当前位置:文档之家› 履带式行走底盘设计

履带式行走底盘设计

履带式行走底盘设计
履带式行走底盘设计

目录

摘要 (1)

关键词 (1)

1前言 (2)

1.1该研究的目的及意义 (2)

1.2履带式行走地盘设计的国内外发展状况 (2)

1.2.1国外的研究与发展 (2)

1.2.2国内的研究与发展 (3)

2设计任务书 (3)

2.1总体设计依据 (3)

2.1.1设计要求 (4)

2.1.2设计内容 (4)

2.2产品用途 (4)

2.3产品的主要技术指标与主要技术参数 (4)

2.4设计的关键问题及其解决方法 (4)

3设计方案的比较分析与选择 (5)

3.1行走底盘方案 (5)

3.1.1履带式底盘与轮式底盘的比较 (5)

3.1.2方案的确定及总体设计 (6)

3.2履带行走装置的设计 (6)

3.2.1履带行走装置的结构组成及其工作原理 (6)

3.2.2履带 (7)

3.2.3驱动轮 (7)

3.2.4导向轮、支重轮和托带轮 (8)

3.2.5张紧装置 (9)

4履带底盘相关性能的计算 (11)

4.1牵引性能计算 (11)

4.2转向最大驱动力矩的分析与计算 (13)

4.2.1履带转向时驱动力说明 (13)

4.2.2转向驱动力矩的计算 (13)

5履带底盘重要零部件的计算及校核 (17)

5.1轴的设计与校核 (17)

5.1.1轴的尺寸设计 (17)

5.1.2轴的校核 (17)

5.2驱动轮的校核 (19)

5.2.1齿面接触疲劳强度校核 (19)

5.2.2齿根弯曲疲劳强度校核 (19)

5.3轴承的寿命校核 (20)

5.4键的设计及其校核 (20)

5.5机架的校核 (20)

5.6螺栓的设计及校核 (21)

6总结 (22)

参考文献 (23)

致谢 (24)

履带式行走底盘设计

摘要:履带式底盘的结构特点和性能决定了它在农田机耕作业中具有明显的优势。根据农田作业对拖拉机的要求,进行履带式农用拖拉机底盘的设计。项目研究对提高农机设计水平和农业机械化技术水平具有重要意义。

该研究应用农业机械学、汽车拖拉机学、机械设计、机械原理等理论,对履带式行走底盘的驱动行走系统进行了理论分析与研究,完成了履带底盘主要工作参数的确定和力学的计算。利用Auto CAD、Pro/E等工程软件完成了底盘的整体设计,达到了技术任务书的要求。从而得到了整体机架与其相关配合的结构框架,对以后的进一步分析提供了一定的资料。

关键词:履带;底盘;行走装置;设计

Crawler Type Walking Chassis Design

Abstract: T he crawler chassis structure features and performance determines it having obvious advantages in farmland machine-cultivated homework. According to the requirements of farmland homework on tractor designs caterpillar agricultural tractor chassis . Research projects to improve the level of agricultural machinery design level and the agricultural mechanization technology is of great significance.

The research application agricultural mechanics,automobile tractor, mechanical design, mechanical principles such as theories ,the crawler walking chassis drive walking system has carried on the theoretical analysis and research, which completed the crawler chassis determination of main working parameters and mechanical calculation. Use of Auto CAD, Pro E engineering such as software to complete the overall design of the chassis, has reached the requirement of technical specification. Thus, get the whole frame related with the structure of the framework, which provides some information later for the further analysis .

Key words: Track; Chassis; Walking device; Design

1 前言

1.1 该研究的目的及意义

履带式拖拉机的结构特点和性能决定了它在农田机耕作业中具有明显优势。

首先,履带式拖拉机的接地比压相对较低,从51.8KW到118.4 KW的各型拖拉机的接地比压为30~50KPa,而同级别的轮式拖拉机接地比压要大的多。以96.2 KW拖拉机为例: 东方红1302 履带机接地比压(装推土铲)为47.7KPa;东方红1304 轮式机的接地比压约为104 KPa, 相当于履带拖拉机的二倍多。无论是整地耙地作业还是播种作业履带式拖拉机比轮式拖拉机都占有绝对优势。

其次,履带式底盘的拖拉机不会对翻耕过的土壤造成多次反复的碾压,而轮式底盘在整地和耙地作业时轮胎在翻耕过的土壤上反复碾压,造成对土壤的多次压实,不利于播种后种子的生长发育。因此,研究履带底盘的性能具有极其重要的意义。

最后,几乎所有近山区种植粮油作物的农户毫无例外的选择履带式拖拉机。由于山区的大部分耕地坡度较大,而轮式拖拉机在坡地作业时稳定性差、不安全、作业质量也差。农户普遍选择履带式拖拉机进行犁地、耕地、耙地作业。与轮式拖拉机相比,履带式拖拉机完成的作业量可达到总作业量的60%~70%。

因此,综合考虑,本设计围绕履带式行走底盘的相关资料对其进行相应的设计及创新。主要以参考农业机械为主,并且相应的履带为橡胶履带,结合现有的底盘进行设计。此款履带拖拉机适用于我国旱地,特别是平原地区,在坡度不大的山区也可使用。

1.2 履带式行走底盘设计的国内外发展状况

1.2.1 国外的研究与发展

底盘的作用是支承、安装发动机及其各部件总成,形成车辆的整体造型,并传递动力,使整车产生运动,保证正常行驶。

在国外,履带式行走底盘研发较早。早在1986年W.C.Evans和https://www.doczj.com/doc/5e16888055.html,e在硬地面和已耕地上,完成了1种橡胶履带与1种四轮驱动拖拉机牵引性能实验的研究。在相同的底盘结构情况下,橡胶履带牵引效率与动态牵引比要高,在已耕地和硬地面上其最大牵引效率是85%~90%,四轮驱动拖拉机是70%~85%。此后又有许多橡胶履带拖拉机与四轮驱动拖拉机性能试验的研究,如橡胶履带拖拉机与四轮驱动拖拉机在4 种地面(未耕、已耙过、已犁过燕麦茬地和玉米茬地)的牵引性能(动力牵引比、牵引系数与打滑率)的关系等。

在市场发展方面,国外生产的履带拖拉机在技术水平、生产能力等性能方面具备较强的竞争能力。履带拖拉机国际上的竞争对手是卡特匹勒公司的橡胶履带拖拉机系列产品。一拖公司的产品无论是技术水平、还是生产能力都不具备竞争能力,只有价格有吸引力,但从性能价格比分析,一拖产品还是处于劣势。因此,公司的新一代大功率橡胶履带拖拉机将尽快投放市场,借以巩固传统市场,发挥竞争优势。

1.2.2 国内的研究与发展

我国生产履带底盘的历史较短,与起重机的发展基本相同,与世界先进国家相比,国内履带底盘的技术含量低、系列化程度低,在制造和设计上还存在一定的差距。近年来,国内履带起重机的快速发展,给履带底盘的发展带来了机遇,系列得以不断的提高。

20多年来,国内部分院校、研究院所和企业对橡胶履带车辆做了一定的研究,如:中国农业机械化研究院及南京农业机械化研究所对水稻收割机橡胶履带的研究,青岛建筑工程学院对橡胶履带接地齿接地压力的试验研究,中国一拖集团有限公司对橡胶履带拖拉机的研究和杭州永固橡胶厂对橡胶履带的研究等。下面主要介绍在橡胶履带拖拉机方面的研究。1994 年中国一拖集团有限公司在牵引力等级为3 t 级的履带拖拉机上,对采用金属履带和橡胶履带进行了比较试验,试验在硬黄土地面上进行。与此同时,相关的底盘也有了一定的发展。此后,一拖公司还对采用橡胶履带的拖拉机、推土机进行了使用试验。主要是橡胶履带的耐磨性试验,橡胶履带的脱轨试验,橡胶履带的寿命试验,不同结构橡胶履带的可靠性试验,橡胶履带的伸长试验以及通常性的作业查定。

国内市场上的履带拖拉机及变形产品,目前仍然是一拖的产品为主导。这类产品的销售由于受国家宏观经济政策的影响,处于波动状态。无论是作为工程机械变型、农田作业牵引或驱动动力,还是作为农业机械行走底盘,其功能并非轮式拖拉机可以完全替代的。但受国家政策和大功率轮式拖拉机发展的影响,长远看会在市场竞争中处于被动局面。总之,与履带相对应的底盘作为相关机械的行走机构,其发展方向始终围绕着安全可靠性、操作舒适性、环保节能等方面发展,在这方面国内外一直在不断的努力改进中。

2 设计任务书

2.1 总体设计依据

履带式底盘是机器的重要部件,它对整个装置起着支撑作用。所以根据现有工业的履带机械(挖掘机)再结合农用的履带(拖拉机)对整个装置进行较完整的配合与加工等一系列的设计。

2.1.1 设计要求

在现有的机械资料的基础上,充分考虑到实际的要求,应满足结构的紧凑及其配合的合理。同时,要对应该计算的部分进行必要的计算,但是实际的情况有所不同,应该根据实际作为标准结合计算的数据进行综合考虑,争取找到比较好的方案和结构。

本设计采用现在相关工业机械上的一些底盘设计与实物作为参考,综合考虑底盘结构,使其可以在不同的地域都可较好的支撑机体使其可以正常的工作。本设计对驱动轮、支重轮、导向轮的特殊结构设计,使整个底盘结构较好的适应多山的环境。

2.1.2 设计内容

(1)产品的用途估计;

(2)主要技术参数、性能参数的确定;

(3)履带底盘结构分析及其确定;

(4)行走装置的设计;

(5)履带车辆相关性能的计算和确定;

(6)重要零部件的设计及校核。

2.2 产品的用途

本次设计的履带底盘是对相应小功率农用机械使用的。目前这个设计主要是考虑在半干旱及干旱条件下使用,比如用在烟草、油菜等作物的种植和收获机械平台上。一些地区,如山区,丘陵等难以行走的复杂地面有着较好的普及潜力。同时,它可以提高相关作业的效率,有效的提高农民的经济收入。

2.3 产品的主要技术指标与主要技术参数

这里参照小型农用拖拉机履带底盘设计的指标及参数,见表1。

2.4 设计的关键问题及其解决方法

设计的关键问题是在保证正常工作条件下,其结构尽可能的简单方便。同时,要注意结构的合理性与正确性。

本次设计采用六角螺母的定位方法,使其在结构上基本一致,同时结构也紧凑的连接,初步达到设计的目的。还有,对于履带转向的控制,主要是通过设置主动轮的运动,采用单边离合的方式,以某一边为中心进行转向。

表1 履带式行走底盘设计主要技术指标与技术参数Table 1 Crawler type walking chassis design main technical indicators and parameters 序号项目单位参数

1 整机重量 kg 600

2 行走速度m/s 0.5~1.5

3 驱动轮半径 mm 约108

4 发动机的功率 kw 8左右

5 履带高度 mm 360

6 底盘轴距 mm 860

7 底盘轨距 mm 450

8 履带板宽 mm 200

9 底盘高度 mm 400

3 设计方案的比较分析与选择

3.1 行走底盘方案

3.1.1 履带式底盘与轮式底盘的比较

底盘可以分为履带式与轮式,轮式底盘运用较广,但是它的牵引附着性能差,在坡地、粘重、潮湿地及沙土地的使用受到一定的限制。虽然大功率轮式拖拉机具有轮

距调整方便、轴距长、质量分配均匀、充气轮胎有减振性,行驶中地面仿形性好, 振动小、运输速度快,综合利用率高等优点,但是不适于低湿地作业。而且,引进国外的具有世界先进技术水平的大功率轮式拖拉机,价格和维修费用都较高。大功率轮式拖拉机机重一般在5500~8500kg, 接地面积比履带拖拉机小,因此接地压力较大,土壤易板结,不利于土壤的蓄水保墒和作物的生长,即使经过深度翻耙,依然会保持碎小的板结硬块, 土壤的显微结构遭到了破坏。履带式底盘牵引附着性能好,单位机宽牵引力大、接地比压低、越远性能强、稳定性好,结构紧凑,容易操纵,在坡地、粘重、潮湿地及沙土地使用时性能显著。两者比较采用履带式底盘更加适应多山的地貌特征。

履带底盘又分为金属履带底盘和橡胶履带底盘。金属履带拖拉机牵引力大,适合重负荷作业(如耕、耙等),接地比压小,对农田压实、破坏程度轻,特别适合在低、湿地作业, 而且除田间作业外, 还在农田基本建设和小型水利工程中用作推土机, 综合利用程度较高。但其主要缺点是在潮湿和砂性土壤上行走装置,如支重轮、导向轮、托带轮及履带板(俗称三轮一板)磨损较快, 维修费用高,作业速度较慢,随着公路网发展,金属履带拖拉机转移越发困难,使用不便。

橡胶履带拖拉机采用方向盘操纵的差速转向机构,可控性强,机动灵活,转弯更省力,履带接地面积大,并有减振效果,乘坐舒适,由于接地比压低,对地面破坏程度轻,尤其适于低湿地作业,并可大大提高作业速度,改善道路转移适应性。橡胶履带寿命长,维修保养费用和转移运输费用低。在开荒、改造中低产田、沙壤土质地区,显示出极强的优越性。其缺点是初置成本高。

3.1.2 方案的确定及总体设计

依据轮式与履带机械的特点,及其以上所叙述的比较分析,综合考虑后得出本设计采用橡胶履带进行底盘设计,并且采用传统模式的设计方法。

根据农业机械学、汽车拖拉机学、机械设计、机械原理等理论,对履带式行走底盘的驱动行走系统进行了理论分析与研究,完成了履带底盘主要工作参数的确定和力学的计算。(相关计算见后面第4部分)

3.2 履带行走装置的设计

3.2.1 履带行走装置的结构组成及其工作原理

履带行走装置有“四轮一带”(驱动轮、支重轮、导向轮、拖带轮及履带),张紧装置和缓冲弹簧,行走机构组成。如图1所示。

1-履带;2-驱动轮;3-托带轮;4-张紧装置;5-缓冲弹簧;6-导向轮;7-支重轮;8-行走机构;

1 - Track;

2 - Driving wheel;

3 -Towing wheel ;

4 -Tensioning device ;

5 - Buffer spring;

6 - Guide wheel;

7 - Roller;

8 -Walking mechanism;

图1 履带底盘结构图

Figure 1 Crawler chassis structure

履带行走机构广泛应用于工程机械、拖拉机等野外作业车辆。行走条件恶劣,要求该行走机构具有足够的强度和刚度,并具有良好的行进和转向能力。

履带与地面接触,驱动轮不与地面接触。当马达带动驱动轮转动时,驱动轮在减速器驱动转矩的作用下, 通过驱动轮上的轮齿和履带链之间的啮合, 连续不断地把履带从后方卷起。接地那部分履带给地面一个向后的作用力, 而地面相应地给履带一个向前的反作用力, 这个反作用是推动机器向前行驶的驱动力。当驱动力足以克服行走阻力时, 支重轮就在履带上表面向前滚动, 从而使机器向前行驶。整机履带行走机构的前后履带均可单独转向,从而使其转弯半径更小。

3.2.2 履带

履带工作条件恶劣,必须具备足够的强度和刚度,耐磨性能要求良好,质量较轻以减少金属的消耗量,并减轻履带运转时的动载荷,履带和地面要有良好的附着性能,保证能发出足够的牵引力,还要考虑减少行驶及转向的阻力。根据设计方案,本机初定整机质量为600kg,选择橡胶履带总条数为2条。

履带支承长度L ,轨距B 和履带板挂宽度b 应合理匹配,使接地比压,附着性能和转弯性能符合要求。令0L 表示为接地长度,单位m ,0h 表示履带的高度,单位m ,G 表示机器整机重量,单位为kg 。则有经验公式知:

m G L 832.060007.107.1330=?=≈ mm L 8300=取

mm h L L 107036067.083067.000≈?+=+≈

4.1~2.10≈B

L 取mm B 450≈ 22.0~18.00

≈L b 取mm b 200≈ 履带节距0t 和驱动轮齿数z 应该满足强度、刚度要求。在此情况下,尽量选择小的数值,以降低履带高度。 根据节距与整机重量的关系:,)5.17~15(40G t =

其中0t 的单位为mm,G 的单位为kg 。则mm G t 108)5.17~15(40≈=

表示履带全长令'L 则mm t zt L L 52.22724010867.02

10868302232~2122000'=+?+?+?=?+??? ??++≈ 根据计算的与实际的资料,选择履带宽为200mm,总长2300mm 。

3.2.3 驱动轮

在履带作业机械上,多数都是把驱动轮布置在后方,这样布置的优点是可以缩短履带驱动区段的长度,减少因驱动力造成履带销处的磨擦损失,延长了履带的使用寿命,且不易造成履带下部拱起,避免了转向时履带脱落的危险,有利于提高行走系统效率。驱动轮中心高度应有利于降低重心(或车身)高度和增加履带接地长度,改善附着性能,因此驱动轮高度应尽量小。本设计选择驱动轮后置,齿数为6=z ,如下图所示

图2 驱动轮图 Figure 2 Driving wheel figure

则驱动轮直径 mm z t D 2162

1108180sin 0==??? ??= 式中:0t --履带节距。

此处省略 NNNNNNNNNNNN 字。如需要完整说明书和设计图纸等.请联系 扣扣:九七一九二零八零零 另提供全套机械毕业设计下载!该论文已经通过答辩

3.2.4 导向轮、支重轮和托带轮

导向轮的前后位置根据驱动轮位置而定,通常布置在前面。导向轮用于引导履带正确绕转,可以防止跑偏和越轨,导向轮中心离地面高度应有利于降低重心。本设计选择导向轮前置,其直径比驱动轮直径略小,即。取180mm D ,9.0~8.0/K ==K D D

支重轮的个数和布置应有利于使履带接地压力分布均匀。农业用行走机构工作多在山区或丘陵地区,路面多为土路,履带装置需要较小的平均接地比压,支重轮的压力要分配均匀。因此,对于小型农用履带拖拉机应采用直径较小的多个支重轮。本设计选用8个支重轮,其直径mm d D d k 150,)1~8.0(==取。支重轮的排列应考虑机器

的平稳性,两支重轮之间的距离s 一般为1.50t ,取s=150mm,其目的是保证行走装置在任何时候都有支重轮作用在履带的铁齿上,从而减少或消除机器行走过程中的起伏落差,提高机器行走的平稳性,减少行驶阻力。

托带轮的作用是拖住履带,防止履带下垂过大,以减少履带在运动中的振跳现象,并防止履带侧向滑落。托带轮与支重轮相似,但其所承受的载荷较小,工作条件较支重轮要好,所以尺寸较小。本设计选用2个直径为100mm 的托带轮。

3.2.5 张紧装置

张紧装置的缓冲弹簧必须有一定的预压量,使履带中产生预张紧力。其作用是前进时不因稍受外力即松弛而影响履带销和驱动轮齿的啮合,倒退时能产生足够的牵引力,确保履带销和驱动轮齿的正常啮合。

张紧弹簧由于装置的反冲作用,在右方顶着导向轮使其在工作过程中,始终保持一定的张紧状态,从而使履带张紧导向轮导向。张紧装置示意图如下:

图3 张紧装置示意图

Figure 3 Tensioning system schematic diagram

(1)弹簧的选择。因张紧装置的作用,是通过弹簧对导向轮的推动从而达到张紧的作用。因此,选用压缩、拉伸弹簧即可。对于选材采用通用的材料(n M Si 260)即可。

运用公式求得隔振弹簧的刚度: 221K ωm Z =

∑ (1)

式中:z --隔振系统频率比;

m --振动质体总重量kg ;取kg m 50=;

ω--振动频率。 由s rad n 2093014.3200030=?==

πω 则代入公式 m N m 5522221024.2~1037.1209504

~311

K 2??=??==Z ∑ω 则通过计算知弹簧的刚度为m N 4105.4?。按工作的载荷进行计算时,许用应力应适当取低,取[]Pa 8100.3?=τ,弹簧的工作载荷约为N 400。

(2)弹簧的计算。运用公式求得螺旋弹簧曲度系数: C C C 615.04414K +--=

(2) 式中:C--旋绕比(当材料直径mm d 0.6~5.2=时,C 一般取9~4)

试取旋绕比C=6,则2525.1615.04414K =+--=C

C C 根据公式求得材料的直径: p 6.1d τKCF ?= (3)

式中: K ——曲度系数;(取2525.1=K )

C ——旋绕比;(取6=C )

F ——弹簧的工作载荷N ;(取N F 400=)

p τ——许用切应力Pa 。(取[]Pa 100.38?=τ)

计算得弹簧丝直径:

m 005.06.1d p =?=τKCF

根据公式: K

C G

D 48n = (4) 式中:G ——切变模量Pa ;(取Pa 108G 10?=)

D ——弹簧中径mm 。(取mm D 34=)

计算得弹簧有效圈数 2.7n =

根据标准取 7n =

选择冷卷压缩弹簧YII ,两端圈并紧并磨平,取5.2n 2=

则总圈数 5.9n n n 21=+=

根据公式: D 5.0~28.0n d P 1)(=++

=δλ

(5)

式中:d --弹簧材料直径mm 。

计算得节距 021.0~01176.0P =,

选择 mm m 12012.0P ==

间距 mm 7d P =-=δ

根据公式: d Pn H 20+=

计算得自由高度 m H 094.00=

根据标准选取 mm H 1060=

压缩弹簧高径比 26.20==D

H b 压缩弹簧工作高度 m H H n 3.940=-=λ

压缩弹簧压并高度 m d n 053.0005.06.10H 1b =?==

螺旋角 02.5)arctan(=≈D

P πα 弹簧材料的展开长度 m Dn L 11=≈π

经计算可知:b<5.3,满足稳定性的要求。

4 履带底盘相关性能的计算

4.1 牵引性能计算

履带机械整机参数初步确定以后,一般应进行下列计算,以估计该履带机械的基本性能是否满足预期要求,整机参数选择是否合理。这里主要是关于牵引性能的计算。

计算时所用的工况一般为:空载状态,在水平区段的茬地上(对旱地是适耕的茬地,对水田是中等泥脚深度的茬地),带牵引负荷(牵引线与地面平行)全油门等速行驶。以下为表示的示意图。(图4)

图4 履带受力示意图

Figure 4 Track force diagram

(1) 履带式机械的驱动力q P

履带机械q P =dq

c e r i M η∑ N (6) 式中: e M --发动机转矩 m N ·;

∑i --各档总传动比;

c η--各档总传动效率;

dq r --驱动轮动力半径 m ;

q η--履带驱动段半径效率,计算时一般取95.0=q η。

max s G =B L o 2p q ; max s G =TN P 5.1; TN P =T P )2.1~1.1(。

式中:max s G --最大使用重量;

o L --履带接地长度;

B --履带板宽度;

p q --max s G 般为N 5.0~35.0;

TN P --额定牵引力;

T P --牵引力。

根据(2)中的活动阻力f P ,经计算即可得q P

经计算后得结果q P =KN 23.13。

(2) 履带式机械的活动阻力f P

f P =f s G N (

7) 式中: s G --使用重量N ;

f --履带式一般取0.1。

经计算后得结果f P =KN 6.0

(3) 行驶速度v

理论速度 l v =0.377∑i r n dq

e h km /

实际速度 v =l v (1-δ) h km / (8) 式中:e n --发动机转速;

dq r --驱动轮动力半径;

∑i --驱动轮滑转率(履带式一般取0.07)。

经计算后得结果v =(2.5~5)h km /

(4) 履带式机械的牵引效率T η

T η=q f c ηηηηδ

(9)

式中: c η--各档的总传动效率;

f η--滚动效率;

δη--滑转效率;

q η--履带驱动带效率(一般取0.95)。

经计算后得结果65.0=T η

(5) 履带机械的附着力ψδP (要求:附着力应大于或等于履带行走机构的牵引力且大于等于各阻力之和。)

ψδP =ψδψG (10) 式中: δψ--一般取0.75;

ψG --取600千克。

经计算后得结果ψδP =2.25KN 。 (符合要求)

4.2 转向驱动力矩的分析与计算

4.2.1 履带转向时驱动力说明

履带行走装置在转向时, 需要切断一边履带的动力并对该履带进行制动, 使其静止不动, 靠另一边履带的推动来进行转向, 或者将两条履带同时一前一后运动, 实现原地转向, 这里就用到了单向离合器。但两种转向方式所需最大驱动力一样。因此以机器单条履带制动左转为例, 见图5。

图5 履带转左向示意图

Figure 5 Tracks turn left to the sketch

左边的履带处于制动状态, 在右边履带的推动下, 整台机器绕左边履带的中心C1 点旋转, 产生转向阻力矩Mr, 右边履带的行走阻力Fr/ 2 。一般情况, 履带接地长度L 和履带轨距B 的比值L/ B≤1.6。同时, L/ B 值也直接影响转向阻力的大小,在不影响机器行走的稳定性及接地比压的要求下, 应尽量取小值, 也就是尽量缩短履带的长度,可以降低行走机构所需驱动力。

4.2.2 转向驱动力矩的计算

转向阻力矩是履带绕其本身转动中心O1(或O2)作相对转动时,地面对履带产生的阻力矩,如图6所示,O1、O2 分别为两条履带的瞬时转向中心。为便于计算转向阻力矩

M的数值,作如下假设:

r

图6 履带转向受力图

Figure 6 Tracks to turn to (1)机体质量平均分配在两条履带上,且单位履带长度上的负荷为: L

G q 2= (11) 式中: G --车身总质量Kg ;

L --履带接地长度m 。 经过计算:N L G q 36283

.026002≈?==. 形成转向阻力矩μM 的反力都是横向力且是均匀分布的。履带拖拉机牵引负荷在转向时存在横向分力,在横向分力的影响下,车辆的转向轴线将由原来通过履带接地几何中心移至21O O ,移动距离为0x 。

根据上述假设,转向时地面对履带支承段的反作用力的分布为矩形分布。在履带支承面上任何一点到转动中心的距离为x ,则微小单元长度为x d ,分配在其上的车体

重力为x qd ,总转向阻力矩可按下式: ???

? ??+=??+-0020202x L x L x x qxd qxd M μμμ (12)

式中: -μ转向阻力系数。

(经查表计算: 45.015.085.0max

=+=B R μμ

式中: max μ--车辆作急转弯时转弯的转向阻力系数; B --履带轨距。)

将式(11)代入上式积分得并简化得: 4GL M μμ=

(13) 即:m N GL

M ·564

83.060045.04≈??==μμ (2)当转向半径,2

B R >如图7所示,两侧履带都向前运动,此时两侧履带受地面摩擦阻力朝同一方向(即行驶的反方向),外侧、内侧履带受力分别为: B M F F B M F F f q f q μ

μ

-

=+=1122 (14) F M

G G

F q2

F q1f1

F f2B

图7 此时转向示意图 Figure 7 At this point to sketch

履带底盘设计文献综述

文献综述 题目牙轮钻机的履带底盘设计学生姓名 *** 专业班级机械设计制造及其自动化 **级**班 学号541002010*** 院(系)机电工程学院 指导教师(职称) **(副教授) 完成时间 201*年 *月 ** 日

牙轮钻机的履带地盘设计 摘要:履带式底盘的结构特点和性能决定了它在工程机械作业中具有明显的优势。根据整体承重对牙轮钻机的要求,进行履带式牙轮钻机底盘的设计。项目研究对提高工程机械设计水平和履带行驶技术水平具有重要意义。该研究应用农业机械学、汽车拖拉机学、机械设计、机械原理等理论,对履带式行走底盘的驱动行走系统进行了理论分析与研究,完成了履带底盘主要工作参数的确定和力学的计算。利用Auto CAD、Pro/E等工程软件完成了底盘的整体设计,达到了技术任务书的要求。从而得到了整体机架与其相关配合的结构框架,对以后的进一步分析提供了一定的资料。 关键词:履带;底盘;行走装置;设计 1.该研究的目的及意义 履带式拖拉机的结构特点和性能决定了它在重型工程机械作业中具有明显优势。 首先,支承面积大,接地比压小。比如,履带推土机的接地比压为0.0002~0.0008N/㎡,而轮式推土机的接地比压一般为0.002 N/㎡。因此,履带推土机适合在松软或泥泞场地进行作业,下陷度小,滚动阻力也小,通过性能较好。 其次,履带支承面上有履齿,不易打滑,牵引附着性能好,有利于发挥交大牵引力。 最后,履带不怕扎、割等机械损伤。 因此,综合考虑,本设计围绕履带式行走底盘的相关资料对其进行相应的设计及创新。主要以参考工程机械为主,结合现有的底盘进行设计。此款履带拖拉机适用于我国大型露天矿山。

车架设计指南

奇瑞汽车有限公司底盘部设计指南 编制: 审核: 批准:

1、架的主要功能: 车架是整个汽车的基体,汽车上绝大多数部件和总成都是通过车架来固定其位置的。如:发动机、传动系统、悬架、转向、驾驶室、货箱和有关操纵机构。车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷。 2、车架的类型: 主要类型 目前,汽车车架的结构形式基本上有三种:边梁式车架、中梁式车架(或称脊骨式车架)和综合式车架。其中以边梁式车架应用最广。 边梁式车架由两根位于两边的纵梁和若干根横梁组成,用铆接法或焊接法将纵梁与横梁连接成坚固的刚性构架。通常用低合金钢板冲压而成,断面形状一般为槽形,也有的做成Z字形或箱形断面。其结构特点是便于安装驾驶室、车厢及一些特种装备和布置其它总成,有利于改装变型车和发展多品种汽车。被广泛采用在载货汽车和大多数的特种汽车上。近代轿车为了保证良好的整车性能,尽量降低中心和有利于前后悬架的布置,把结构需要放在第一位,兼顾车架加工工艺性,所以车架形状设计的比较复杂而实用。 中梁式车架只有一根位于中央贯穿前后的纵梁,因此亦称为脊骨式车架,中梁的断面可以做成管型或箱型。这种结构的车架有较大的扭转刚度。使车轮有较大的运动空间,便于布置等优点因此被采用在某些轿车和货车上。 综合式车架比较复杂,应用比较广,一般轿车上使用。 车架的几种结构 车架主要有以下结构形式: 1.箱横梁和发动机支撑梁 横梁总成支撑发动机、水箱、保证车身的扭转刚度 发动机支撑梁和水箱横梁均有钢板冲压焊接而成,发动机支撑梁为封闭断面。 发动机支撑梁与车身连接处通常装有橡胶缓冲块。

材料:支撑梁上下体材料常采用为SAPH440其它BH340 表面处理为电泳。 2.车架 副车架带控制臂总成承受前轴载荷、支撑车身、动力总成、转向机、前悬挂、制动器等 副车架、控制臂均为钢板冲压焊接而成为封闭断面。 控制臂与副车架连接处采用橡胶衬套,起到改善行驶性能和舒适性。 材料:副车架上下体材料为常采用SAPH370(370为抗拉强度)其它为SPHE、SPHC,表面处理为电泳 3、纵梁 发动机纵梁总成支撑动力总成 1、动机纵梁总成均由钢板冲压焊接而成,为封闭断面。

汽车底盘总体设计规范

汽车底盘总体设计规范 某公司产品研究院 二○一九年六月

1 总布置设计注意事项 1、1从技术先进性、生产合理性和使用要求出发。正确选择性能指标,重量及主要尺寸,提出整车设想(总体设计方案),为各部件设计提供整车参数和设计要求。 1、2对各部件进行合理布置及运动校核。 1、3对汽车性能进行精确计算及控制,保证主要性能指标的实现。 1、4正确处理好整车与部件、部件与部件的设计、使用和制造之间的矛盾,使产品符合好用、好修、好造和好看的原则。 2 总布置设计的一般步骤 2、1收集资料和整车设想:在明确所开发车型的主要使用用途,主要技术经济要求、生产方式、生产纲领以及此类车型的使用环境,道路条件的前提下,广泛收集国内外同类车型的技术情况以及该类车型配套的各大总成生产厂家的产品、性能、价格等情况,另外需了解相关的标准、法规等情况。通过对以上资料进行分析整理,确定整车的初步方案。 2、2编制设计任务书:总体方案经过讨论后,可以确定车型的主要参数,初步确定各总成的位置,编制出设计任务书。 2、3设计任务书批准后,通过总布置计算、校核、准确地计算出各总成尺寸和主要性能参数,下发联系单。 2、4协调各总成间的关系,绘制总布置图,避免各总成间的干涉情况。 2、5试制、试验、修改和定型:设计完成后,总体设计人员应参加试制、试验、记录并解决试制和试验中暴露的问题,同时还应测定车辆的整体质量、满载质量以及轴荷分配,并进行修改设计。 3 总布置设计应进行的主要计算 3、1轴荷分配。 3、2稳定性。 3、3最小转弯半径。 3、4动力性计算。 3、5燃料经济性计算。 3、6成本预算。 4 总布置设计中的几种校核图 4、1转向轮跳动图。 4、2转向垂臂和转向节臂运动图。

中顺轻型客车底盘总布置设计

摘要 本文对中顺轻型客车进行了底盘总体布置的设计,并对其进行了转向系的运动校核。 文中对中顺轻型客车底盘各主要部件进行总体的布置设计以及对相应的参数进行了选取和计算,在此基础上完成了总体布置设计,对汽车底盘布置形式进行了选择,这样就确定了轴数、驱动形式和发动机的安装位置。根据所确定的汽车底盘布置形式,考虑到乘车的舒性以及对商务车的基本性能的要求来进行了汽车主要尺寸参数和性能参数的选取和计算,在此基础上选取并确定了底盘各部件的动力总成、减振器及转向器等。最后参考了同类车型的底盘总布置方案来对中顺轻型客车进行底盘总布置,并绘制了底盘的总布置图。 本文在底盘的设计过程中,为了保证汽车驾驶的舒适性和安全性,对转向系的运动干涉问题进行了校核。在分析过程中采用了图解法,对转向系在向左、向右转向时的不同情况进行校核,并测试其合理性,最后的分析结果表明,所设计的转向机构匹配合理,切合实际。 关键词:轻型客车;底盘;总布置;运动校核;

Abstract This dissertation is the chassis overall layout design of the ZhongShun light bus , and then check the locomotion of the steering system of this bus. This discourse select and count the layout design and the relevant parameter of the chassis`s main parts of ZhongShun light bus , On the basic of this , we finally finished this layout design , selecting the form of the layout design , and then we need to ensure the number of shafts、the type of drive and the mounted position of engine . And then , with the ensure the form of the chassis overall layout , take into account the comfort of the bus and the basic capability need of the commercial vehicle , to select and count the parameter of the main size and the capability . With the basic select and ensure every the chassis`s parts , such as power assembly, Shock Absorber, steering and so on. At last consult the chassis layout project of homogeneous model of the car ,to make the layout of the ZhongShun light bus`s chassis , and protract the chart of the chassis overall layout. On the course of the design of the chassis , in order to make sure the comfort and the safety of the automobilism , we check the interference movement to the steering system . On the course that we use the graphical method, check the different case when the steering system turn left or right . The analysis reault indicate that all the design of the steering systerm are matching with reason and practicableness. Key words:light bus; chassis;layout;check the locomotion

乘用车线束布置设计规范

乘用车线束布置设计规范

线束总体设计 1.1.1本篇主要介绍有关汽车线束布置的内容,对新车型线束的布置起指导作用,它概括了新开发车型的线束的固定,走向,分布及其相关附件的选用;同时,也对相关的车型的线束进行了总结,可以用作后续开发车型的参考。 包括以下几个部分: 1、线束的总体布置; 2、前舱线束的布置; 3、发动机线束的布置; 4、仪表线束的布置; 5、室内地板线束布置; 6,四门线束布置; 7、空调线束布置; 8、安全气囊线束布置 9、顶棚线束布置 10、后保线束布置 适用于公司整车线束的开发,需要不断的补充和完善,所涉及的线束布置方法需要不断的更新,以满足不同车型的开发要求。 1.1.2 线束布置的总体设计 一、概述 线束是电器的神经系统,对整车电器电子功能的实现起着至关重要的作用。在线束布置的总体设计中要充分考虑各相关的边界条件,对车身、动力总成、仪表台、底盘、内饰件必须充分、系统的了解,充分考虑各相关件对线束布置可能产生的影响,并对相关件的设计提出相应合理的要求。同时,我们要充分考虑整车的温度分布和震动,避免线束通过高温区,避免线束剧烈震动。 二、整车电器件的布置分布 启动机、、(包括其上的所有传感器和执行器)动力总成前舱的电器件或者相关件有:在整车中,发电机、蓄电池、压缩机、冷却风扇、灯具、ABS 控制器、轮速传感器、雨刮洗涤系统、环境温度传感器、喇叭、防盗喇叭、风扇控制器、电器盒及其他开关和传感器等。同时,前舱中的温度较高,且运动件较多,在设计线束的时候要充分考虑这些情况。在仪表台的部位通常有:HV AC、音响系统、安全气囊、仪表电器盒、BCM、ECU、TCU、制动开关,电子油门踏板、离合器开关、点烟器、备用电源及各种开关件(如组合开关、报警开关等);地板部分主要的电器件有:电动座椅及加热,电子油泵、安全带开关、后轮速传感器、转角传感器等;顶棚的电器件有:顶灯、电动天窗等;门上的主要电器件有:扬声器、电动窗、门锁、及相关的开关件等;后行李箱部分的电器件主要有:后BCM、停车辅助装置、后尾灯、后雨刮、高位制动灯、行李箱灯等。对于不同的车型,由于配置的不同,以上的电器件或有增减,但是对于同类型的车而言,基本的分布位置不会有太大的区别。对电器件大概位置的了解是十分必要的,对线束的布置也是至关重要。 三、整车线束的基本分类 在整车的线束中,我们可以将线束分成这样的几个部分:前舱线束总成、发动机线束总成、变速箱线束总成、仪表线束总成、地板线束总成、门线束总成(四门不同)、顶棚线束总成、后行李箱线束总成、电瓶正负极线束总成、安全气囊线束总成。但是,线束的划分和整车的结构和装配

履带车辆设计计算说明

履带车辆设计计算说明Document number : PBGCG-0857-BTDO-0089-PTT1998

整车参数计算 根据《GB/T农业拖拉机试验规程第2部份:整机参数测量》标准要求进行计算: 一、基本参数 二. 质量参数的计算 1、整备质量Mo为1825kg ; 2、总质量M总 M 总=MO+M1+ M2 =1825+300-75=2200 kg 血载质疑:300kg M2驾驶员质量:75kg 3、使用质量:H 总二M0+ M2 =1825+75=1900 kg 4、质心位置

根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0二830mm 质心至前支承点的距离B 二610mm 质心至地面的距离h0二450mm 满载时:质心至后支承点的距离A0二605mm 质心至前支承点的距离B 二812mm 质心至地面的距离h0二546mm 5、稳左性计算 a 、保证拖拉机爬坡时不纵向翻倾的条件是: %> fi =(§为滑转率) 空载时:830/450= > 满载时:605/546二〉 满足条件。 b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是: /2/1 > =0. 7 a —轨距,a 二1200mm h —质心至地面距离mm 空载:加〉 故拖拉机在空、满载运行中均能满足稳左性要求。 三、发动机匹配 根据《GB/T 中小功率内燃机第1部份:通用技术条件》标准要求进行计算: XJ-782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标左功 率为57kW/h,转速为2600r/min. (1) 最髙设讣车速鼻弐km/h,所需功率: 尸z ?二丄(巴+几)kw n 满载: 1200 _、 2x546

履带式行走底盘设计

目录 摘要 (1) 关键词 (1) 1前言 (2) 1.1该研究的目的及意义 (2) 1.2履带式行走地盘设计的国内外发展状况 (2) 1.2.1国外的研究与发展 (2) 1.2.2国内的研究与发展 (3) 2设计任务书 (3) 2.1总体设计依据 (3) 2.1.1设计要求 (4) 2.1.2设计内容 (4) 2.2产品用途 (4) 2.3产品的主要技术指标与主要技术参数 (4) 2.4设计的关键问题及其解决方法 (4) 3设计方案的比较分析与选择 (5) 3.1行走底盘方案 (5) 3.1.1履带式底盘与轮式底盘的比较 (5) 3.1.2方案的确定及总体设计 (6) 3.2履带行走装置的设计 (6) 3.2.1履带行走装置的结构组成及其工作原理 (6) 3.2.2履带 (7) 3.2.3驱动轮 (7)

3.2.4导向轮、支重轮和托带轮 (8) 3.2.5张紧装置 (9) 4履带底盘相关性能的计算 (11) 4.1牵引性能计算 (11) 4.2转向最大驱动力矩的分析与计算 (13) 4.2.1履带转向时驱动力说明 (13) 4.2.2转向驱动力矩的计算 (13) 5履带底盘重要零部件的计算及校核 (17) 5.1轴的设计与校核 (17) 5.1.1轴的尺寸设计 (17) 5.1.2轴的校核 (17) 5.2驱动轮的校核 (19) 5.2.1齿面接触疲劳强度校核 (19) 5.2.2齿根弯曲疲劳强度校核 (19) 5.3轴承的寿命校核 (20) 5.4键的设计及其校核 (20) 5.5机架的校核 (20) 5.6螺栓的设计及校核 (21) 6总结 (22) 参考文献 (23) 致谢 (24) 履带式行走底盘设计 摘要:履带式底盘的结构特点和性能决定了它在农田机耕作业中具有明显的优势。根据农田作业对拖拉机的要求,进行履带式农用拖拉机底盘的设计。项目研究对提高农机设计水平和农业机械化技术水平具有重要意义。

履带车辆设计计算说明

履带车辆设计计算说明 Document number:PBGCG-0857-BTDO-0089-PTT1998

整车参数计算 根据《GB/T 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数 二、质量参数的计算 1、整备质量M0为1825kg ; 2、总质量M总 M总=M0+M1+ M2 =1825+300+75=2200 kg M1载质量:300kg M2驾驶员质量:75kg 3、使用质量:M总=M0+ M2 =1825+75=1900 kg 4、质心位置

根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm 质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm 满载时:质心至后支承点的距离A0=605mm 质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm 5、稳定性计算 a 、保证拖拉机爬坡时不纵向翻倾的条件是: 00 h A >δ= (δ为滑转率) 空载时:830/450=> 满载时:605/546=> 满足条件。 b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是: h a 2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm 空载:12002450 ?=> 满载:12002546 ?=> 故拖拉机在空、满载运行中均能满足稳定性要求。 三、发动机匹配 根据《GB/T 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算: XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.

履带底盘设计文献综述

文献综述 题目牙轮钻机的履带底盘设计 学生姓名*** 专业班级机械设计制造及其自动化 **级**班 学号541002010*** 院(系)机电工程学院 指导教师(职称)**(副教授) 完成时间 201*年 *月 **日

牙轮钻机的履带地盘设计 摘要:履带式底盘的结构特点和性能决定了它在工程机械作业中具有明显的优势。根据整体承重对牙轮钻机的要求,进行履带式牙轮钻机底盘的设计。项目研究对提高工程机械设计水平和履带行驶技术水平具有重要意义。该研究应用农业机械学、汽车拖拉机学、机械设计、机械原理等理论,对履带式行走底盘的驱动行走系统进行了理论分析与研究,完成了履带底盘主要工作参数的确定和力学的计算。利用Auto CAD、Pro/E等工程软件完成了底盘的整体设计,达到了技术任务书的要求。从而得到了整体机架与其相关配合的结构框架,对以后的进一步分析提供了一定的资料。 关键词:履带;底盘;行走装置;设计 1.该研究的目的及意义 履带式拖拉机的结构特点和性能决定了它在重型工程机械作业中具有明显优势。 首先,支承面积大,接地比压小。比如,履带推土机的接地比压为0.0002~0.0008N/㎡,而轮式推土机的接地比压一般为0.002 N/㎡。因此,履带推土机适合在松软或泥泞场地进行作业,下陷度小,滚动阻力也小,通过性能较好。 其次,履带支承面上有履齿,不易打滑,牵引附着性能好,有利于发挥交大牵引力。 最后,履带不怕扎、割等机械损伤。 因此,综合考虑,本设计围绕履带式行走底盘的相关资料对其进行相应的设计及创新。主要以参考工程机械为主,结合现有的底盘进行设计。此款履带拖拉机适用于我国大型露天矿山。

关于总布置设计硬点

关于总布置设计硬点 由于零部件设计要在整车总布置基本完成后才开始,在总布置设计阶段中往往没有零部件的详细资料,还不能解决零部件和总成内部的细节问题。所以在布置设计图上出现的是各总成的主要控制点、主要中心线,也包括重要的外廓线和由这些轮廓线构成的控制面以及运动极限位置等。这些控制点称为硬点(Hard point),包括整车及关键零部件的各种控制点、线、面以及控制特征等。 汽车整车设计硬点分类: 概括了描述整车、总成及关键零部件的尺寸、结构型式、空间位置等的关键参数,它主要包括以下内容: 整车外廓形状及尺寸:整车长度、整车宽度、整车高度、轴距、轮距等; 驾驶区控制尺寸:踏板点、踵点,仪表板、转向柱及方向盘控制位置等; 整车乘员空间内部尺寸:H点位置、头部空间、伸腿空间等; 主要总成的设计硬点:总成的最大包络空间、定位点、配合点等;

设计硬点构成了汽车总布置设计的骨架。汽车总布置设计的过程就是设计硬点不断明确、逐步确定的动态过程。 所谓硬点,是通过英文的"hardpoint"直译过来的,它是个布置的概念,在整车开发中(由于整车由成千上万个零部件组成,那么怎么样来协调这些部件间的安装配合呢?硬 点由此而生)为保证零部件之间的协调和装配关系,及造型风格要求所确定的控制点(或坐标),控制线,控制面及控制结构 的总称。所以会有底盘的硬点(这也是大家所熟知的),车身的硬点,内外饰的硬点,成员的硬点(例如H点)等等。 一般一个整车项目开发过程中,最先确定的就是这些硬点,这也是决定所开发的车型平台能否成功的关键因素之一,这些硬点必须要在满足PACKAGE要求的同时,也要满足性 能的要求(例如底盘的硬点要满足整车的操纵稳定性和平顺性的要求),硬点将是汽车零部件设计和选型, 内外饰附件 设计及车身钣金设计的最重要的设计原则,也是各项目组公共认可的尺度和设计原则.同时也是使项目组分而不乱,并行 设计的重要方法. 一般确定后设计硬点不轻易调整, 如需调 整设计硬点,需要和所有的设计人员协商,得到所有子项目组认可。 那么对于底盘而言,什么是硬点呢?底盘是整车的重 要的组成部分,实现车辆作为交通工具的三个基本功能:直

JDCC1000履带起重机底盘设计

JDCC1000型履带式起重机底盘的设计 摘要履带起重机是工程起重机行业的一个重要门类,是现代工程建设施工中不可缺少的大型设备之一。本文简要介绍了履带起重机的结构和特点,并针对200吨级履带起重机的底盘进行了设计。 (1) 车架、履带架、四轮一带的方案设计。根据整机的稳定性、载荷状态、运输尺寸、承载等各种需求,进行了车架、履带架、四轮一带的结构方案设计,运用Proe三维绘图软件绘制完成三维模型,完成相关部件的装配,检查了相关部件的干涉关系。 (2) 车架、履带架、履带板的有限元计算。利用功能强大的ANSYS有限元分析软件对车架、履带架的结构方案进行优化分析,优化了车架、履带架的箱型截面和各主板及加强板的尺寸,得到了车架、履带架的理想结构。并对履带板进行有限元分析,优化提升了履带板的结构。车架、履带架包括履带板都充分采用变截面变板厚的设计理念,以减轻底盘质量,充分发挥材料性能。 (3) 牵引力计算及马达选型。通过计算整机最大的行走阻力,确定需要的牵引力。经过对几种行走减速机方案的比较,确定了行走减速机的设计方案,完成了行走马达的选型设计。并对上车匹配的发动机、行走泵的参数进行了验算。 (4) 针对履带底盘的工作特点,动作需求,设计了履带底盘的液压、电气控制系统。关键词:履带起重机履带底盘有限元行走机构

THE CHASSIS DESIGN OF JDCC1000 CRAWLER CRANE Abstract Crawler crane is an important category of the construction crane industry,is one of the indispensable equipment in modern engineering construction. This paper briefly introduces the structure and characteristics of crawler crane, and for the 200 tons crawler crane chassis design is introduced in detail. ( 1) Design for the frame, the crawler frame and the four round area. According to the overall stability, loading, transport, carrying various demand size, the frame, the crawler frame, four round area structure plan design, using Proe 3D drawing software rendering 3D models, complete the relevant parts of the assembly, check out the relevant parts of the interference between. ( 2) Finite element calculation for the frame, the crawler frame and the crawler plate. Using the powerful finite element analysis software ANSYS, the frame of crawler frame structure optimization analysis, optimization of the frame, the crawler frame box section and the motherboard and the strengthening plate size, obtained the ideal structure of frame, the crawler frame. And the track plate finite element analysis, upgrading the track plate structure. Frame, includes a track plate track frame are fully adopts the variable cross-section variable thickness design concepts, in order to reduce chassis quality, making full use of the material property. ( 3) calculation for the traction force and the motor selection. By calculating the maximum walking resistance, identified the need for traction force. After several traveling reducer of plan comparison, determined the walking speed reducer design, completed the walking motor design. And the car matching the engine, the running pump parameter checking. ( 4) According to the working characteristics of tracked chassis, action needs, design a tracked chassis hydraulic, electrical control system. Key words Crawler crane Crawler chassis Finite element Walking mechanism

卡车三维参数化总布置设计系统

基于Pro/ENGINEER的卡车三维参数化总布置设计系统 摘要:介绍了在建立零部件图形库、底盘参数数据库、底盘设计标准库的基础上,通过Pro/ENGINEER软件进行二次开发建立的集成于Pro/ENGINEER环境下的卡车底盘参数化三维总布置设计系统。该系统的研制在一定程度上实现了卡车底盘的虚拟设计与虚拟开发。详细阐述了系统开发的基本原理和主要方法。 关键词:卡车总布置计算机辅助设计参数化 1 引言 产品设计通常可以分为创新设计和变型设计两类,在机械、汽车行业中,创新设计较少,大量的是变型设计,也就是在原有产品的基础上,按市场需求进行局部换型和调整、重组。变型设计的实现过程可以最大限度地利用企业已有的成熟产品资源,具有很强的灵活性和适应性,这也就要求企业实施平台化战略。 卡车是一种多品种、多系列的产品,新技术、新产品日益广泛的应用使得卡车的底盘的更新和换型周期不断缩短。卡车性能主要取决于底盘,卡车底盘设计制造水平的不断提高是卡车行业赖以发展的基础。同时,底盘作为平台战略的主要对象,它的快速设计与开发对企业产品平台化战略的实施也必将产生积极的作用。 车辆的总布置是整车开发的基础,其水平对整车产品质量和性能起决定性作用。现惯用的是二维平面方法,它要求总布置人员素质要高,必须对产品零部件相当熟悉且总布置工作必须做细,总布置过程当中要基本完成全部部件的布置,

部件设计人员不独立进行部件的布置。这种做法的优点是总布置人员站在整车的高度全局统筹考虑,一般不易发生由于部件之间缺乏沟通造成的干涉等矛盾;缺点是要求总布置人员具有相当丰富的专业知识和经验并且对各种繁杂的产品具有较深入的了解,对零部件掌握程度高,否则由于部件人员介入晚,一旦总布置出现问题极易影响开发进度和质量。 针对汽车总布置的性质和特点,结合企业实际,以大型CAD/CAE/CAM三维软件Pro/ENGINEER为基础进行二次开发,研制了卡车底盘总布置设计系统,同时采用部件设计人员参与部件布置、总布置与部件布置相结合同步进行的开发思路,使该系统操作简单,设计过程直观、高效,适用于轻卡底盘变型设计与开发。 2 Pro/ENGINEER软件 Pro/ENGINEER是美国PTC公司(Parametric Technology Corporation,参数技术公司)开发的三维造型设计系统,它以单一数据、参数化、基于特征、全相关性以及工程数据再利用等改变了传统机械设计的观念,为工业产品设计提供完整的解决方案,成为当今世界机械CAD领域的新标准,广泛应用于造型设计、机械设计、模具设计、加工制造、机构分析、有限元分析及关系数据库管理等各个领域。Pro/ENGINEER复合式建模工具较之纯参数化的系统更灵活和自由,可以有效利用已有的产品模型数据并充分发挥其在新产品设计中的价值,特别是其自顶向下的设计思路,运用Layout和骨架来传递和交流设计意图,大大提高了设计效率。Pro/ENGINEER软件还提供了强大的装配功能,包括定义不同零部件之间的位置约束关系,生成爆炸视图,进行零部件之间的干涉检查,并计算装配体的距离、总重、重心等各种物理属性等。

汽车总布置设计步骤

汽车总布置设计的内容与步骤 1、汽车总布置设计的内容 主要内容包括总成选型和匹配、整车性能计算、运动学校核、人机工程设计和校核、三维装配、确定设计硬点和设计控制规则。 具体内容包括空间布置和性能相关项目布置。具体如下表 布置的内容布置的项目 空间布置(人机分析、法规校核)发动机、传动系的布置;悬架、轮胎的布置;座椅布置;踏板、变速杆等驾驶操作系统的布置;载货空间的布置;燃料箱、备胎的布置;车身及内、外 饰件的布置 性能相关项目布置 油耗燃料箱容量 制动性能质心位置、轮胎尺寸 操纵稳定性轴距、转向器的位置、方向盘行程 NVH性能传动轴夹角、发动机悬置、空滤器、消声器容量、 排气吊挂、后视镜、仪表板横梁 空气动力性能发动机罩前端高度、前风窗倾斜角、后风窗倾斜角、 扰流板、空气进出风口 机动性轮距、轴距、前后悬、转向齿条行程 发动机冷却前格栅型式、散热器尺寸、前端开口面积 2、汽车总布置设计的步骤 (1)定义整车结构及外形尺寸。进行整车总布置时,首先应初步定义汽车的型式(包括轴数、驱动型式、布置型式、车身型式等),然后选择动力及轮胎型号尺寸,接着对整车的外形尺寸进行定义(包括总长、总宽、总高、轮距、轴距、前悬、后悬、最小离地间隙等),另外还需确定汽车的质量参数 (2)确定假人百分位,定义H点位置。整车布置加人一般用95百分位美国男人和5百分位日本女人,躯干角一般前排为25°,后排为23°。 (3)确定眼椭圆、头部包络线。眼椭圆定义按SAE J 941进行,头部包络线做法按SAE J 1052的规定。头部包络线完成后,顶盖的最低高度可确定。 (4)进行前视野校核。按GB11562的规定,对效果图进行前视野校核。 (5)进行车身零件和总成布置。根据GB14167,结合效果图初选S值,确定安全带安装点初步范围;根据GB17354,确定前后保险杠的位置范围;根据选定的假人,布置合理的手臂到方向盘尺寸和脚到踏板的尺寸,从而确定方向盘中心位置及踏板位置,参考GB/T 17876;根据车轮跳动的包络线,确定合身轮罩等尺寸;进行车内外零部件的布置。 (6)确认发动机盖位置,进行动力总成布置。根据前视野校核结果,即可确定发动机盖上平面上限(应低于前视野下限线),结合此因素,可进行动力总成的初步布置。动力总成上平面到发动机盖下平面的距离一般应为40~50mm,如考虑到行人碰撞安全性,应加大到60mm 或将发动机盖材料改为塑料。动力系统布置时,应考虑轴荷分配、面积利用率、传动轴夹角、最小离地间隙等因素。 (7)进行底盘系统布置。应注意相对运动的零部件进行运动校核,确定它们的运动轨迹和运动空间,并防止各部件之间产生运动干涉,如车轮的跳动、传动轴的跳动等。 (8)应性及车内外人体、人机工程学校核。针对国家对汽车产品的相关强制性标准,对整车、零部件布置的符合性进行校核,另外,对国家尚未要求但国际上通用的标准应考虑符合性。按设计经验及相关参考资料,对车内外零部件尺寸、布置位置的合理性进行人体、人机工程学校核。

整车布置设计规范(修改稿)

整车总布置设计规范 1.范围 本标准规定了整车总布置设计的原则、规定及应满足的有关法规等。 本标准适用于公司新产品开发时的整车总布置设计。 2.引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T490-2000:主图板 QC/T576-1999:轿车尺寸标注编码 GB/T17867-1999:轿车手操纵件、指示器及信号装置的位置 GB14167-1993:安全带固定点 GB11556-1994 :A、区 GB11565-1989:B区 GB11562-1994:前方视野 GB/T13053-1991:脚踏板 SAEJ 1100:头部空间、上下左方便性 3术语和定义 下列术语和定义适用于本标准。 3.1整车总布置 明示所有总成的硬点、关键的参数的布置图 3.2设计硬点 轮距、轴距、总长、总宽、造型风格、油泥模型表面或造型面、人体模型尺寸、人机工程校核的控制要求、底盘等与车身相关零部件对车身的控制点线面及控制结构,都称为设计硬点。 4.整车总布置图上应确定的参数 4.1整车的外廓尺寸; 4.2轴距和前、后轮距; 4.3前悬和后悬长度;

4.4发动机、前轮的布置关系; 4.5轮胎型号、静力半径和滚动半径、负载能力; 4.6车箱内长及外廓尺寸; 4.7前轮接地点至前簧座的距离; 4.8前簧中心距; 4.9后簧中心距; 4.10车架前部和后部外宽; 4.11车架纵梁外形尺寸及横梁位置; 4.12前簧作用长度; 4.13后簧作用长度; 5.参数确定原则及设计的一般程序 5.1参数确定原则 以设计任务书和标杆样车为基准,按设计任务书上规定的或标杆样车上测定的参数进行总布置,如确实不能满足的,需提出经上级领导批准后方能更改。 5.2设计的一般程序 1)总布置设计人员在接到新车型的开发任务后,首先要进行整车构思,并参与市场调研和样车分析,在此基础上制定出总的设计原则和明确设计目标; 2)各专业所建立标杆样车的3D数模,并提供给整车布置人员; 3)总布置设计人员将各专业所提供的数模装配好; 4)对各总成的匹配和布置关系等进行分析,明确它们的优点和不足; 5)各专业所建立拟采用的总成的数模,不提供总布置人员; 6)总布置人员对新的数模进行分析,并提出可行性的建议; 7)对方案进行评审; 8)评审后对各总成进行修改或开发; 6.主要尺寸参数的确定

小型履带式行走装置设计(毕设)

学号20130715!! 密级___________ 哈尔滨工程大学学士学位论文 小型履带式行走装置设计 院(系)名称:机电工程学院 专业名称:机械设计制造及其自动化 学生姓名:张俊 指导教师:!!! 教授 哈尔滨工程大学 2017年6月

小型履带式行走装置设计 张俊 哈尔滨工程大学

哈尔滨工程大学学士学位论文 学号20130715!! 密级___________ 小型履带式行走装置设计TheSmallCrawlerWalkingDevice Design 学生姓名:张俊 所在学院:机电工程学院 所在专业:机械设计制造及其自动化 指导教师:!!! 职称:教授 所在单位:哈尔滨工程大学 论文提交日期:2017年6月07日 论文答辩日期:2017年6月12日 学位授予单位:哈尔滨工程大学

小型履带式行走装置设计 摘要 伴随着国内工程建设的不断发展,履带式行走装置在工业器械中的应用越来越广泛。各式各样的工程器械、军用工具,乃至工厂车间里的小型机械、工业机器人等,都采用了这个装置。本论文的主要设计内容就是设计一种小型履带式行走装置,使其能够在多种复杂地形完成行走功能。 本论文介绍了小型履带式行走装置的研究现状,展示这种装置的应用领域,然后考虑到节能环保,绿色节约主题思想,进行主参数设定、进行总体方案设计,包括功能原理分析,列写设计方案,优选并评估方案,进行总体布局设计。进行关键零部件的结构设计和尺寸设计;进行受力分析,对转轴进行校核计算,对键和轴承寿命进行设计校核;对关键零部件进行加工工艺分析,结合实际生产能力,对关键零部件的尺寸精度,装配精度,表面粗糙度数据进行修正。最后对该装置进行三维建模和动态仿真,检验该设计是否合理和发生运动干涉。 关键词:履带式底盘结构;链轮;履带

(吉利)整车部设计手册-底盘布置篇

总布置篇 第×章底盘布置 底盘布置是下车身布置的重要环节,也是平台选择的首要任务。在项目策划初期就要进行底盘的布置,为底盘设计提供输入。 悬架结构型式和特点 汽车悬架按导向机构形式可分为独立悬架和非独立悬架两大类。独立悬架的车轮通过各自的悬架和车架(或车身)相连,非独立悬架的左、右车辆装在一根整体轴上,再通过其悬架与车架(或车身)相连。 图非独立悬架与独立悬架示意图 1.1.1 独立悬架 主要用于轿车上,在部分轻型客、货车和越野车,以及一些高档大客车上也有采用。独立悬架与非独立悬架相比有以下优点:由于采用断开式车轴,可以降低发动机及整车底板高度;独立悬架孕育车轮有较大跳动空间,而且弹簧可以设计得比较软,平顺性好;独立悬架能提供保证汽车行驶性能的多种设计方案;簧载质量小,轮胎接地性好。但结构复杂、成本高。独立悬架有以下几种型式: 1.1.1 纵臂扭力梁式 是左、右车轮通过单纵臂与车架(车身)铰接,并用一根扭转梁连接起来的悬架型式(如图所示)。

图扭力梁式独立悬架 根据扭转梁配置位置又可分为(如图所示)三种型式。 图扭力梁式独立悬架的三种布置形式 汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定杆作用。若还需更大的悬架侧倾叫刚度,仍可布置横向稳定杆。这种悬架主要优点是:车轮运动特性比较好,左、右车轮在等幅正向或反向跳动时,车轮外倾角、前束及轮距无变化,汽车具有良好的操纵稳定性。但这种悬架在侧向力作用时,呈过多转向趋势。另外,扭转梁因强度关系,允许承受的载荷受到限制,扭转梁式结构简单、成本低,在一些前置前驱汽车的后悬架上应用得比较多。 1.1.1 双横臂式 是用上、下横臂分别将左、右车轮与车架(或车身)连接起来的悬架型式(图)。上、下横臂一般作成字型或类似字型结构。这种悬架实质上是一种在横向平面内运动,上、下臂不等长的四连杆机构。这种悬架主要优点是设定前轮定位参数的变化及侧倾中心位置的自由度大,若很好的设定汽车顺从转向特性,可以得到最佳的操纵性和平顺性;发动机罩高度低、干摩擦小。但其结构复杂、造价高。 双横臂式悬架的弹性元件一般都是螺旋弹簧,但是在一些驾驶员座椅布置在上横臂上方的轻型客、货汽车上,为了降低悬架空间尺寸,采用了横置钢板弹簧或扭杆弹簧结构(图) 图双横臂式独立悬架 1.1.1 多连杆式

长途大客车总布置设计

二○一二届毕业设计长途大客车总布置设计 学院:汽车学院 专业:车辆工程 姓名:白新龙 学号:2201080329 指导教师:张平 完成时间:2010年6月15日 二〇一二年六月

摘要 长途大客车日益在人们生活中凸显其重要性,而总布置是其他设计的前提条件,宏观操控全局。 本设计参考市场同类客车及国家相关标准,对汽车的造型内饰等进行了设计,确定了基本尺寸工艺,构建了长途客车的基本结构及外形,并对驾驶员视野进行了校核,根据客车行驶条件及生产要求,选择了发动机,变速器和驱动桥等部件,按相关要求对质心、轴荷分配及动力性进行了计算,根据长途大中型客车相关法规和人体工程学,对大客车驾驶区进行布置和乘客区座椅进布置设计,在车身布置中利用人体样板和眼椭圆对驾驶区中的操纵件和座椅的位置进行了优化设计。大致估算了风窗玻璃,最后对车身附件进行了设计,大致完成了此总布置。通过这次设计了解了一辆汽车设计的严肃性及艰巨性,这将对我以后的工作起指导作用。 关键字:长途客车,人体样板,车身布置,计算,设计

ABSTRACT Touring bus in people's life increasingly highlights its importance, and it's the premise of other macroother design layout ,controled the global. This design reference market similar buses and relevant national standards for cars, the modelling of the interior design, make sure the process, to construct the basic size coach the basic structure and appearance, and checks the vision to the driver, according to passenger cars driving conditions and production requirements, choose the engine, transmission and clutch and other components, according to related requirements on centroid, shaft jose allocation and calculated according to the dynamic performance, long distance large and medium-sized buses with human body engineering related laws and regulations, the bus driver and passenger area decorate area layout design, in seat into the body is decorated in using the human body model and the eye of driving the elliptical seat area and the location of the manipulation of pieces for the optimization design. Roughly calculated the window, wind to body accessories model the final design, substantially completed the general arrangement. This design understand a car design and arduous, the seriousness of the will to my later work period instruction function. KEY WORDS :touring bus,body model,layout ,calculate,design

相关主题
文本预览
相关文档 最新文档