r =???????????? ??-???????????? ??-?-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x x y x xy -*-?-=y x y x xy δδ-?- n x x x ∑-=2)(δ=()[]n x x x x ∑+?-222=()222x n x x n x +??-∑∑ = () 22x x - 2. 相关系数的性质

简单回归分析计算例

【例9-3】-【例9-8】 简单回归分析计算举例 利用例9-1的表9-1中已给出我国历年城镇居民人均消费支出和人均可支配收入的数据, (1)估计我国城镇居民的边际消费倾向和基础消费水平。 (2)计算我国城镇居民消费函数的总体方差S2和回归估计标准差S。 (3)对我国城镇居民边际消费倾向进行置信度为95%的区间估计。 (4)计算样本回归方程的决定系数。 (5)以5%的显著水平检验可支配收入是否对消费支出有显著影响;对Ho :β2=0.7,H1:β2<0.7进行检验。 (6)假定已知某居民家庭的年人均可支配收入为8千元,要求利用例9-3中拟合的样本回归方程与有关数据,计算该居民家庭置信度为95%的年人均消费支出的预测区间。 解: (1)教材中的【例9-3】 Yt =β1+β2Xt +u t 将表9-1中合计栏的有关数据代入(9.19)和(9.20)式,可得: 2?β =2129.0091402.57614 97.228129.009 1039.68314) -(-???=0.6724 1 ?β=97.228÷14-0.6724×129.009÷14=0. 7489 样本回归方程为: t Y ?=0.7489+0.6724Xt 上式中:0.6724是边际消费倾向,表示人均可支配收入每增加1千元,人均消费支出会增加0.6724千元;0.7489是基本消费水平,即与收入无关最基本的人均消费为0.7489千元。 (2)教材中的【例9-4】 将例9-1中给出的有关数据和以上得到的回归系数估计值代入(9.23)式,得: ∑2 t e =771.9598-0.7489×97.228-0. 6724×1039.683=0.0808 将以上结果代入(9.21)式,可得: S2=0.0808/(14-2)=0.006732 进而有: S=0.006732=0.082047 (3)教材中的【例9-5】 将前面已求得的有关数据代入(9.34)式,可得: 2 ?βS =0.082047÷14/129.0091402.5762)(-=0.0056 查t分布表可知:显著水平为5%,自由度为12的t分布双侧临界值是2.1788,前 面已求得0.6724?2 =β,将其代入(9.32)式,可得: 0560.01788.20.67240560.01788.26724.02?+≤≤?-β 即:0.68460.66022≤≤β (4)教材中的【例9-6】 r2=1 - SST SSE = 1- 96.7252 0.0808 = 0.9992 上式中的SST是利用表9-1中给出的数据按下式计算的: SST=∑2t Y -(∑Yt )2/n =771.9598-(97.228)2÷14=96.7252

一元线性回归模型的置信区间与预测

§2.5 一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量^ β是随机变量 i y 的函数,即:i i y k ∑=1 ?β,所以它也是随机变量。在多次重复抽样中,每次 的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。 即回答1β以何种置信水平位于() a a +-1 1?,?ββ之中,以及如何求得a 。 在变量的显著性检验中已经知道 ) 1(~^ ^ ---= k n t s t i i i βββ (2.5.1) 这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值2 αt ,那么t 值处在()2,ααt t -的概率是α-1。表示为 α αα-=<<-1)(2 2 t t t P 即

α ββαβα-=<-< -1)(2 ^ 2 ^ t s t P i i i α ββββαβα-=?+<

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

简单回归分析计算例

【例9-3】-【例9-8】简单回归分析计算举例 利用例9-1的表9-1中已给出我国历年城镇居民人均消费支出和人均可支配收入的数据,(1)估计我国城镇居民的边际消费倾向和基础消费水平。 (2)计算我国城镇居民消费函数的总体方差S2和回归估计标准差S。 (3)对我国城镇居民边际消费倾向进行置信度为95%的区间估计。(4)计算样本回归方程的决定系数。 (5)以5%的显著水平检验可支配收入是否对消费支出有显著影响;对Ho:β2=0.7,H1:β2<0.7进行检验。 (6)假定已知某居民家庭的年人均可支配收入为8千元,要求利用例9-3中拟合的样本回归方程与有关数据,计算该居民家庭置信度为95%的年人均消费支出的预测区间。 解:  (1)教材中的【例9-3】 Yt=β1+β2Xt+u t  将表9-1中合计栏的有关数据代入(9.19)和(9.20)式,可 得: ==0.6724 =97.228÷14-0.6724×129.009÷14=0. 7489 样本回归方程为: =0.7489+0.6724Xt 上式中:0.6724是边际消费倾向,表示人均可支配收入每增加1千元,人均消费支出会增加0.6724千元;0.7489是基本消费水平,即与收入无关最基本的人均消费为0.7489千元。 (2)教材中的【例9-4】 将例9-1中给出的有关数据和以上得到的回归系数估计值代入 (9.23)式,得: =771.9598-0.7489×97.228-0. 6724×1039.683=0.0808  将以上结果代入(9.21)式,可得:  S2=0.0808/(14-2)=0.006732 进而有:S==0.082047 (3)教材中的【例9-5】 将前面已求得的有关数据代入(9.34)式,可得: =0.082047÷=0.0056 查t分布表可知:显著水平为5%,自由度为12的t分布双侧临

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项和残差项是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B .() i i i i 12 2i i n X Y -X Y ? n X -X β∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01i ???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)= B .2 i i Y Y 0∑ (-)= C . 2 i i ?Y Y 0∑ (-)= D .2i i ?Y Y 0∑ (-)= 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。 i u i e

多元线性回归分析预测法

多元线性回归分析预测法 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) 目录 [隐藏] ? 1 多元线性回归分析预测法概述 ? 2 多元线性回归的计算模型[1] ? 3 多元线性回归模型的检验[1] ? 4 多元线性回归分析预测法案例分析 o 4.1 案例一:公路客货运输量多元线性回归预测方法探讨[2] ? 5 相关条目 ? 6 参考文献 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:

其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加 一个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得 即

简单线性回归分析案例辨析及参考答案

第10章简单线性回归分析 案例辨析及参考答案 案例10-1年龄与身高预测研究。某地调查了4~18岁男孩与女孩身高,数据见教材表10-4,试描述男孩与女孩平均身高与年龄间的关系,并预测10.5岁、16.5岁、19岁与20岁男孩与女孩的身高。 教材表10-4 某地男孩与女孩平均身高与年龄的调查数据 采用SPSS对身高与年龄进行回归分析,结果如表教材10-5和教材表10-6所示。 教材表10-5 男孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 83.736 3 1.882 4 44.483 9 0.000 0 AGE 5.274 8 0.167 6 31.479 8 0.000 0 =990.98 =98.5% 教材表10-6 女孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 88.432 6 3.280 0 26.961 1 0.000 0 AGE 4.534 0 0.292 0 15.529 0 0.000 0 =241.15 =94.1% 经拟合简单线性回归模型,检验结果提示回归方程具有统计学意义。结果提示,拟合效果非常好,故可认为: (1)男孩与女孩的平均身高随年龄线性递增,年龄每增长1岁,男孩与女孩身高分别平均增加5.27 cm与4.53 cm,男孩生长速度快于女孩的生长速度。 (2)依照回归方程预测该地男孩10.5岁、16.5岁、19岁和20岁的平均身高依次为139.1 cm、170.8 cm、184.0 cm和189.2 cm;该地女孩10.5岁、16.5岁、19岁和20岁的平均身高依次为136.0 cm、163.2 cm、174.6 cm和179.1 cm。 针对以上分析结果,请考虑: (1)分析过程是否符合回归分析的基本规范? (2)回归模型能反映数据的变化规律吗? (3)拟合结果和依据回归方程而进行的预测有问题吗?

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小 E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。

第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项i u 和残差项i e 是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B . () i i i i 1 2 2i i n X Y -X Y ?n X -X β ∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12 x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线

第六章相关与回归分析方法

第六章 相关与回归分析方法 第一部分 习题 一、单项选择题 1.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关 ( )。 A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关 C.两者都是正相关 D.两者都是负相关 2.样本相关系数r 的取值范围( )。 A.-∞<r <+∞ B.-1≤r ≤1 C. -l <r <1 D. 0≤r ≤1 3.当所有观测值都落在回归直线 01y x ββ=+上,则x 与y 之间的相关系数( )。 A.r =0 B.r =1 C.r =-1 D.|r|=1 4.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( )。 A.前者无需确定,后者需要确定 B.前者需要确定,后者无需确定 C.两者均需确定 D.两者都无需确定 5.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( )。 A.完全相关 B.微弱相关 C.无线性相关 D.高度相关 6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。 A.增加70元 B.减少70元 C.增加80元 D.减少80元 7.下面的几个式子中,错误的是( )。 A. y= -40-1.6x r=0.89 B. y= -5-3.8x r =-0.94 C. y=36-2.4x r =-0.96 D. y= -36+3.8x r =0.98 8.下列关系中,属于正相关关系的有( )。 A.合理限度内,施肥量和平均单产量之间的关系 B.产品产量与单位产品成本之间的关系 C.商品的流通费用与销售利润之间的关系 D.流通费用率与商品销售量之间的关系 9.直线相关分析与直线回归分析的联系表现为( )。 A.相关分析是回归分析的基础 B.回归分析是相关分析的基础 C.相关分析是回归分析的深入 D.相关分析与回归分析互为条件 10.进行相关分析,要求相关的两个变量( )。 A.都是随机的 B.都不是随机的 C.一个是随机的,一个不是随机的 D.随机或不随机都可以 11.相关关系的主要特征是( )。 A.某一现象的标志与另外的标志之间存在着确定的依存关系 B.某一现象的标志与另外的标志之间存在着一定的关系,但它们不是确定的关系 C.某一现象的标志与另外的标志之间存在着严重的依存关系 D.某一现象的标志与另外的标志之间存在着函数关系 12.相关分析是研究( )。 A.变量之间的数量关系 B.变量之间的变动关系 C.变量之间相互关系的密切程度 D.变量之间的因果关系 13.现象之间相互依存关系的程度越低,则相关系数( )。 A.越接近于0 B.越接近于-1 C.越接近于1 D.越接近于0.5 14.在回归直线01y x ββ=+中,若10 β<,则x 与y 之间的相关系数( )。 A. r=0 B. r=1 C. 0<r <1 D. —l <r <0 15.当相关系数r=0时,表明( )。 A.现象之间完全无关 B.相关程度较小

回归研究分析方法总结全面

回归分析方法总结全面

————————————————————————————————作者:————————————————————————————————日期:

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。 3.计算估计标准误差。通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。 四、一元线性回归分析 1.一元线性回归分析的特点 1)两个变量不是对等关系,必须明确自变量和因变量。 2)如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y 为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。若绘出图

第二章 简单线性回归模型练习题

第二章简单线性回归模型练习题 一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空 ξ,目的在于使模型更1 在经济计量模型中引入反映()因素影响的随机扰动项 t 符合()活动。 2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的();(2)建立模型时其他被省略的经济因素的影响都归入了()中;(3)在模型估计时,()与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。 3 ()是因变量离差平方和,它度量因变量的总变动。就因变量总变动的变异来源看,它由两部分因素所组成。一个是自变量,另一个是除自变量以外的其他因素。()是拟合值的离散程度的度量。它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。 4 回归方程中的回归系数是自变量对因变量的()。某自变量回归系数β的意义,指

的是该自变量变化一个单位引起因变量平均变化( )个单位。 5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。 6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。 三、简答题 1 在线性回归方程中,“线性”二字如何理解 2 用最小二乘法求线性回归方程系数的意义是什么 3 一元线性回归方程的基本假设条件是什么 4 方差分析方法把数据总的平方和分解成为两部分的意义是什么 5 试叙述t 检验法与相关系数检验法之间的联系。 6 应用线性回归方程控制和预测的思想。 7 线性回归方程无效的原因是什么 8 回归分析中的随机误差项i ε有什么作用它与残差项t e 有何区别 9 判断如下模型,哪些是线性模型,哪些不是。以及它们经过怎样的变化能够变成线性模型 模型 描述性名称 121 .i i i a Y X ββε?? =++ ??? 倒数 12.ln i i i b Y X ββε=++ 半对数 12.ln i i i c Y X ββε=++ 反半对数 12. ln ln ln i i i c Y X ββε=++ 对数或双对数 121 . ln i i i c Y X ββε?? =-+ ??? 对数倒数 10 如下模型是线性回归模型吗并说出原因。 12.i i X i a Y e ββε++= 121.1i i i X b Y e ββε++= +

相关主题
文本预览
相关文档 最新文档