当前位置:文档之家› 数理方程第2章波动方程

数理方程第2章波动方程

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数学物理方法第二章习题及答案整理

第二章答案 一、 简述 1. 简述状态空间描述与输入/输出描述的不同。 解:输入/输出描述是系统的外部描述,是对系统的不完全描述,用微分方程及其对应传递函数表征;状态空间描述是系统的内部描述,是对系统的完全描述,用状态空间表达式表征。 2. 线性定常系统经非奇异线性变换哪些量和性质不变?(至少列举3项) 解:特征值不变,传递矩阵不变,可控性及可观测性不变。 二、 多选题 1.对于n 阶线性定常系统 x Ax Bu =+&,下列论述正确的是( ABD ) A 当系统矩阵A 具有n 个线性无关的特征向量12,,,n υυυL 时,则矩阵A 可化为对角线规范形; B 系统矩阵A 的n 个特征值12,,,n λλλL 两两互异,则矩阵A 可化为对角 线规范形; C 系统矩阵A 有重特征值,则矩阵A 不能化为对角线规范形; D 系统矩阵A 有重特征值,但重特征值的几何重数等于其代数重数,则 矩阵A 可以化为对角线规范形。 三、 求状态空间描述 1、 给定系统的传递函数为 1 ()(4)(8)G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:由传递函数 32 11 ()(4)(8)1232g s s s s s s s ==++++ 可写出原系统的能控标准形 01000010032121u ???????????? ????--????x =x +& 2.已知系统的传递函数为 2325 ()1510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:

能控标准型: 01000010101501[521]x x u y x ???? ????=+????????--????=& (2分) 能观标准型: 00105101520101[0 01]x x u y x -???? ????=-+????????????=& 3.已知系统的传递函数为 2323 ()510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:能控标准型: 0100001010501[321]x x u y x ???? ????=+????????--???? =& (2分) 能观标准型: 010*********[0 01]x x u y x -???? ????=-+???????????? =& 3.已知系统的传递函数为 32 20 ()43G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:(1)由传递函数 3220 ()43G s s s s =++可写出原系统的可控标准型 []01 00001003412000u y x ???? ????????????--????=&x =x + 4.已知系统的传递函数为 210 ()1 G s s = +

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方法第二篇第2章

第二章 数学物理方程和二阶线性偏微分方程分类 §2.2.1数学物理方程 数学物理方程(简称数理方程)通常是指从物理模型中导出的函数方程,特别是偏微分方程,我们这里着重讨论二阶线性偏微分方程. 数学物理方程一般可以按照所代表的物理过程(或状态)分为三类: 1.振动与波(机械的、电磁的)称为波动方程.例如,在各向同性的固体中传播的横波或者纵波的方程.有一维波动方程xx tt u a u 2=(自由振动方程),),(2t x f u a u xx tt +=(强迫振动方程),这里u =u (x ,t )代表平衡时坐标为x 的点在t 时刻的横向或者纵向位移,a 是波的传播 速度.tt u 表示22t u ??,xx u 表示22x u ??;二维波动方程u a u tt ?=2,?是拉普拉斯算符2222y x ??+??≡?(二维的),22 2222z y x ??+??+??≡?(三维的). 2.输运过程称为扩散方程,热传导方程.例如,有一维的热传导方程xx t u a u 2=其中u =u (x ,t )表示x 点在t 时刻的温度,2a 称为扩散率或温度传导率.方程),(2t x f u a u xx t +=表示有热源的传导方程. 3.稳定(或者静止、平衡)过程(或状态)称为拉普拉斯方程. 02222=??+??≡?y u x u u . 在数学中,把二阶线性偏微分方程进行分类,其中有三种最重要

的类型,分别称为双曲型方程、抛物型方程和椭圆型方程,而上面所指出的那些数理方程都是二阶线性偏微分方程.波动方程可以作为研究双曲型方程的模型,热传导方程可以作为研究抛物型方程的模型,拉普拉斯方程可以作为研究椭圆型方程的模型. 对于仅有数理方程这类偏微分方程还不足以确定物体的运动,因为物体的运动还与起始状态以及通过边界所受到外界作用有关.从数学的角度考虑,物体运动的起始状态称为初始条件,物体运动的边界情况称为边界条件.求一个微分方程的解满足一定的初始条件或边界条件的问题称为定解问题.而初始条件、边界条件称为定解条件.若定解条件仅有初始条件的,则称该定解问题为初值问题,又叫哥西(Cauchy)问题;若定解条件为边界条件的,则称为边值问题. 边界条件一般有三种类型,以一维的为例:在x =0点的第一边界条件:)(),0(t t u μ=;第二边界条件:)(),0(t v t u x =;第三边界条件:)(),0(),0(t t hu t u x θ=-,这里h 为已知常数,)(t μ,)(t v ,)(t θ为已知函数.如果)(t μ,)(t v ,)(t θ恒为零的边界条件称为齐次边界条件,一般将边界条件写成)()],(),([t f t M n u t M u D M =??+?∈βα,D ?表示区域D 的边界,n 是D ?的外法线方向,这里α,β不同时为零的常数,则是这三种边界条件的综合表述. 如果一个定解问题中既有初始条件又有边界条件,则称为混合问题. 例1.在杆的纵向振动时,假设(1)端点固定;(2)端点自由;(3)

相关主题
文本预览
相关文档 最新文档