当前位置:文档之家› 矩阵论在人口迁移问题中的应用矩阵论报告

矩阵论在人口迁移问题中的应用矩阵论报告

矩阵论在人口迁移问题中的应用矩阵论报告
矩阵论在人口迁移问题中的应用矩阵论报告

研究生“矩阵论”课程课外作业 姓 名: 学 号:

学 院: 专 业:

类 别: 上课时间:

成 绩:

矩阵论在人口迁移问题中的应用

摘要

本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。文中运用方阵函数()f A 的相关基本理论来解决这一实际问题,使得实际问题得到简化解决,最终得出人口迁移问题的最终结论。

1、待解决问题内容:

假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:

问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样?

2、基本术语解释

方阵函数()f A :最简单的方阵函数是矩阵多项式

01()n n B f A a E a A a A ==+++,其中,n n i A C a C ?∈∈。一般运用复变幂级数的和函数定义方阵幂级数和函数—方阵函数。

3、基本理论阐述:

1、Hamilton-Cayley 定理:

设矩阵A 的特征多项式为

()f λ,则有()0f A =。 设A 的特征多项式为:()1101n n n f a a a λλλλ--=++++

Hamilton-Cayley 定理表明:

()11010n n n f A A a A a A a E --=++++=,即方阵函数可以由1,,,,n n A A A E -的线性组合表示。

方阵函数是多项式()01f A a E a A =++,其中,n n i A C a C ?∈∈。

2、最小多项式的相关理论:

定义1:A 是n 阶方阵,

()f λ是方阵A 的特征多项式。如果有()0f A =,则称()f λ是方阵A 的零化多项式。由Hamilton-Cayley 定理知一个矩阵的零化多项式一定存在。

定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。

设n n A C

?∈的最小多项式为1212()()()()s t t t s m λλλλλλλ=--- 其中12s t t t t +++=,(,,1,2,

,)i j i j i j s λλ≠≠=,而方阵函数()f A 是收敛的方阵幂级数

0k k k a A ∞=∑的和函数,即

设1011()t t T b b b λλλ--=+++,使 ()()()()l l i i f T λλ= 1,2,,0,1,

,1i i s l t =?? ?=-??,则0()()k k k T A f A a A ∞===∑ 3、运用()f z 在A 上的谱值计算方阵函数()f A 的理论:

设n 阶方阵A 的最小多项式为12

12()()()()s t t t s m λλλλλλλ=---,其中2,,,s λλλ是A 的互不相同的特征根。如果复函数()f z 及其各阶导数()()l f z 在(1,2,

,)i z i s λ==处的导数值,即 均为有限值,便称函数

()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上

的谱值。 4、报告正文

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

矩阵理论在信号系统中的应用

五邑大学研究生矩阵理论论文

矩阵理论在信号系统中的应用 摘要:在20世纪50年代蓬勃兴起的航天技术的推动下,现代控制理论在上世纪60年代开始形成并得到了迅速的发展。现代控制理论的重要标志和基础就是状态空间方法。现代控制理论用状态空间法描述输入、状态、输出等各种变量间的因果关系。不但反映系统输入与输出的外部特性,而且揭示了系统内部的结果特性,可以研究更复杂而优良的控制算法。现代控制理论及使用于单变量控制系统,有适用于多变量控制系统,既可以用于线性定常系统,又可以用于线性时变系统,还可用于复杂的非线性系统。 本文主要介绍了连续时间线性时不变系统零输入响应运动分析,如何利用数学模型,求解线性定常系统的零输入响应问题。是矩阵理论中约当标准形和对角线标准形在线性系统理论中的一个很典型的应用。 状态与状态变量:系统在时间域中运动信息的集合称为状态。确定系统状态的一组独立(数目最少的)变量称为状态变量。它是能完整地确定地描述系统的时间行为的最少的一组变量。 状态向量:如果n 个状态变量用()1x t 、()2x t 、…()n x t 表示,并把这些状态变量看做是 向量X (t )的分量,则向量X (t )称为状态向量,记为()()()()12n x t x t X t x t ????? ?=???????? 或者()()()()12T n X t x t x t x t =???? 状态空间:以状态变量()1x t 、()2x t 、…()n x t 为坐标轴构成的n 维空间。 状态方程:描述系统的状态变量之间及其和系统输入量之间关系的一阶微分方程组 线性系统:满足叠加原理的系统具有线性特性 零输入响应:若输入的激励信号为零,仅有储能元件的初始储能所激发的响应,称为零输入响应。 一、线性系统状态方程: A :表示系统内部状态关系的系数矩阵 B :表示输入对状态作用的输入矩阵 从数学的角度上,就是相对于给定的初绐状态x0和外输入u (t ),来求解状态方程的解,即系统响应。解的存在性和唯一条件:如果系统A 、B 的所有元在时间定义区间 []0t t α上均为 t 的实值连续函数,而输入u(t)的元在时间定义区间[]0t t α上是连续 实函数,则其状态方程的解X(t)存在且唯一。 ()()[] ()()0 )0(x t t :)(x t t :0 000≥=+=∈=+=t x Bu A t t t x t Bu A x x x x 时不变时变α

矩阵论在人口迁移问题中的应用矩阵论报告

研究生“矩阵论”课程课外作业 姓名:学号: 学院:专业: 类别:上课时间: 成绩:

矩阵论在人口迁移问题中的应用 摘要 本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。文中运用方阵函数 ()f A 的相关基本理论来解决这一实际问题,使得实际问题得 到简化解决,最终得出人口迁移问题的最终结论。 1、待解决问题内容: 假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样? 2、基本术语解释 方阵函数 ()f A :最简单的方阵函数是矩阵多项式 01()n n B f A a E a A a A ==+++L ,其中,n n i A C a C ?∈∈。一般运用 复变幂级数的和函数定义方阵幂级数和函数—方阵函数。 3、基本理论阐述: 1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为()f λ,则有()0f A =。 设A 的特征多项式为: ()1101n n n f a a a λλλλ--=++++L Hamilton-Cayley 定理表明: ()11010n n n f A A a A a A a E --=++++=L ,即方阵函数可以由 1,,,,n n A A A E -L 的线性组合表示。 方阵函数是多项式 ()01f A a E a A =++L ,其中,n n i A C a C ?∈∈。

2、最小多项式的相关理论: 定义1:A 是n 阶方阵,()f λ是方阵A 的特征多项式。如果有()0f A =, 则称 ()f λ是方阵A 的零化多项式。由Hamilton-Cayley 定理知一个矩阵的零化 多项式一定存在。 定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。 设n n A C ?∈的最小多项式为1212()()()()s t t t s m λλλλλλλ=---L 其中12 s t t t t +++=L ,(,,1,2,,)i j i j i j s λλ≠≠=L ,而方阵函数()f A 是 收敛的方阵幂级数 k k k a A ∞ =∑的和函数,即 0 ()k k k f A a A ∞ ==∑ 设1011()t t T b b b λλλ--=+++L ,使 () () ()()l l i i f T λλ= 1,2,,0,1,,1i i s l t =?? ? =-?? L L ,则0()()k k k T A f A a A ∞===∑ 3、运用 ()f z 在A 上的谱值计算方阵函数()f A 的理论: 设n 阶方阵A 的最小多项式为1212()()()()s t t t s m λλλλλλλ=---L , 其中2,,,s λλλL 是 A 的互不相同的特征根。如果复函数 ()f z 及其各阶导数 ()()l f z 在(1,2,,)i z i s λ==L 处的导数值,即 () () ()l l i i l d f z f z dz λλ==1,2,,0,1,,1i i s l t =?? ?=-?? L L 均为有限值,便称函数()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上 的谱值。 4、报告正文 根据所给条件,设南方和北方第一年的人口数量分别为s 和n ,第n 年人口数量分别为n x 和n y 。根据题意可以列出下式:

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课 。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n 个节点,b 条支路的电路图, 每条支路的电压和电流均为未知,共有2b 个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL 我们也可以列 出(b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我们还可以可以列出b 个方程;总共2b 个方程要解出b 个支 路电流变量和b 个支路电压变量。当b 的数值比较大时,传统 的解数学方程组的方法已经不再适用了,因此我们需要引入矩 阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵 图 1 1. 关联矩阵 在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?? ???-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵

矩阵论论文

西安理工大学 研究生课程论文 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目:线性变换在 电路方程中的应用 完成日期:2014年11月5日学科:Xxxx 学号:XXXXXXX 姓名:XXX 成绩:

线性变换在电路方程中的应用 摘要:电路分析中的坐标变换和复杂绕组变压器分析中所用的变压器变换都是电路方程的线性变换。根据矩阵理论,对坐标变换和变压器变换进行了统一阐释。坐标变换本质是一个方阵和对角阵的相似变换,变压器变换的本质是新变量对旧变量的表示,当变换矩阵的逆阵等于它的转置(共轭转置)阵时,坐标变换和变压器变换数学表示是相同的。通过对电路方程系数矩阵和三角阵的相似变换,同时得到了三相 abc 坐标系和任意速度旋转两相 dq0 坐标系、瞬时值复数分量 120 坐标系、前进 - 后退 FB0 坐标系之间的变换矩阵。这有助于在更加基础的理论层面上揭示和理解电路方程线性变换的本质,也为提出电路方程线性变换的新类型提供了思路。 关键词:电路方程;线性变换;坐标变换;变压器变换 引言 在交流电机等电路分析中,常用的坐标变换是指三相静止 abc 坐标系任意速度旋转两相 d q坐标系、瞬时值复数分量 120 坐标系、 前进 - 后退 F B坐标系,以及它们对应的特殊坐标系的变量之间的 相互转换。电路方程坐标变换的主要目的是使电压、电流、磁链方程系数矩阵对角化和非时变化,从而简化数学模型,使分析和控制变得简单、准确、易行。还有一类电路方程变换,其目的是用旧变量表示出新变量,例如变压器中由原边变量利用变比变换而来的副边变量,把这类电路方程变换称为变压器变换。坐标变换已有很多文献进行了阐述,但这些阐述大都是基于物理概念的。变压器变换在复杂绕组变

矩阵论在神经网络中的应用详解

矩阵论论文 论文题目:矩阵微分在BP神经网络中的应用 姓名: 崔义新 学号: 20140830 院(系、部): 数学与信息技术学院 专业: 数学 班级: 2014级数学研究生 导师: 花强 完成时间: 2015 年 6 月

摘要 矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等. BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分. 关键词:矩阵微分;BP神经网络;

前 言 矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、 最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导. BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer). BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止. 1 矩阵的微分 1.1 相对于向量的微分的定义 定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的 数量函数,即以n 个变量 x i 为自变量的数量函数. 我们将列向量 1n f x f x ???????? ???????????? 叫做数量函数f 对列向量X 的导数, 记作 1n f x df f f d f x ??? ?????= = =????? ???????? grad X 12T n df f f f d x x x ?? ???=? ?????? X (1.1)

学习矩阵的心得

矩阵理论学习报告 矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。 通过这次在朱善华老师的课程上我了解了很多获益匪浅,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。这些内容与方法是许多应用学科的重要工具。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。 认识总是随着时间和已有知识的积累在不断修正,我对矩阵论的认识也大致如此。从一开始的认为只能解线性方程,到如今发现它的几乎无所不能,我想我收获到的不仅仅是这种简单的知识,更是一种世界观,那就是对所有的事物都不要轻易地下定论。同时,当我们知道的越多,就会发现未知的东西越多。作为一门已经发展了一百多年的学科,我对矩阵论的认识只是沧海一粟,唯有终身学习,不断探索,才可能真正领悟到其中之真谛,我亦将为此付诸行动。 控制理论与控制工程 肖雪峰

矩阵论在电气工程中的应用

题目: 矩阵论在电气工程中的应用指导老师: xxx 学生姓名:xxx 所属院系:电气工程学院 专业:电气工程 学号:xxx 完成日期:20xx年x月x日

矩阵论在电气工程中的应用 摘要 电路分析是电气专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂求解计算量大的特点。为了解决这个问题,因此引入了矩阵理论,并结合软件对矩阵分析的良好支持,以期达到优化分析电路的目的。本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予求解。 关键词:电路分析矩阵法网络拓扑 ABSTRACT: Circuit analysis is an essential ability of professional personnel in the field of electronic. The concept of strong, complex circuit analysis calculation with the knowledge of the characteristics of large amount. In order to alleviate this problem, so we introduced matrix theory, combined with good support analysis software for matrix, in order to achieve the purpose of optimization of circuit analysis. In this paper, the network topology in matrix theory unfolds, introduces the application of network topology in circuit, and to give the solution. KEY WORDS:circuit analysis;matrix method;network topology 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答。当运行这些程序时,能迅速地得到较准确的计算结果。在电子领域基础知识电路分析中,经过理论分析

矩阵论研究报告

矩阵论在方程解耦及最小二乘法中的应用摘要:模态(也称为固有振动模态,或主模态)是多自由度线性系统的一种固有属性,可由系统的特征值(也称为固有值)与系统的特征矢量(也称为固有矢量,或者主振型)二者共同来表示的;它们分别从时空两个方面来刻画系统的振动特性。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,其可以使得耦合方程组解耦。作用于一个n维自由度系统,可以转换到模态坐标下来解耦,确定在模态坐标下响应,然后通过线性变换得到物理坐标下的响应。惯常使用中,将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数[1]。 在科学实验和工程计算中,我们希望从给定的数据出发,构造一个近似函数,使数据点均在离曲线的上方或下方不远处,所求的曲线称为拟合曲线,它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小,这就是最小二乘法。最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,使这些求得的数据与实际数据之间误差的平方和为最小[2],则需要范数的知识。 关键字:模态,方程解耦,最小二乘 一、引言 数学中解耦是指使含有多个变量的数学方程变成能够用单个变量表示的方程组,即变量不再同时共同直接影响一个方程的结果,从而简化分析计算。通过适当的控制量的选取,坐标变换等手段将一个多变量系统化为多个独立的单变量系统的数学模型,即解除各个变量之间的耦合。 对离散型函数(即数表形式的函数)考虑数据较多的情况.若将每个点都当作插值节点,则插值函数是一个次数很高的多项式,比较复杂,而且由于龙格振荡现象,这个高次的插值多项式可能并不接近原函数。最小二乘法在实际工程数据处理中应用广泛,在工程问题中,使用最小二乘法根据两个变量的几组实验数据可 1

矩阵分析在通信中应用

矩阵论在通信领域中的应用 基于多输入多输出技术(MIMO)信道容量的分析 1 背景分析 频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)技术即利用多副发射天线和多副接收天线进行无线传输的技术的提出很好地解决了这个问题。 多输入多输出(MIMO)技术能极大增加系统容量与改善无线链路质量的优点。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO的信道容量具有巨大的指导意义。但是对信道容量的推导分析是一个很复杂的过程,但是应用矩阵的知识进行分析能很好的解决这个问题,本文把矩阵理论知识与MIMO技术信道容量中的应用紧密结合,首先建立了MIMO信道模型,利用信息论理论和矩阵理论建立系统模型详细推导出MIMO信道容量,通过程序仿真反应实际情况,可以更直观正确的得出重要结论,这些结论的得出没有矩阵的知识是很难实现的。 2 问题的提出 基于MIMO的无线通信理论和传输技术显示了巨大的潜力和发展前景。MIMO 技术的核心是空时信号处理,利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理,有效地利用了信道的随机衰落和多径传播来成倍的提高传输速率,改善传输质量和提高系统容量,能在不额外增加信号带宽的前提下带来无线通信性能上几个数量级的提高。目前对MIMO技术的应用主要集中在以空时编码(STC,Space-Time Codes)为典型的空间分集(diversity)和以BLAST(Bell LAyered Space-Time architecture)为典型的空间复用(multiplexing)两个方面。MIMO作为未来一代宽带无线通信系统的框架技术,是实现充分利用空间资源以提高频谱利用率的一个必然途径。 可问题是,MIMO系统大容量的实现和系统其它性能的提高以及MIMO系统中

矩阵论课外报告---最小二乘法

一、 报告摘要 在已知曲线大致模型的情况下,运用曲线拟合最小二乘法,使得观测数据与曲线模型数据之间的误差平方和最小。进而求得曲线的模型参数,并由所求的曲线模型进行分析预测。 二、 题目内容 一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据: 我国军情处分析得出该导弹沿抛物线轨道飞行。 问题:预测该导弹在什么水平距离着地。 三、 基本术语 1. 内积 设V 是实数域R 上的线性空间,如果V 中任意两个向量,αβ都按某一个确定的法则对应于惟一确定的实数,记作(,)αβ,并且(,)αβ满足 i. 对任意的,V αβ∈,有(,)(,)αββα= ii. 对任意的,,V αβγ∈,有(,)(,)(,)a αβγγβγ+=+ iii. 对任意的,,k R V αβ=∈有(,)(,)k k αβαβ= iv. 对任意的V α∈,有(,)0αα≥。当且仅当0α=时,(,)0αα= 则称(,)αβ为向量,αβ的内积。如无特殊说明的,我们认为对任意向量

1212(,,,),(,,,)n n a a a b b b αβ== ,其内积(,)αβ为 1122(,)n n a b a b a b αβ=+++ 2. 范数 如果V 是数域K 上的线性空间,且对于V 的任以向量χ,对应于一个实数函数χ,它满足如下三个条件。 i. 非负性 当0χ≠时0χ>;当0χ=时,0χ=; ii. 齐次性 ,a a V χχχ=∈; iii. 三角不等式 ,,V χζχζχζ+≤+∈; 则称χ为V 上χ的范数。 可以证明对于向量12(,,,)n χξξξ= 的长度 χ= 是一种范数,我们称为2-范数,记为2χ。 3. 线性方程组 设有n 个未知数m 个方程的线性方程组 11112211 21122222 1122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ????+++=? 可以写成以向量x 为未知元的向量方程 Ax b = 则A 为该方程的系数矩阵,(,)B A b =为增广矩阵。该线性方程有解的条件如下 i. 当A 的秩()R A 和B 的秩()R B 满足()()R A R B <时,该方程无解 ii. 当()()R A R B n ==时,该方程有唯一解。

矩阵论文献翻译--5000字

矩阵相关文献翻译: Cooperative Spectrum Sensing Using Random Matrix Theory Leonardo S. Cardoso and Merouane Debbah and Pascal Bianchi FROM IEEE 字数:5000字

基于随机矩阵理论的协作频谱感知 摘要 本文提出了一种基于随机矩阵理论的协作频谱感知算法,这个算法既适用于AWGN,也适用于衰落信道。不像先前的研究工作,新算法并不需要噪声统计和方差,并且与随机矩阵的最大和最小特征值有关。值得注意的是,仿真结果表明,新算法方便随时间变化的拓扑结构,其性能明显优于典型的能量检测算法。 一、前言 从美国联邦通信委员会(FCC)频谱政策专责小组[1]的报告中显示,无论是由于稀疏用户访问还是系统的固有缺陷,目前移动通信系统并没有充分利用可用的频谱,这已经成为共识。可以预见,未来的系统将能够有机会利用这些频谱,通过认知环境的能力的相关知识,以适应相应的无线电参数[2]。由于微电子和计算机系统的最新进展,这种无线电的时代已经不远,其中最重要的是开发出很好的感知技术。 用最通俗的话来说,频谱检测手段是在一个给定的有噪声的频段下寻找频带中的信号在(也可能包括进行分类的信号)。这个问题以前得到广泛的研究,如今由于认知无线电研究的部分原因重获关注。为此,有几个经典的技术,如能量检测(ED)(文献[3] - [5]),匹配滤波器(文献[6])和循环平稳特征检测(文献[7] - [9])。这些技术有自身的优缺点,而且都是适合于非常特殊的应用场合。 然而,从认知无线电的角度来看,频谱感知有非常严格的要求 和限制的问题,例如: ?没有信号结构的先验知识(统计、噪音方差值,等等); ?在最短的时间内的信号检测;需要具有在严重衰落信道的环境下可靠检测的能力。 Cabric等人的工作[7]、Akyildiz等人的工作[10]、和Haykin[11]提供了从认知网络的角度对这些经典技术进行了汇总。从这些工作中可以清楚的看到,任何方法都不可能完全应付认知无线电网络的所有需求。 在简单的AWGN(加性高斯白噪声)信道中,经典的方法效果非常好。然而,在快衰落的情况下,这些技术无法提供满意的解决方案,尤其是隐藏节点问题[12]。为此,[13]- [16]几部文献已经研究认知无线电的协作频谱感知的情况。这些工作的目的是通过增加额外的冗余感知方法降低错误概率。他们还旨在通过减少收集的样本数量,来使用并行测量装置估计次数。不过,即使人们可以高效的利用空间维度,这些工作也都是是基于相同的基本技术,都需要一个信号的先验信息。在这项工作中,我们引入一个不需要先验信息的频谱感知方法。这种方法依赖于多个接收器采用随机矩阵理论(RMT)对接收到的信号进行结构推断。随机矩阵理论(RMT)是研究大维随机矩阵的经验谱分布函数在一定条件下特殊 收敛性质的相关理论,现已被广泛应用于无线通信领域中,如无线信道容量、阵列信号处理、接收机性能分析、通信系统设计等的各个方面。基于RMT 的频

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

矩阵论课程论文

西安理工大学 研究生课程论文报告 课程名称:矩阵论 课程代号: 任课教师: 论文报告题目:矩阵函数在线性定常系统 状态转移矩阵求解中的应用完成日期:2015 年10 月25 日学科:电力电子与电力传动 学号: 姓名: 成绩:

矩阵函数在线性定常系统状态转移矩阵 求解中的应用 摘 要 控制系统的运动是系统性能定量分析的重要内容。“运动”是物理学上的一个概念,它是通过求系统方程的解)(t x 、)(t y 来分析研究的。由于状态方程是矩阵微分(差分)方程,输出方程式为矩阵代数方程,因此求系统方程的解主要是求状态方程的解。而求状态方程的解的关键是求状态转移矩阵。本文主要介绍了矩阵对角化标准型,约当标准型,凯莱-哈密顿定理及矩阵函数知识在线性定常系统的齐次状态方程的状态转移矩阵求解中的应用。 关键词:状态转移矩阵,约当标准型,凯莱-哈密顿定理,矩阵函数. 1.问题提出 线性系统有线性定常系统和线性时变系统,最为基本的是线性定常系统。而线性定常系统根据有无初始输入,分为线性定常齐次方程,和线性定常非齐次方程。本文只给出线性定常系统的齐次状态方程的状态转移矩阵的求解。 线性定常系统齐次方程的解亦即系统的自由解,是指系统输入为零时,由初始状态引起的自由运动。 线性定常系统齐次状态方程为 ()()t Ax t x = ()1-1 其中,x 是n 维状态向量;A 为n n ?系数矩阵。设初始时刻00=t ,系统的初始状态()()00x t x =。仿照标量微分方程求解的方法求方程()1-1的解。 设方程()1-1的解为t 的向量幂级数形式,即 )(t x = ++++++k k t b t b t b t b b 332210 ()2-1 式中,() ,2,1,0=i b i 为n 维向量。 式()2-1代入方程()1-1得 () +++++=+++++-k k k k t b t b t b b b A t kb t b t b b 3322101232132 ()3-1 既然式()2-1是方程()1-1的解,则式()3-1对任意的t 都成立。因此,式()3-1的等式两边t 的同次幂项的系数应相等,有

矩阵应用简介

矩阵应用简介 The introduction of Matrix application 作者:刁士琦 2015/12/27

摘要 本课题以线性代数的应用为研究对象,通过网络、书籍查询相关知识与技术发展。 全文分为四部分,第一部分是绪论,介绍本课题的重要意义。第二部分是线性代数的发展。第三部分是经典矩阵应用。第四部分是矩阵应用示例。第五部分为结论。 关键词:莱斯利矩阵模型、希尔密码

目录 摘要 (2) 1 引言 (4) 2 矩阵的发展 ............................................................................................ 错误!未定义书签。 3 经典矩阵应用 (4) 3.1矩阵在经济学中的应用 (4) 3.2矩阵在密码学中的应用 (7) 3.3莱斯利矩阵模型 (5) 4 矩阵应用示例 (6) 4.1经济学应用示例 (6) 4.2希尔密码应用示例 (7) 4.3植物基因分布 (7) 6 结论 (8) 参考文献 (9)

1引言 线性代数是以向量和矩阵为对象,以实向量空间为背景的一种抽象数学工具,它的应用遍及科学技术的国民经济各个领域。 2矩阵的发展 1850年,西尔维斯特在研究方程的个数与未知量的个数不相同的线性方程时,由于无法使用行列式,所以引入了Matrix-矩阵这一词语。现代的矩阵理论给出矩阵的定义就是:由mn 个数排成的m行n列的数表。在此之后,西尔维斯特还分别引入了初等因子、不变因子的概念[5]。虽然后来一些著名的数学家都对矩阵中的不同概念给出了的定义,也在矩阵领域的研究中做了很多重要的工作。但是直到凯莱在研究线性变化的不变量时,才把矩阵作为一个独立的数学概念出来,矩阵才作为一个独立的理论加以研究。 矩阵概念的引入,首先是由凯莱发表的一系列和矩阵相关的文章,将零散的矩阵的知识发展为系统完善的理论体系。矩阵论的创立应归功与凯莱。凯莱在矩阵的创立过程中做了极大的贡献。其中矩阵的转置矩阵、对称矩阵和斜对称矩阵的定义都是由凯莱给出的。“从逻辑上来说,矩阵的概念应限于行列式的概念,但在历史上却正好相反。”凯莱如是说。1858年,《A memoir on the theory of matrices》系统阐述了矩阵的理论体系,并在文中给出了矩阵乘积的定义。 对矩阵的研究并没有因为矩阵论的产生而停止。1884年,西尔维斯特给出了矩阵中的对角矩阵和数量矩阵的定义。1861年,史密斯给出齐次方程组的解的存在性和个数时引进了增广矩阵和非增广矩阵的术语。同时,德国数学家弗罗伯纽斯的贡献也是不可磨灭的,他的贡献主要是在矩阵的特征方程、特征根、矩阵的秩、正交矩阵、矩阵方程等方面。并给出了正交矩阵、相似矩阵和合同矩阵的概念,指明了不同类型矩阵之间的关系和矩阵之间的重要性质。 3经典矩阵应用 3.1矩阵在经济学中的应用 投入产出综合平衡模型是一种宏观的经济模型,这是用来全面分析某个经济系统内

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1Λ=m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1,Λ=, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ΛΛ,,,,21m S S S , 其中m m m A c A c c S +++=Λ10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21Λ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1Λ=, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a ΛΛΛ2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a ΛΛΛ21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A ΛΛΛ2121) ()(2)(1)()1(τ,

矩阵论在人口迁移问题中的应用矩阵论报告

研究生“矩阵论”课程课外作业 姓 名: 学 号: 学 院: 专 业: 类 别: 上课时间: 成 绩: 矩阵论在人口迁移问题中的应用 摘要 本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。文中运用方阵函数()f A 的相关基本理论来解决这一实际问题,使得实际问题得到简化解决,最终得出人口迁移问题的最终结论。 1、待解决问题内容: 假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样? 2、基本术语解释 方阵函数()f A :最简单的方阵函数是矩阵多项式 01()n n B f A a E a A a A ==+++,其中,n n i A C a C ?∈∈。一般运用复变幂级数的和函数定义方阵幂级数和函数—方阵函数。 3、基本理论阐述:

1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为 ()f λ,则有()0f A =。 设A 的特征多项式为:()1101n n n f a a a λλλλ--=++++ Hamilton-Cayley 定理表明: ()11010n n n f A A a A a A a E --=++++=,即方阵函数可以由1,,,,n n A A A E -的线性组合表示。 方阵函数是多项式()01f A a E a A =++,其中,n n i A C a C ?∈∈。 2、最小多项式的相关理论: 定义1:A 是n 阶方阵, ()f λ是方阵A 的特征多项式。如果有()0f A =,则称()f λ是方阵A 的零化多项式。由Hamilton-Cayley 定理知一个矩阵的零化多项式一定存在。 定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。 设n n A C ?∈的最小多项式为1212()()()()s t t t s m λλλλλλλ=--- 其中12s t t t t +++=,(,,1,2, ,)i j i j i j s λλ≠≠=,而方阵函数()f A 是收敛的方阵幂级数 0k k k a A ∞=∑的和函数,即 设1011()t t T b b b λλλ--=+++,使 ()()()()l l i i f T λλ= 1,2,,0,1, ,1i i s l t =?? ?=-??,则0()()k k k T A f A a A ∞===∑ 3、运用()f z 在A 上的谱值计算方阵函数()f A 的理论: 设n 阶方阵A 的最小多项式为12 12()()()()s t t t s m λλλλλλλ=---,其中2,,,s λλλ是A 的互不相同的特征根。如果复函数()f z 及其各阶导数()()l f z 在(1,2, ,)i z i s λ==处的导数值,即 均为有限值,便称函数 ()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上 的谱值。 4、报告正文

相关主题
文本预览
相关文档 最新文档