当前位置:文档之家› 第三讲-棱镜光学材料

第三讲-棱镜光学材料

基础光学工艺.3第十三章 转向屋脊棱镜

第十三章转向屋脊棱镜 已经设计了许多带90°屋脊 棱镜用于观察仪器。这类屋脊棱镜 使象上下颠倒和左右反转,同时可 以在45°到120°范围内以各种角 度偏转视线。最常用的转向屋脊棱 镜是45°(施密特)、60°(2号军 用夫兰克福德)、80°、90°(阿米 西)、115°、120°(1号夫兰克福 德)棱镜。五角棱镜是一种特殊情 况。显然,经棱镜后的视线可以根 据仪器的要求设计其偏转角。记住 任何一种带90°屋脊角的转向棱 镜均称为阿米西(90°)棱镜。这 种棱镜的制作方法与其他的屋脊棱 镜的制造方法相同,但是入射面与图13.1 典型的90°转向棱镜施密特(45°)、 出射面间的夹角却有差别(见图13.1) 2号夫兰克福德(60°)、阿米西(90°)、1号 夫兰克福德(145°)和(120°) 1.玻璃的均匀性 玻璃的均匀性、气泡、条纹等等的检验是重要的。第五章已详细地讨论了均匀性的检验方法,必须强调在三个方向检验玻璃毛坯。 由生产厂检验合格的玻璃,即使属于1-A级且符合JAN174-AI标准的规定也必须再作检验。我记得了“了解他使用的玻璃”,结果使一批直角棱镜报废。在干涉仪上检验时这些无法挽回的棱镜,因有细小的条纹,不能满足OPD(光程差)小于1/4λ的要求。 玻璃毛坯在布朗查德铣磨机或其他允许坯料翻转加工,如果仔细操作,可以达到极好的平行度。大多数棱镜都有两个互相平行的侧面,所以第五章介绍了玻璃成型毛坯三种特殊的检验方法。平行平板有面形质量为两个波长、平行度高于15″的两个粗抛光表面。与标准角度棱镜光胶的表面的面形质量应优于1个波长(由大的玻璃毛坯上切下的单个棱镜,其面形质量与大棱镜有比例关系)。一个较好的抛光侧面应作为检验棱镜反射角的90°侧面角的参考面。菲索干涉仪用于检验平行平板的平行度(见第十四章)。 2.切过程 经均匀性检验得到无条纹或无其它缺陷的毛坯或圆盘 后,道德切划两块方的平板玻璃用来保护两个抛光表面。用 低熔点沥青胶在抛光表面间粘上一张透镜纸(见附录3)。简 单地说,放在石棉板上的玻璃毛坯用可调电炉缓缓加热到 85℃,平板玻璃片大的玻璃毛坯一起加热,在毛坯的一个面 上轻轻地涂上一层沥青胶,然后放上一张透镜纸,再盖上一 片保护玻璃。翻转玻璃组件,再把第二片保护玻璃粘于玻璃 毛坯上。注意:操作时应戴上棉手套,因为厚的玻璃毛坯太 热不能用赤裸的手操作。还应避免水或潮湿毛巾接触高热玻璃,图13.2 从粗抛光的平行平板锯 否则因应力集中而使玻璃毛坯炸裂。切棱镜的一种排样方法玻璃组合件冷却到室温后,贴上大的防水胶带纸。用硬纸板或聚酯薄剪出留有余量的棱镜

(整理)光学材料讲稿

光学材料 一、引言 光充满着整个宇宙,各种星体都在发光:远红外光、红外光、可见光、紫外光,以及X射线等。我们生活在光的世界里,整天都在和光打交道,白天靠日光,黑夜靠灯光,夜间在野外可能还要靠星光定方向。要利用光,就要创造工具,就要有制造工具的材料—光学材料。 自然界中存在一些天然或合成的光学材料,如我国的夜明珠、发光壁;印度的蛇眼石、叙利亚的孔雀暖玉等。这些材料具有奇异的发光现象,能在无光的环境下放出各种色泽的晶莹光辉。由于这些光学材料稀有,因而被视为人间珍宝,其主要作用成了权力和财富的象征。在春秋战国时期,墨子就研究了光的传播规律,接着出现了最古老的光学材料—青铜反光镜。17世纪,瑞士人纪南成功地熔制出光学玻璃,主要用于天文望远镜。随后,欧洲出现了望远镜和三色棱镜,人工制造的光学玻璃成为主要光学材料。19世纪和20世纪初是世界光学工业形成的主要时代,以望远镜(包括天文望远镜和军用望远镜)、显微镜、光谱仪以及物理光学仪器(包括很多种医用光学仪器)四大类为主体,建立了光学工业。 如今,光学材料已经在国民经济和人民生活中发挥着重要作用。最简单的例子,一个人如果眼睛发生了病变,只能看清近处而看不清远处的物体(称近视),或者只能看清远处而看不清近处的物体(称远视),达就需要配戴眼镜来进行校正。戴上眼镜后,入射光线先经过眼镜片发散(或会聚)后再进入人眼水晶体,就能使景物上的光线正确地聚焦在视网膜上,于是,一副直径5厘米左右的光学眼镜片就能消除眼疾给人带来的苦恼。现在,工农业生产、科学研究和人类文化生活等需要使用显微镜、望远镜、经纬仪、照相机、摄像机等各种光学仪器,核心部分都是由光学材料制造的光学零件。所以,光学材料已经成为人们社会必不可少的功能材料之一。 光学材料是传输光线的材料,这些材料以折射、反射和透射的方式,改变光线的方向、强度和位相,使光线按预定要求传输,也可吸收或透过一定波长范围的光线而改变光线的光谱成分。光学材料主要包括光纤材料、发光材料、红外材料、激光材料和光色材料等。光纤材料已在信息材料中介绍,这里主要介绍余下的几种光学材料。 二、发光材料 2.1、发光现象 发光是物质将某种方式吸收的能量转化为光辐射的过程,是热辐射之外的另一种辐射现象。光子是固体中的电子在受激高能态返回较低能态时发射出来的。当发出光子的能量在1.8-3.1eV时,便是可见光。要使材料发光所需吸收的能量可从较高能量的电磁辐射(如紫外光)中得到,也可从高能电子或热能、机械能和化学能中得到。 发光材料是指吸收光照,然后转化为光的材料。发光材料的晶格要具有结构缺陷或杂质缺陷,材料才具有发光性能。结构缺陷是晶格间的空位等晶格缺陷,由其引起的发光称为自激活发光。所以制备发光材料采用合适的基质十分重要。如果在基质材料中有选择地掺入微量杂质在晶格中形成杂质缺陷,由其引起的发光叫激活发光,掺入的微量杂质一般都充当发光中心,称为激活剂。得到实际应用的发光材

光学棱镜应用实例

Optical Prism Application Examples The angle, position, and number of surfaces of a prism help define the type and function. To understand how the most popular prisms work and how each can best be used in light reflection and refraction applications, consider right angle prisms, roof prisms, and combination prisms. For the theory of how prisms work and a selection guide with over ten unique geometries, view Introduction to Prisms. RIGHT ANGLE PRISM Figure 1: 45° - 90° - 45° as a Right Angle Prism Showing Inversion (Left) and Reversion (Right) By far the mo st commonly used prism is the 45° - 90° - 45° prism, known popularly as the right angle prism. It can be used in many ways to achieve different results pertaining to image parity or deviation and is named so for the angles on its triangular faces. The most common application of the 45° - 90° - 45° prism is to treat it as a right angle prism, which has only a single reflection that deviates the incident ray by 90°. The produced image will then become left-handed, but depending upon the position of the prism, can be inverted or reverted (Figure 1).

光学棱镜介绍

Introduction to Optical Prisms Figure 1: Dispersion through a Prism Prisms are solid glass optics that are ground and polished into geometrical and optically significant shapes. The angle, position, and number of surfaces help define the type and function. One of the most recognizable uses of prisms, as demonstrated by Sir Isaac Newton, consists of dispersing a beam of white light into its component colors (Figure 1). This application is utilized by refractometer and spectrographic components. Since this initial discovery, prisms have been used in "bending" light within a system, "folding" the system into a smaller space, changing the orientation (also known as handedness or parity) of an image, as well as combining or splitting optical beams with partial reflecting surfaces. These uses are common in applications with telescopes, binoculars, surveying equipment, and a host of others. A notable characteristic of prisms is their ability to be modeled as a system of plane mirrors in order to simulate the reflection of light within the prism medium. Replacing mirror assemblies is perhaps the most useful application of prisms, since they both bend or fold light and change image parity. Often, multiple mirrors are needed to achieve results similar to a single prism. Therefore, the substitution of one prism in lieu of several mirrors reduces potential alignment errors, increasing accuracy and minimizing the size and complexity of a system.

工程光学第三章

1. 平面镜的像,平面镜的偏转,双平面镜二次反射像特征及入、出射光线的夹角 2. 平行平板的近轴光成像特征 3. 常用反射棱镜及其展开、结构常数 4. 屋脊棱镜与棱镜组合系统,坐标判断 5. 角锥棱镜 6. 折射棱镜及其最小偏角,光楔 7. 光的色散 8. 光学材料及其技术参数
引言
球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用, 球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用,还常应用平面系 能对任意位置的物体以要求的倍率成像 透镜无法满足的作用 统。
平面镜
平行平板
反射棱镜
折射棱镜
§ 3-1 平面镜
我们日常使用的镜子就是平面镜 返回本章要点
? 平面镜的像 ---- 镜像 如图:
1

实物成虚像
虚物成实像
成镜像

当 n'=-n 时 且

得:
表明物像位于异侧
成正像
物像关于镜面对称,成像完善,但右手坐标系变成左手坐标系,成镜像。
由图可见: 平面镜能改变光轴方向,将较长的光路压缩在较小空间内,但成镜像,会造成观察者的错觉。 因此在绝大多数观察用的光学仪器中是不允许的。
奇次反射成镜像 偶次反射成一致像
? 平面镜的偏转
返回本章要点
若入射光线不动, 平面镜偏转 α 角,则反射光线转 过 2α 角 ( 因为入射角与反射角同时变化 了 α 角 ) 该性质可用于测量物体的微小转角或位移
当测杆处于零位时,平面镜处于垂直于光轴的状态
,此时
点发出的光束 点。
经物镜后与光轴平行,再经平面镜反射原路返回,重被聚焦于
2

球镜.柱镜及三棱镜的光学特性

1.球面透镜有屈折光线和聚焦的能力。 2.球面透镜各子午线上屈折光线的能力相等。 3.顶焦度:是一种度量单位的名称,是用来表述透镜对光线屈折能力大小的,在数值上等于透镜焦距的倒数。即:F=1/f 其中f为焦距,F为顶焦度。顶焦度的单位是屈光度,符号为“D”。 4.球面透镜之镜面度;球面透镜有两个界面,每个界面对入射光线具有屈折能力,个界面对光线屈折的能力用顶焦度来表示就称之为面镜度。 5.眼用球面透镜的顶焦度;眼用球面透镜的顶焦度等于该球面的两面镜度之和,即F=F1+F2(F为球面透镜顶焦度,F1为球面透镜的前表面镜度,F2为球面透镜的后表面镜度) 6.球面透镜的视觉像移;将—置于眼前,通过镜面观察远处目标,并缓缓上下平行移动镜片时,所见目标也随之上下移动;当左右平行移动镜片时,目标也随之左右移动,这种目标的动向与镜平移方向一致,称为顺动。将+置于眼前,通过镜面观察远处目标,并缓缓上下平行移动镜片时,将会发现目标逆镜片方向移动,这称为逆动。 二.柱镜的光学特性。 1.什么是柱面透镜;沿圆柱玻璃体的轴向切下一部分,这部分就是一个柱面透镜。 2. 柱面透镜有焦线可觅,且焦线与轴向平行。 3. 柱面透镜各个子午线上的屈光力不等,且按规律周期变化着。沿轴方向对光的屈折力为零,屈折力为零的方向叫轴向,与轴向垂直的方向为主径向。柱镜的散光度就是指主径向。其他方向上的屈折力怎样变化?我们可以借助下列公式准确表达; Fθ=F× sin2θ Fθ为所求与轴向为θ夹角方向上的屈光力,θ为所求方向与轴向间的夹角,F为柱面透镜具有的屈光力,即顶焦度。例:已知F=×180,求方向的顶焦度各为多少? 解:F30=-4sin230=-4x1/4= F60=-4 sin260=-4x3/4= 即方向的顶焦度分别为 D 4.柱面透镜的视觉像移:将一块柱面镜片(如 + 置于眼前,通过镜面观察远处目标,并缓缓上下平移镜片时,所见目标也随之上下移动;若将镜片左右平移时,目标显不动状;当将镜片转动时,透过透镜,所见目标将回扭曲变形。如果目标是一个十字线,那么十字线在该镜片移动的过程中将一会“合拢”相向运动,继而又“分开”运动,这种合拢和分开的运动是呈周期性地变化的,被称之为“剪刀运动”。这种现象是由柱面透镜各个子午线上具有

光学增亮棱镜膜技术综述

应用于背光模块改善整个背光系统发光效率的增亮膜主要有四种类型:一般棱镜片,多功能棱镜片,微透镜膜片与反射型偏光增亮膜,每种光学膜也有着不同的市场特性。 一般棱镜片,棱镜片的主要功能为将灯源发出的光线予以导正以增加发光效率目前最主要的供货商为3M公司,其它供货商有Mitsubishi Rayon,LG电子,新和,大日本印刷,LGS,台湾嘉威,迎辉,友辉,Suntech,SKC Haas以及LG化学等。 多功能棱镜片多功能棱镜片是一种较高阶的产品,整合了棱镜片与扩散片的功能,较一般型棱镜片有更好的发光效率。主要的供货商有:新和、迎辉与LG电子。同时,韩国面板厂商较日本与台湾厂商更快地由一般型棱镜片转换为多功能棱镜片。 微透镜膜片微透镜膜片是将棱镜片与扩散片功能整合到一张膜里,有许多面板采用二张微透镜膜以取代一张棱镜片加二张上下扩的架构,目前主要应用的产品为32英寸、37英寸与40英寸液晶电视。面板主要的供货商为韩国公司如MNTech、SKC Haas、新和LG化学以及LG Micron。 反射型偏光增亮膜目前只有3M公司一家供货商。据实验结果显示它是目前所有种类光学膜中使发光效率提高的最好产品,发光效率能较其它产品高出至少30%,不过目前有些韩国厂商也开始推出类似功能的产品,如MNTech的NPRF,新和的CLC与Woongjin以及日本Zeonor的Zeno等。 LCD增亮膜及幅面薄膜传送工艺的研究] 我们简要介绍下背光模组的组成,背光模组由光源CLight Source)、导光板(Light Guide Plate )、扩散膜(Diffuser)、增光片(BEF, Prism Sheet)、反射板(Reflector)等组成。冷阴极管的线型光源从侧面进入导光板,经导光板的散射转化为均匀分布的面光源,然后经过扩散片的再次均光作用射入棱镜片,由十棱镜片的集光作用,符合某种角度的光线被射出,即控制了光线的出射角度,又增加了光线的亮度。不符合角度的光线经棱镜片折射返回扩散片,再次被利用。 一般而言,市场的期待方向为不断应用在技术上的优势,推出整合型的光学

棱镜度与光学中心偏差

棱镜度与光学中心偏差 根据上级质量技术监督部门的部署或者眼镜商店的委托,我们每年都会对验配眼镜进行各种形式的检验。通过历年的检验实践,笔者感觉到随着装配眼镜设备的不断发展更新,眼镜的配装质量也在逐步提高,尤其是验配眼镜产品作为国家生产许可证产品管理后,装配质量的提高更是明显。但笔者从实践中发现,我国现行的国家标准GB 13511-1999«配装眼镜»中允许的光学中心偏差存在着与前述的提高不适应之处。现提出个人拙见,以期抛砖引玉,共同提高。 所谓光学中心即镜片前表面与光轴的交点,光线由此点透过时,光线不产生偏折。瞳距,也就是眼睛视轴正视和平行时两瞳距中心的距离。光学中心与瞳距是配装眼镜质量中十分重要的两个问题。事实证明,当所佩戴眼镜的光学中心与戴镜者瞳孔重合时,视物最佳,戴镜也觉得轻松自然。可是,由于装配眼镜过程诸多环节的影响,例如,中心定位的偏差,设备的不精准,装配人员的认真程度等等,都将导致光学中心水平距离与瞳孔不完全相符合,即存在或多或少偏差。这些偏差会引起棱镜度产生,引起棱镜效应。何谓棱镜度,教科书解释为:表征镜片对光线偏折能力大小的单位,其数值上等于光线通过镜片后,在每米距离上由偏折面产生的位移的厘米数。不该有的棱镜度产生后,会出现视觉疲劳,引起佩戴者头晕、心悸、想呕吐,长期佩戴,尤其是儿童长期佩戴,会诱发斜视,甚至引起弱势。因此,国家标准对光学中心水平偏差,光学中心水平互差,以及光学中心垂直互差做出规定。下面以光学中心水平偏差引发棱镜度问题为例提出个人对标准修改的看法。 根据国家标准GB13511,棱镜度的计算公式验光处方定配的眼镜的光学中心水平偏差状况。 表二 顶焦度绝对值0.25~1.00 1.25~2.00 2.25~4.00 4.25~6.00 ≥6.25 抽样数量(副) 3 28 48 36 22 光学中心水平偏差mm 平均值0.67 0.61 0.70 0.84 0.74 最大值1.0 2.6 3.0 2.5 2.7 从以上表格数据可以看出,无论顶焦度绝对值大小,光学中心水平偏差的平均值均在1mm及以下,而最大值在3mm及以下。笔者也曾发现过为数不多的几例,其检测出的偏差值为6mm,但那种情况基本可以确认是装配工的误操作引起的。况且,经过验配眼镜生产许可证的准入审核后,现在眼镜店都配置了全

最新光学材料讲稿

光学材料讲稿

光学材料 一、引言 光充满着整个宇宙,各种星体都在发光:远红外光、红外光、可见光、紫外光,以及X射线等。我们生活在光的世界里,整天都在和光打交道,白天靠日光,黑夜靠灯光,夜间在野外可能还要靠星光定方向。要利用光,就要创造工具,就要有制造工具的材料—光学材料。 自然界中存在一些天然或合成的光学材料,如我国的夜明珠、发光壁;印度的蛇眼石、叙利亚的孔雀暖玉等。这些材料具有奇异的发光现象,能在无光的环境下放出各种色泽的晶莹光辉。由于这些光学材料稀有,因而被视为人间珍宝,其主要作用成了权力和财富的象征。在春秋战国时期,墨子就研究了光的传播规律,接着出现了最古老的光学材料—青铜反光镜。17世纪,瑞士人纪南成功地熔制出光学玻璃,主要用于天文望远镜。随后,欧洲出现了望远镜和三色棱镜,人工制造的光学玻璃成为主要光学材料。19世纪和20世纪初是世界光学工业形成的主要时代,以望远镜(包括天文望远镜和军用望远镜)、显微镜、光谱仪以及物理光学仪器(包括很多种医用光学仪器)四大类为主体,建立了光学工业。 如今,光学材料已经在国民经济和人民生活中发挥着重要作用。最简单的例子,一个人如果眼睛发生了病变,只能看清近处而看不清远处的物体(称近视),或者只能看清远处而看不清近处的物体(称远视),达就需要配戴眼镜来进行校正。戴上眼镜后,入射光线先经过眼镜片发散(或会聚)后再进入人眼水晶体,就能使景物上的光线正确地聚焦在视网膜上,于是,一副直径5厘米左右的光学眼镜片就能消除眼疾给人带来的苦恼。现在,工农业生产、科学研究和人类文化生活等需要使用显微镜、望远镜、经纬仪、照相机、摄像机等各种光学仪器,核心部分都是由光学材料制造的光学零件。所以,光学材料已经成为人们社会必不可少的功能材料之一。 光学材料是传输光线的材料,这些材料以折射、反射和透射的方式,改变光线的方向、强度和位相,使光线按预定要求传输,也可吸收或透过一定波长范围的光线而改变光线的光谱成分。光学材料主要包括光纤材料、发光材料、红外材料、激光材料和光色材料等。光纤材料已在信息材料中介绍,这里主要介绍余下的几种光学材料。 二、发光材料 2.1、发光现象 发光是物质将某种方式吸收的能量转化为光辐射的过程,是热辐射之外的另一种辐射现象。光子是固体中的电子在受激高能态返回较低能态时发射出来的。当发出光子的能量在1.8-3.1eV时,便是可见光。要使材料发光所需吸收的能量可从较高能量的电磁辐射(如紫外光)中得到,也可从高能电子或热能、机械能和化学能中得到。

工程光学习题参考答案第三章平面与平面系统

第三章 平面与平面系统 1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解: 镜子的高度为1/2人身高,和前后距离无关。 2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面 镜平行,问两平面镜的夹角为多少? 解: OA M M //32 3211M M N M ⊥∴1''1I I -= 又 2' '2I I -=∴α 同理:1''1I I -=α 321M M M ?中 ? =-+-+180)()(1''12''2I I I I α O

? =∴60α 答:α角等于60?。 3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解: θ'2f y = rad 001.0100022=?= θ α θx = mm a x 01.0001.010=?=?=∴θ 图3-4 4. 一光学系统由一透镜和平面镜组成,如图3-29所示。平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像' 'A ''B 至 平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-29 习题4图 解: 由于平面镜性质可得' ' B A 及其位置在平面镜前150mm 处 ' '' 'B A 为虚像,' ' B A 为实像 则2 1 1-=β 21'1-==L L β 450150600'=-=-L L 解得 300-=L 150' =L 又 '1L -L 1=' 1f mm f 150' =∴ 答:透镜焦距为100mm 。 5.如图3-30所示,焦距为'f =120mm 的透镜后有一厚度为d =60mm 的平行平板,其折射 率n =1.5。当平行平板绕O 点旋转时,像点在像平面内上下移动,试求移动量△'y 与旋转角φ的关系,并画出关系曲线。如果像点移动允许有0.02mm 的非线形度,试求φ允许的最大值。

光学设计第04章 光学材料

第四章 光学材料 光学材料包含光学玻璃、工程塑料、天然晶体、人工晶体,以及若干种金属,如锆、银、金、镍、锗、铍及其若干金属和非金属氧化物。 作为光学材料,必须满足一些基本要求,如要具有良好的机械性能和化学稳定性,可加工性,具有均匀的折射率分布等。 用作镜头的光学材料,最重要的性能是折射率和透过率,这两个物理量都随波长变化,是波长的函数。折射率随波长的变化称为色散。影响光学材料透过率的主要因素有界面的反射损失和材料的吸收损失。对反射用的光学材料而言,反射率是最重要的指标。 光学镀膜是在光学元件(透镜、棱镜、反射镜等)表面镀上单层或多层金属或非金属薄膜以改善光学性能,例如:增透膜,反射膜,半反半透膜,以及其它特殊用途的膜层。 §1.透射光学材料的特性 一. 光能的反射和吸收损失 根据菲涅尔公式,光由普通介质材料表面反射的系数为: ? ? ????+-++-=)(tan )(tan )(sin )(sin 21/2/ 2/2/2I I I I I I I I R 式中I 和/I 是入射角和折射角。 当光垂直入射时: 2 /2/ ) ()(n n n n R +-= 式中:n 和/n 透镜表面前后介质的折射率。 对于透镜来说,表面的反射是一种光能损失。对于由k 个表面组成的光学系统,不计材料的吸收损失时,其透过率为: k k t R T 11) 1(=-= 在光学系统中,胶合面两边介质的折射率差通常小于0.3,因此,反射损失通常小于%5.0,可以忽略不计。 光经过光学材料时,光能量难免不被吸收,光经过厚度为x mm 的光学材料,如果只计吸收,其透过率为 ax x e t K -==2 式中:a 为材料的吸收系数 如果把光学材料表面的反射损失和材料内部的吸收损失均考虑在内,则光学系统的透过率是其表面透过率和材料内部透过率的乘积: ax k x k e t t t K T T -?=?==12 11 上面只是适用于各反射面的反射率相同的情况。对于空气中的单透镜来说,两个反射面

相关主题
文本预览
相关文档 最新文档