当前位置:文档之家› 核磁共振技术在医学领域的运用前景分析

核磁共振技术在医学领域的运用前景分析

核磁共振技术在医学领域的运用前景分析
核磁共振技术在医学领域的运用前景分析

核磁共振技术在医学领域的运用前景分析

发表时间:2018-05-29T17:24:00.410Z 来源:《健康世界》2018年6期作者:唐光荣

[导读] 本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在

唐光荣

文山州疾病预防控制中心云南文山 663099

本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在,并对这项技术在精神卫生领域的发展前景进行分析和预测。核磁共振波谱法是化学运用中重要的一种波谱学。目前,与核磁共振技术的研究已经获得了五次诺贝尔奖,可见核磁共振技术在科学研究工作中占有举足轻重的地位,从1993年制出第一台核磁共振谱仪以来,核磁共振技术获得了飞速的发展,运用领域得到广泛发展,在医学领域也通过这一技术进行对人体进行分析和诊断,帮助医生快速找到病灶,从而对症下药。

一、技术背景

二十世纪三十年代,伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。1946年,费利克斯·布洛赫和爱德华·珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。

人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术从最初的一维氢谱(1H NMR)发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年以后,发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上,1969年纽约州立大学南部医学中心的达马迪安通过测核磁共振的弛豫时间成功地将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用设备成功地绘制出了一个活体蛤蜊的内部结构图像。劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森病、多发性硬化症等脑部疾病,脊椎病变以及癌症的诊断。

二、技术原理

核磁共振波谱法是化学运用中最重要的一种谱学。它是通过研究处于强磁场中的原子核对射频辐射的吸收进而获得有关化合物分子结构信息的办法。原子核由质子和中子组成,不同的核有不同的自旋量子数I,凡I值非零的原子核即具有自旋角动量P,由于原子核是带正电粒子,故自旋可导致核电荷作循环运动,产生一定的磁场,同时产生磁矩μ,则存在以下公式:μ=γ*P式中,γ成为磁旋比,是原子核的重要属性,每种核都有其特定值,该值越大,则其磁性越强,检测的灵敏度越高,信号越易被观察,在天然同位素中H核的γ最大,故其被作为首选研究对象。

MRI是一台巨大的圆筒状机器,主要有三大基本构件组成,即磁体部分、磁共振波谱仪部分、数据处理和图像重建部分,主磁体用以提供强大的静磁场,而且要求较大的空间范围(能容纳病人),保持高度均匀的磁场强度;磁共振波谱仪主要包括射频发射部分和一套磁共振信号的接收系统;在数据处理和图像重建部分中,磁共振信号首先通过变换器变为数字量,并存入暂存器。图像处理机按所需方法处理原始数据,获得磁共振的不同参数图像,并存入图像存储器能在受检者的周围制造一个强烈磁场区的环境,借由无线电波的脉冲撞击身体细胞中的氢原子核,改变身体内氢原子的排列,当氢原子再次进入适当的位置排列时,会发出无线电讯号,此讯号借由电脑的接收并加以分析及转换处理,可将身体构造及器官中的氢原子活动,转换成2D影像,因MRI运用了生化、物理特性来区分组织,获得的影像会比电脑断层更加详细。

三、目前在医学领域的运用

人体内含有丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。

MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了创伤性探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此是相对安全环保的检查。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。由此指导更为精确的手术和放射治疗,尤其是早期肿瘤的诊断有很大的价值。医学领域中的第一台 MRI 设备是上世纪 80年代初研发出来后,到 2002 年,全世界使用的核磁共振成像仪共有两万多台,进行了约 6000万/人次的检查。同时,MRI 还可以替代部分血管造影检查,由于它不侵入人体,因而能减轻许多病人的痛苦,它图像反差好,密度层次分辨率高,对软组织尤其有用。由于MRI 装置是通过电子计算机来调节和控制三维的梯度场方向,不受机械方面的限制,这就完全自由地按医生需要随心所欲选择层面,获得任意层面的图像。由于它具有极大的灵巧性,能得到其它成像技术所不能接近或难以接近部位的图像,空间分辨率达1.0mm左右。

MRI的优点是可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像;不需注射造影剂;无电离辐射,对机体没有不良影响;缺点是带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格相对昂贵。

四、未来发展前景

人脑是如何思维的,一直是个谜,而且是科学家们关注的重要课题。而利用 MRI 的脑功能成像技术则有助于我们在活体和整体水平

核磁共振技术及应用-综述

核磁共振技术及应用-综述-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

核磁共振技术及应用 学号:2011201373 姓名:杨海源 摘要:综述核磁共振技术的基本原理与优势以及该技术作为一种检测分析手段在生物医药、食品、化工业中的应用进展。核磁共振(Nuclear Magnetic Resonance, NMR) 是以原子核自旋的共振跃迁为探测对象的谱学方法。其最基本原理是,原子核在磁场中受到磁化, 自旋角动量发生进动,当外加能量(射频场)与原子核震动频率相 同时,原子核吸收能量发生能级跃迁,产生共振吸收信号。此方法专属性强、准确快捷, 可与其它方法相互补充, 用于诸多环节且有很 好的应用前景。但在实际的应用中也还存在一些问题, 有待于进一步深入研究。 关键词:核磁共振技术,NMR,生物,食品,石油,分析,检测 Abstract The technology of nuclear magnetic resonance( NMR ) applying in biological medicine,food,chemical industry detection at home and abroad was summarized. The most basic principles of nuclei by magnetized in a magnetic field , the spin angular momentum precession , plus energy nuclei vibration frequency at the same time , the nuclei absorb energy level transition occurs , resonance absorption signal. According to current situation, it has some advantages in food detect ion such as fastness, accuracy, intactness. However, there are still some shortcomings, and we should further research to solve them in future. 1.前言

磁共振(MRI)检查注意事项

磁共振(MRI)检查注意事项 一、磁共振检查的禁忌症 1.带有心脏起搏器及人工瓣膜的病人; 2.带有神经刺激器(如膈肌刺激器)的病人; 3.术后体内置有动脉瘤止血夹的病人; 4.带有心脏人工瓣膜和人工耳蜗的病人; 5.疑有铁磁性植入者,如枪炮伤后存留及眼内铁磁性金属异物的病人; 6.体内有微量输液泵的病人,如胰岛素或化疗药物微量输液泵等; 7.手术后体内用金属钉缝合切口者及置有大块金属植入物如人工股骨头、人工关节、金属假肢、胸椎矫形钢板等; 8.患有幽闭恐惧症的病人; 9.体内有各种内支架者,如血管内支架、胆道、胃肠道支架、泌尿道等支架; 10.危重病人、昏迷躁动、有不自主运动或精神病不能保持静止不动者; 11.妊娠三个月以内的早孕患者; 二、填写MRI申请单的注意事项 1.详细标明检查部位。对称器官必须标清左右;胸、腹部检查必

须标明具体器官或检查目的;头颈部检查,如欲观察细小结构,如垂体、内耳等,必须明确标出; 2.认真填写病人信息及病史。详细的病人信息及病史对影像技术人员的扫描方案的确立有很大的帮助。门诊患者详细填写患者信息和病史,为日后随访提供了很大的方便; 3.对扫描范围和扫描序列有特殊要求,可以说明。如脊柱检查,可以根据查体情况说明要检查哪几个椎体。如果其它检查怀疑某处有病变,应详细说明,以使MRI操作员扫描时重点观察。对MRI较为熟悉的医生,可以根据自己的习惯要求扫哪个方位、哪个序列。MRA、MRCP、功能成像等特殊检查,因检查时间长,且可能另收费,临床医生如果需要,必须特殊标明。 三、关于增强检查。 一般情况下,是否进行增强检查应咨询MRI医生或技术人员,或在观察平扫图像后决定。有时MRI医生要求病人增强,病人来征求临床医生意见,临床医生应积极配合MRI医生的工作,说明增强检查的必要性。一般而言,肿瘤性病变直接平扫加增强。 四、对病人的检查前交代 1.说明此检查的意义和必要性,以及有可能出现阴性结果,以减少病人和MRI医生的不必要纠纷。 2.如患者手中有既往影像检查资料,应嘱咐病人进行MRI检查时

核磁共振技术及其应用分解

核磁共振技术及其在食品分析检测中 的应用 The Technology of Nuclear Magnetic Resonance and Its Application in food analysis and detection

摘要 核磁共振分析技术是利用物理原理, 通过对核磁共振谱线特征参数的测定来分析物质的分子结构与性质.它不破坏被测样品的内部结构, 是一种无损检测方法. 本文重点介绍了核磁共振技术的原理及其在食品中的水分、油脂、玻璃态转变、碳水化合物、蛋白质及品质鉴定等方面的研究进展。 关键词:核磁共振技术;应用;食品;分析;检测。

Abstract The technology of nuclear magnetic resonance analysis can be used to determine the structure and the nature of molecules and it is a nondestructive test. This article introduces briefly its principles and its application in food detection was summarized in the aspect of moisture, oil, glass transition, carbohydrate, protein and quality detection. Keywords: technology of the nuclear magnetic resonance; application; food;analysis;detection.

核磁共振技术及应用研究进展

科技信息 核磁共振(NuclearMagneticResonance,简称NMR)是交变磁场与物质相互作用的一种物理现象,最早于1946年被Bloch和Purcell等人用实验所证实[1]。核磁共振的发现具有十分重要的意义,不仅为量子力学的基本原理提供了直接的验证,而且为多个学科领域的研究提供了一种不可或缺的分析与测量手段。他们二人由于这项重大发现,共同分享了1952年的诺贝尔物理奖。 最初的核磁共振技术主要用于核物理方面,现今已经被化学,食品,医学,生物学,遗传学以及材料科学等领域广泛采用,已经成为在这些领域开展研究工作的有力工具。 在以往的半个世纪中,NMR技术经历了几次飞跃。1945年NMR信号的发现,1948年核磁弛豫理论的建立。1950年化学位移和耦合的发现以及1965年傅立叶变换谱学的诞生,迎来了NMR的真正的繁荣期;自从70年代以来,NMR发展异常迅猛,形成了液体高分辨,固体高分辨和NMR成像三雄鼎立的新局面。二维NMR的发展,使得液体NMR的应用迅速扩展到生物领域;交叉极化技术的发展,使50年代就发明出来的固体魔角旋转技术在材料科学中发挥了巨大的作用;NMR成像技术的发展,使NMR进入了与人类生命息息相关的医学领域。 目前,NMR技术已经成为研究高分子链结构的主要手段,对聚合物的构型,构象分析,立体异构的鉴定和序列分布,支化结构的长度和数量,共聚物和共缩聚物组成的定性,定量以及序列结构测定等均有独特的长处[2]。 核磁共振技术主要有两个学科分支:核磁共振波谱(Nu-clearMagneticResonanceSpectroscopy)和磁共振成像(MagneticResonanceImaging,简称MRI)。核磁共振波谱技术是基于化学位移理论发展起来的,主要用于测定物质的化学成分和分子结构[3]。核磁共振成像技术诞生于1973年,它是一种无损测量技术,可以用于获取多种物质的内部结构图像。由于核磁共振可获取的信息丰富,因此应用领域十分广泛,如分析化学、生命科学、材料检测、石油勘探和水资源探查等。 1核磁共振的基本原理 核磁共振是指原子核在外磁场作用下,其在能级之间共振跃迁的现象。原子核磁性的大小一般用磁矩μ表示,μ具有方向性,μ=νhI,h是普朗克常数,I为自旋量子数,简称自旋。旋磁比ν实际上是原子核磁性大小的度量,ν值大表示原子核的磁性强,反之亦然。在天然同位素中,以氢原子核(质子)的ν值最大(42.6MHz/T),因此检测灵敏度最高,这也是质子首先被选择为NMR研究对象的重要原因之一。 当把有磁矩的核(I≠0)置于某磁场中,该原子核在磁场的行为就好似陀螺的运动—— —拉莫尔进动,其频率由下式决定:ω=2πν。式中ω为角频率,ν为拉莫尔进动频率。当外加射频场的频率与原子核的拉莫尔频率相等时,处于低能态的核便吸收射频能,从低能态跃迁到高能态,此即核磁共振现象。没有自旋的原子核(I=0)没有磁矩,这类核观察不到NMR信号,如14C,16O,32S等,I=1/2的原子核是NMR中研究得最多的核,如:1H,13C,19F,15N等。 原子核的角动量通常称为核的自旋,是原子核的一个重要特性。由于原子核由质子和中子组成,质子和中子是具有自旋为1/2的粒子,它们在核内还有相对运动,因而具有相应的轨道角动量。所有核子的轨道角动量和自旋角动量的矢量和就是原子核的自旋。原子核自旋角动量PI,遵循量子力学的角动量规则,它的大小为:PI=[I(I+1)]1/2hI为整数或半整数I是核自旋量子数。原子核自旋在空间给定Z方向上的投影PIZ为:PIZ=mIh,mI=I,I-1,…,-I+1,-I其中mI叫磁量子数。实验发现,所有基态的原子核的自旋都满足下面的规律:偶A核的自旋为整数,其中,偶偶核(质子数和中子数都是偶数)的自旋都为零;奇A核的自旋都是半整数。核子是费米子,因此,核子数A为偶数的原子核是玻色子,遵循玻色—— —爱因斯坦统计;核子数A为奇数的原子核是费米子,遵守费米—— —狄拉克统计。原子核磁矩原子核是一个带电的系统,而且有自旋,所以应该具有磁矩。和原子磁矩相似,原子核磁矩μI和原子核角动量PI有关系式:μI=μNgI[I(I+1)]1/2μZ=mIμNgI其中,gI称为原子核的朗德因子,μN=eh/(2mp)=5.0508×10-27J/T,称作核磁子。质子质量mp比电子质量me大1836倍,所以核磁子比玻尔磁子小1836倍,可见原子核的磁相互作用比电子的磁相互作用弱得多。这个弱的相互作用正是原子光谱的超精细结构的来源。核磁共振由于原子核具有磁矩,当将被测样品放在外磁场B0中,则与磁场相互作用而获得附加的能量。W=-μI?B0=-mIμNgIB0,mI有2I+1取值,即能级分裂成2I+1个子能级,根据选择定则△mI=±1,两相邻子能级间可以发生跃迁,跃迁能量:△E=μN-gIB0若其能级差△E与垂直于磁场方向上的电磁波光子的能量相等,则处在不同能级上的磁性核发生受激跃迁,由于处在低能级上的核略多于处在高能级上的核,故其净结果是低能级的核吸收了电磁波的能量h"跃迁到高能级上,这就是核磁共振吸收。该频率v=μNgIB0/h称为共振频率[4]。 2核磁共振技术的实验装置 实现核磁共振可采取两种途径:一种是保持外磁场不变,而连续地改变入射电磁波频率;另一种是用一定频率的电磁波照射,而调节磁场的强弱。图1为核磁共振现象的装置示意图,采用调节入射电磁波频率的方法来达到核磁共振。样品装在小瓶中,并置于磁铁两极之间,瓶外绕有线圈,通有由射频振荡器输出的射频电流。于是,由线圈向样品发射电磁波。调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化,当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。 图1核磁共振实验装置示意图 核磁共振技术及应用研究进展 临沧师范高等专科学校数理系王东云 [摘要]核磁共振分析技术是利用物理原理,通过对核磁共振谱线特征参数的测定来分析物质的分子结构与性质。 它不破坏被测样品的内部结构,是一种无损检测方法。本文重点介绍了核磁共振技术的原理及其在化学、生命科学中的应用。 [关键词]核磁共振技术原理应用 基金项目:本文为临沧师范高等专科学校校级课题。 博士?专家论坛 353 ——

核磁共振及其应用

核磁共振技术及其应用 刘飞 一、定义 核磁共振技术是指原子核的磁矩在恒定磁场和高频磁场同时作用下,当满足一定条件时发生的共振吸收现象,是一种利用原子核在磁场中的能量变化来获得信息的技术。 核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂(半数以上的原子核具有自旋,旋转时产生一些小磁场。当加一外加磁场时,这些原子核的能级发生分裂,这一物理现象称为塞曼分裂),共振吸收某一定频率的射频辐射的物理过程。(百度百科) 二、原理 如同电子具有自旋角动量和自旋磁矩一样,原子核也有自旋角动量和自旋磁矩。核的自旋角动量I S ,即是原子核内所有核子(质子和中子)的自旋角动量和轨道角动量的矢量和,大小为 )1(S +=I I I ,(I 为核自旋量子数)。I S 在外磁场B 方向的投影为 I m S =z (假设磁场沿z 方向),I m 为核自旋磁量子数,I 一定时,I m 共有12+I 个不同的取值,即原来的能级分裂成了12+I 个能级。 自旋不为零的原子核具有磁矩μ,它与自旋角动量的关系为 I p gS m e 2=μ 其中p m 为质子质量,g 为核的朗德因子,取决于核的内部结构与特性。 核磁矩μ在外磁场B 方向的投影为

I N I p z p z m g gm m e gS m e μμ=== 22 式中N μ是一个常数,成为核磁子,有 12710057866.52e --??==T J m p N μ 磁矩与磁场的相互作用能为 B m g B B E I N μμμ-=-=?-=z 以氢核为例,氢核的自旋磁量子数21m ±=I ,它在外磁场中的能量如右 图。由B m g B B E I N μμμ-=-=?-=z ,得氢核 相邻两个能级的能量差为 B g E E E N μ=-=?12 ?当氢核在外磁场中时, 要从能级1E 跃迁至2E ,必须吸收频率0ν的电磁波, h B g E N μν=?=h 0 即,只有当入射电磁波的频率0νν=时,才能被氢核吸收。 三、应用 核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D )发展到如今的二维(2D)、三维(3D)甚至四维(4D )谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。 (一)固体核磁共振的应用 固体核磁共振常用于不溶性的高分子材料、膜蛋白、刚性金属及非金

MRI检查前准备

MRI检查前准备及注意事项 一、适应证与禁忌证 1.适应证:适用于人体大部分解剖部位和器官疾病的检查,应根据临床需要以及MRI在各解剖部位的应用特点选择。 2.禁忌证: (1)体内装有心脏起搏器,除外起搏器为新型MRI兼容性产品的情况; (2)体内植入电子耳蜗、磁性金属药物灌注泵、神经刺激器等电子装置; (3)妊娠3个月内; (4)眼眶内有磁性金属异物。 3.有下列情况者,需在做好风险评估、成像效果预估的前提下,权衡利弊后慎重考虑是否行MRI检查。 (1)体内有弱磁性置入物(如心脏金属瓣膜、血管金属支架、血管夹、螺旋圈、滤器、封堵物等),一般建议在相关术后6~8周再进行检查,且最好采用以下场强设备; (2)体内有金属弹片、金属人工关节、假肢、假体、固定钢板等时,视金属置入物距扫描区域(磁场中心)的距离,在确保人身安全的前提下慎重选择,且建议采用以下场强设备; (3)体内有骨关节固定钢钉、骨螺丝、固定假牙、避孕环等时,考虑产生的金属伪影是否影响检查目标; (4)可短时去除生命监护设备(磁性金属类、电子类)的危重患者;

(5)癫痫发作、神经刺激症、幽闭恐怖症患者; (6)高热患者; (7)妊娠3个月及以上; (8)体内有金属或电子装置植入物者,建议参照产品说明书上的MRI安全提示。 二、MRI对比剂使用注意事项 1.核对受检者基本信息及增强检查申请单要求,确认增强检查为必需检查。 2.评估对比剂使用禁忌证及风险,受检者签署对比剂使用风险及注意事项知情同意书。 3.按药品使用说明书正确使用对比剂。 4. 增强检查结束后,受检者需留观15~30min,无不良反应方可离开。病情许可时,受检者应多饮水以利对比剂排泄。 5.孕妇一般不宜使用对比剂,除非已决定终止妊娠或权衡病情依据需要而定。 6.尽量避免大量、重复使用钆对比剂,尤其对于肾功能不全患者,以减少发生迟发反应及肾源性系统纤维化的可能。 7.虽然钆对比剂不良反应发生率较低,但仍需慎重做好预防及处理措施。 三、检查前准备 1.核对申请单,确认受检者信息、检查部位、目的和方案。 2.确认有无MRI检查禁忌证。

核磁共振技术及其运用

淮海工学院课程设计报告书 题目:核磁共振技术及其运用 学院:海洋学院 专业:生物技术 班级:生技101 姓名:余阔海 学号: 521002129 2011年10月10日

核磁共振技术及其运用 一、概述: 早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀 塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),NMR和红外光谱,可见—紫外光谱相同之处是微观粒子吸收电磁波后在不同能级上跃迁。引起核磁共振的电磁波能量很低, 不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。.根据核磁共振图谱上吸收峰位置、强度和精细结构可以研究分子的结构。他们也因此分享了1952年的诺贝尔物理奖。所产生的波谱,叫核磁共振(波)谱。通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。 1953年出现了世界上第一台商品化的核磁共振波谱仪。1956年,曾在Block 实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。瑞士科学家恩斯特R.R.Ernst 教授因对二维谱的贡献而获得1991年的Nobel化学奖(对核磁共振光谱高分辩方法发展作出重大贡献)。。瑞士科学家库尔特·维特里希因“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。

核磁共振的应用

核磁共振光谱的应用 摘要:核磁共振( 简称NMR ) 是基于原子核磁性的一种波谱技术,它已被化学、食品、医学、生物学等学科领域广泛采用, 已成为在这些领域开展研究工作的有力工具。 关键词:核磁共振;食品工业;医药;生物科学; 核磁共振(简称NMR )是基于原子核磁性的一种波谱技术, 1945 年,FBloeh和EMPureell分别领导的两个小组几乎同时发现了核磁共振现象。他们二人由于这项重大发现, 共同分享了1952年诺贝尔物理学奖。最初,核磁共振技术主要用于核物理研究方面,现今,它已被化学、食品、医学、生物学、遗传学以及材料科学等学科领域广泛采用,已成为在这些领域开展研究工作的有力工具。在以往的半个世纪中, NMR技术经历了几次飞跃。1945年NMR信号的发现,1948年核磁弛豫理论的建立,1950年化学位移和藕合的发现以及1965年傅里叶变换谱学的诞生,迎来了NMR的真正的繁荣期。自从70年代以来,NMR发展异常迅猛,形成了液体高分辨、固体高分辨和NMR成象三雄鼎立的新局面。二维NMR的发展,使液体NMR的应用迅速扩展到了生物领域。NMR成象技术的发展,使NMR 进人了与人民生命息息相关的医学领域。目前, NMR 技术已成为研究高分子链结构的最主要手段,对于聚合物的构型、构象分析、立体异构体的鉴定和序列分布、支化结构的长度和数量、共聚物和共缩聚物组成的定性、定量以及序列结构测定等均有独特的长处。随着超导技术、计算机技术和脉冲傅立叶变换波谱仪的迅速发展的今天, 核磁共振已成为鉴定有机化合物结构和研究化学动力学等的极为重要的方法, 其功能及应用领域正在逐步扩大。 核磁共振的原理:原子核在外磁场中受到磁化,产生一定频率的震

磁共振检查适应症

磁共振检查的适应症 颅脑MR 检查 先天性颅脑发育异常。 1、 脑积水。 2、 脑萎缩。 3、 卒中及脑缺氧:脑梗塞和脑出血等4、 脑血管疾病。 5、 颅内肿瘤和囊肿。 6、 颅脑外伤。 7、 颅内感染和其他炎性病变。 8、 脑白质病。 9、 ? 4眼及眶区MR 检查 眼眶前病变。 1、 肌圆锥内、外病变。 2、 眼外肌病变。 3、 视神经及其鞘病变。 4、 眼球病变。 5、 ? 亠鼻部MR 检查 鼻咽部良性、恶性病变。 1、 2、喉部良性、恶性病变。 四:口腔、颌面部MRI 检查 五:胸部MR 检查

1、肺脏。 2、纵膈及肺门。 3、胸膜与胸壁。 4、乳腺。 5、心脏、大血管。 六:肝脏、胆系胰腺、脾脏MR检查 1、肝脏、胆系、胰腺、脾脏的原发性或转移性肿瘤,以及肝海绵状 血管瘤。 2、肝寄生虫病。 3、弥漫性肝病。 4、肝、胆、脾、胰腺先天性发育异常。 5、胆道梗阻; 6、肝脓肿。 7、肝局限性结节增生和肝炎性假瘤。 8、手术、放疗。化疗及其它治疗效果的随访和观察。 9、胰腺炎及其并发症。 七:盆腔MR检查 1、膀胱、输尿管、前列腺、精囊腺、子宫、卵巢及其附件的病变。 2、骨盆及盆腔脏脏的损伤。 八:肾脏MR检查 九:肾上腺MR检查

十:腹膜腔及腹膜后间隙MR检查 」:脊柱MR检查 1、椎管内肿瘤。 2、脊髓病变。 3、脊柱及脊髓外伤性病变。 4、脊柱及脊髓先天性病变。 5、椎间盘突出。 6、椎管狭窄。 十二:骨关节和肌肉MR检查 十三:胃肠道MR检查 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

核磁共振及其应用

核磁共振及其应用 发布范围:公开2010-02-03 16:26 核磁共振现象是由美国科学家柏塞尔 (E.M.Purcell)和瑞士科学家布洛赫(E.Blo ch)于1945年12月和1946年1月分别独立 发现的。他们共享了1952年诺贝尔物理学 奖。 核磁共振(nuclear magnetic resonan ce)是原子核的磁矩在恒定磁场和高频磁场同时作用,且满足一定条件时所发生的共振吸收现象,是一种利用原子核在磁场中的能量变化来获得关于核信息的技术。50多年来,由核磁共振转化为探索物质微观结构和性质的高新技术已取得了惊人的进展。目前,核磁共振已在物理学、化学、材料科学、生命科学等领域得到广泛应用。 如同电子具有自旋角动量和自旋磁矩一样,核也具有自旋角动量和自旋磁矩。核自旋 即是原子核内所有核子的自旋角动量与轨道角动量的矢量和,其大小 ,其中I为核自旋量子数。在外磁场方向(设磁场沿z方向)的投影为 ,称为核自旋磁量子数,I一定时,有(2I +1)个取值。 自旋不为零的原子核有磁矩,它与核自旋的关系为,式中为质子的质量,称为核的朗德因子,它取决于核的内部结构与特性,且是一个无量纲的量。于是,旋磁比。 核磁子在外磁场(沿z轴)方向的投影

, 其中 称作核磁子。通常将取最大值I时的 称为核的磁矩,记作 (1) 这磁矩在空间的可能取向如图2所示,它位于核磁矩在外磁场(沿z轴)中旋进的锥面上。磁矩与磁场的相互作用能为 (2) 由于同一I下有(2I +1)个值,因而原来得一个核能级附加上相互作用能,将会有(2 I +1)个能量值,称为为子能级。相邻两个子能级的能量差(因其值相差为1)为 (3) 例如,氢核的基态核能级,在恒定磁场中的分裂情况如图3所示。 已知核磁矩在外磁场的作用下旋进,可以求得其旋进角速度为,若再在垂直于 的方向加一个频率在射频范围的交变磁场B (如图4所示),当其频率与核磁矩旋进频

核磁共振成像技术分析

电磁波成像 一、核磁共振成像技术分析 1.基本概况 核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 2.检测设备及原理 核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;核磁共振谱仪是将共振信号放大处理并显示和记录下来。采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。 3.核磁共振成像优缺点 磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点优点: 1.对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

MRI核磁共振成像与CT成像的联系区别

MRI核磁共振成像与CT成像的联系区别 一、定义 MR(MagneticResnane lamge)中文译为核磁共振成像。它是一种生物磁自旋成像技术。工作原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在射频脉冲停止后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收录,经电子计算机处理获得图像,这就叫核磁共振成像。 CT(Computed Tomography)中文译为断层扫描。由于X线球管和探测器是环绕人体某一部位旋转,所以只能做人体横断面的扫描成像。工作原理:人体各种组织(包括正常和异常组织)对X 线的吸收不等。CT即利用这一特性,将人体某一选定层面分成许多立方体小块,这些立方体小块称为体素。X线通过人体测得每一体素的密度或灰度,即为CT图像上的基本单位,称为像素。它们排列成行列方阵,形成图像矩阵。分析CT图像, 一方面是观察解剖结构,另一方面是了解密度改变。后者可通过测定CT值而知,亦可与周围组织的密度对比观察。人体内肿瘤组织因部位、代谢、生长及伴随情况不同,其密度变化各异。CT对组织的密度分辨率较高,且为横断面扫描,提高了肿瘤诊断的准确率。 二、区别

1、成像面。CT成像为横断面,而MRI可做横断、矢状、冠状和任意切面的成像。 2、分辨率。CT比MRI的空间分辨率高,但只能辨别有密度差的组织,对软组织分辨力不高。MRI对软组织则有较好的分辨力,如肌肉、脂肪、软骨、筋膜等。 3、各自特点。MRI固然被认为分子水平上的成像有许多优点,但在氢质子缺乏或含量很少的组织如致密的骨骼、钙化、含气的肺部等,皆无法成像。由于MRI成像时间较长,昏迷、躁动病人不能获得清晰的图像,体内有金属异物的患者不能进入磁场,此为禁忌症。所以MRI与CT相互不能取代,二者相辅相成。 三、肺部影像检查举例 对于肺部的影像学检查,CT和MRI诊断价值基本相似,但各有特点。如MRI在明确肺部肿瘤与血管之间关系上要明显优于CT,但在发现肺部小病灶(<5mm)方面则不如CT敏感。此外对于诊断支气管扩张、肺结核、小量气胸等疾病,CT可作为常规检查。而对于肺栓塞患者,其MRI诊断价值高于CT.对于肺部检查到底是CT好还是MRI好,不能一概而论,应根据具体病情及所需要了解的情况进行选择。

核磁共振技术在医学领域的运用前景分析

核磁共振技术在医学领域的运用前景分析 发表时间:2018-05-29T17:24:00.410Z 来源:《健康世界》2018年6期作者:唐光荣 [导读] 本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在 唐光荣 文山州疾病预防控制中心云南文山 663099 本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在,并对这项技术在精神卫生领域的发展前景进行分析和预测。核磁共振波谱法是化学运用中重要的一种波谱学。目前,与核磁共振技术的研究已经获得了五次诺贝尔奖,可见核磁共振技术在科学研究工作中占有举足轻重的地位,从1993年制出第一台核磁共振谱仪以来,核磁共振技术获得了飞速的发展,运用领域得到广泛发展,在医学领域也通过这一技术进行对人体进行分析和诊断,帮助医生快速找到病灶,从而对症下药。 一、技术背景 二十世纪三十年代,伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。1946年,费利克斯·布洛赫和爱德华·珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。 人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术从最初的一维氢谱(1H NMR)发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年以后,发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上,1969年纽约州立大学南部医学中心的达马迪安通过测核磁共振的弛豫时间成功地将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用设备成功地绘制出了一个活体蛤蜊的内部结构图像。劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森病、多发性硬化症等脑部疾病,脊椎病变以及癌症的诊断。 二、技术原理 核磁共振波谱法是化学运用中最重要的一种谱学。它是通过研究处于强磁场中的原子核对射频辐射的吸收进而获得有关化合物分子结构信息的办法。原子核由质子和中子组成,不同的核有不同的自旋量子数I,凡I值非零的原子核即具有自旋角动量P,由于原子核是带正电粒子,故自旋可导致核电荷作循环运动,产生一定的磁场,同时产生磁矩μ,则存在以下公式:μ=γ*P式中,γ成为磁旋比,是原子核的重要属性,每种核都有其特定值,该值越大,则其磁性越强,检测的灵敏度越高,信号越易被观察,在天然同位素中H核的γ最大,故其被作为首选研究对象。 MRI是一台巨大的圆筒状机器,主要有三大基本构件组成,即磁体部分、磁共振波谱仪部分、数据处理和图像重建部分,主磁体用以提供强大的静磁场,而且要求较大的空间范围(能容纳病人),保持高度均匀的磁场强度;磁共振波谱仪主要包括射频发射部分和一套磁共振信号的接收系统;在数据处理和图像重建部分中,磁共振信号首先通过变换器变为数字量,并存入暂存器。图像处理机按所需方法处理原始数据,获得磁共振的不同参数图像,并存入图像存储器能在受检者的周围制造一个强烈磁场区的环境,借由无线电波的脉冲撞击身体细胞中的氢原子核,改变身体内氢原子的排列,当氢原子再次进入适当的位置排列时,会发出无线电讯号,此讯号借由电脑的接收并加以分析及转换处理,可将身体构造及器官中的氢原子活动,转换成2D影像,因MRI运用了生化、物理特性来区分组织,获得的影像会比电脑断层更加详细。 三、目前在医学领域的运用 人体内含有丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了创伤性探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此是相对安全环保的检查。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。由此指导更为精确的手术和放射治疗,尤其是早期肿瘤的诊断有很大的价值。医学领域中的第一台 MRI 设备是上世纪 80年代初研发出来后,到 2002 年,全世界使用的核磁共振成像仪共有两万多台,进行了约 6000万/人次的检查。同时,MRI 还可以替代部分血管造影检查,由于它不侵入人体,因而能减轻许多病人的痛苦,它图像反差好,密度层次分辨率高,对软组织尤其有用。由于MRI 装置是通过电子计算机来调节和控制三维的梯度场方向,不受机械方面的限制,这就完全自由地按医生需要随心所欲选择层面,获得任意层面的图像。由于它具有极大的灵巧性,能得到其它成像技术所不能接近或难以接近部位的图像,空间分辨率达1.0mm左右。 MRI的优点是可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像;不需注射造影剂;无电离辐射,对机体没有不良影响;缺点是带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格相对昂贵。 四、未来发展前景 人脑是如何思维的,一直是个谜,而且是科学家们关注的重要课题。而利用 MRI 的脑功能成像技术则有助于我们在活体和整体水平

核磁共振的原理及其应用发展

核磁共振的原理及其应用发展 摘要:核磁共振是能够深入到物质内部而不破坏被测量对象的一种分析物质构造的现代技术,它通过利用原子核在磁场中的能量变化来获得关于原子核的信息,具有迅速、准确、分辨率高等优点,因而在科研和生产中获得了广泛的应用。本文主要介绍了核磁共振技术的基本原理,以及核磁共振在化学化工、生物化学、医药等方面的应用,并指出核磁共振波谱技术将成为21世纪一个异常广阔的谱学研究领域. 关键词:核磁共振;NMR谱仪 The Application of Nuclear Magnetic Resonance Technology Abstract:Nuclear magnetic resonance are deep into the material can damage the internal rather than a measured analysis of the target material structure of modern technology,it is through the use of nuclear energy in the magnetic field changes the information on the atomic nucleus,with the rapid,accurate,,high resolution,which in scientific research and the production of a wide range of applications received.This paper describes the basic principles of nuclear magnetic resonance technology,and the application of nuclear magnetic resonance in chemical engineering,biochemistry, medicine and other aspects,and that the nuclear magnetic resonance spectroscopy technology will become a broad spectrum of unusual research field in the 21st century. Key:Nuclear magnetic resonance;NMR spectrometer 引言 核磁共振( Nuclear Magnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。核磁共振是根据有磁的原子核,在磁场的作用下会引起能级分裂,若有相应的射频磁场作用时,在核能级之间将引起共振跃迁,从而得到化学结构信息的一门新技术。最早于1946年由哈佛大学的伯塞尔(E. M. Purcell)和斯坦福大学的布洛赫(F. Bloch)等人用实验所证实[1]。两人由此共同分享了1952年诺贝尔物理学奖[2]。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[3],在物理、化学、生物、医药、食品等领域得到广泛应用,在化学中更是常规分析不可少的手段。从70年代开始,在磁共振频谱学和计算机断层技术等基础上,又发展起一项崭新的医学

磁共振检查能吃饭吗

全国体检预约平台 全国体检预约平台 磁共振检查能吃饭吗? 现代人热衷于磁共振检查,为了检查结果的准确性,医生总会叮嘱检查者各种注意事项。那么,磁共振检查能吃饭吗?这是不少人关心的话题。 做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。以下就是核磁共振成像检查注意事项: 1.核磁共振检查由于检查时间相对较长,每日检查人数有限,为核磁共振成像。避免您长时间等待,需要医生开单预约,按预约时间前去检查。 2.检查前请取下一切含金属的物品,如金属手表、眼镜、项链、义齿、义眼、钮扣、皮带、助听器等;否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示,并可能造成个人财物不必要的损失及磁共振机的损伤。 3.如果您装有心脏超搏器、人工心脏金属瓣膜、血管金属夹、眼球内金属异物、体内有铁质异物、胰岛素泵、神经刺激器,以及妊娠三个月以内,不能做此检查,以免发生意外。 4. 昏迷、危重及不能配合的患者不能进行核磁共振检查。 5.做盆腔部位检查时,需要膀胱充盈,请检查前不要解小便。 6.做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。 7.头颅及神经系统检查时,不需要特殊准备。 8.核磁共振检查对饮食、药物没有特别要求。 9.完成一次磁共振检查需要半小时左右,检查过程中,您会听到机器发出的嗡嗡声,此时请尽量静卧,平衡呼吸,身体勿做任何移动,以免影响图像质量。 10.磁共振扫描过程中请身体(皮肤)不要直接触磁体内壁及各种导线,防止皮肤灼伤。 大家在做磁共振前一定要有思想准备,不要急躁,害怕,要听从医生的指导,耐心配合。 本文来源:深圳入职体检https://www.doczj.com/doc/5e2884429.html,/0755/cl/t40

核磁共振分析技术

核磁共振 300兆赫(針對氫核)的磁振頻譜儀 核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,我們可以進行分子科學的研究,如分子結構,動態等。 核磁共振技术的历史 1930年代,伊西多·拉比(Isidor Rabi)发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。1946年,費利克斯·布洛赫(Felix Bloch)和愛德華·米爾斯·珀塞耳(Edward Mills Purcell)发现,將具有奇数个核子(包括质子和中子)的原子核置於磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。 人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。 另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上1969年,纽约州立大学南部医学中心的达马迪安通过测核磁共振的弛豫时间成功的将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯尔于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用他的设备

相关主题
文本预览
相关文档 最新文档