当前位置:文档之家› 第5章代数系统的一些性质

第5章代数系统的一些性质

第5章代数系统的一些性质
第5章代数系统的一些性质

第五章代数系统的一般性质

代数的概念与方法是研究计算机科学和工程的重要数学工具。众所周知,在许多实际问题的研究中都离不开数学模型,而构造数学模型就要用到某种数学结构,而近世代数研究的中心问题是代数系统的结构:半群、群、格与布尔代数等等。近世代数的基本概念、方法和结果已成为计算机科学与工程领域中研究人员的基本工具。在研究形式语言与自动机理论、编码理论、关系数据库理论、抽象数据类型理论中,在描述机器可计算的函数、研究计算复杂性、刻画抽象数据结构、研究程序设计学中的语义学、设计逻辑电路中有着十分广泛的应用。

5.1 代数运算及其性质

5.1.1代数运算的定义

定义5.1.1 设S是一个非空集合,

(1)函数f:S→S,称为一个S上的一个一元运算。

(2)函数f:S?S→S,称为一个S上的一个二元运算。

记号: f(x,y)=z, xfy=z x y=z

(3)函数f:S?S?…?S →S,称为一个S上的一个n元运算。

[例5.1.1](1)数理逻辑中的联结词;集合论中的并运算、交运算和补运算;整数集中的加法、减法和乘法运算都是相应集合上的运算.

(2)但Z中的除法不是一个二元运算。

(3) 在Z商定义x*y=x+y-2,则*是一个二元运算。

当S是有限集时,S上的一元、二元运算可用运算表来定义。

定义5.1.2 设 是集合S上的n元运算,S是S的一个非空子集。若对?x1,x2,…,x n∈S,有 (x 1,x 2,…,x n)∈S,则称S关于运算 是封闭的。

[例5.1.2]实数集关于数的普通除法是封闭的,整数集关于数的普通加法不是封闭的。

5.1.2代数运算的性质

定义5.1.3 设*是集合S上的二元运算。若?x,y∈S,x*y=y*x,

则称运算*满足交换律(或称*是可交换的)。

定义5.1.4 设*是集合S上的二元运算。若?x,y,z∈S,(x*y)*z = x*(y*z),则称运算*满足结合律(或称*是可结合的)。

定义5.1.5 设*是集合S上的二元运算。若?x∈S,x*x = x,则称运算*满足幂等律。定义5.1.8 设*和 是集合S上的二元运算。若?x,y,z∈S,

x*(y z)=(x*y) x*z),

(y z)*x =(y*x) (z*x),

则称*关于 满足分配律。

定义5.1.9设*和 是集合S上的二元运算。若?x,y∈S,

x*(x y)=x

x (x*y)=x

则称*关于 满足分配律。

[例5.1.3]R上的加法和乘法运算是可交换的,也是可结合的;但减法却是不可交换和

不可结合的;乘法关于加法是可分配的,但加法关于乘法则是不可分配的。任一集合的幂集

上的并和交运算是可交换和可结合的,并且它们是相互可分配的。

注:若运算*是可结合的,则有时我们简称*为乘法,而把x*y简记为xy,称为x 与y的积。

5.1.3特殊元素:单位元、零元、逆元

定义5.1.10 设*是集合S上的二元运算。

(1)若e l∈S,使得?x∈S,有e l*x=x,则称e l是关于运算*的左单位元(左么元);

(2)若e r∈S,使得?x∈S,有x*e r=x,则称e r是关于运算*的右单位元(右么元);

(3)若e∈S,使得?x∈S,有e*x=x*e=x,则称e是关于运算*的单位元(么元)。

定理5.1.3 设*是集合S上的二元运算,且e l,e r分别为关于运算*的左和右么元,则

关于运算*存在唯一么元e且 e=e l=e r。

证明: e l= e l*e r= e r记e=e l=e r

定义5.1.11 设*是集合S上的二元运算。

(1)若0l∈S,使得?x∈S,有0l*x=0l,则称0l是关于运算*的左零元;

(2)若0r∈S,使得对?x∈S,有x*0r =0r,则称0r是关于运算*的右零元;

(3)若0∈S,使得对?x∈S,有0*x=x*0=0,则称0是关于运算*的零元。

定理5.1.4 设*是集合S上的二元运算,且0l,0r分别为关于运算*的左和右零元,则关于运算*存在唯一零元0且 0=0l=0r。

[例5.1.4]R上,关于加法的单位元是0,但无零元;关于乘法的单位元为1,零元为0;关于减法的右单位元是0,但无左单位元,故无单位元。在任一集合S的幂集ρ(S)上,Φ是集合并运算的单位元、交运算的零元,S是集合交运算的单位元、并运算的零元。

定义5.1.12设*是S上的二元运算,e 为关于运算*的单位元,x∈S,

(1)若存在x l∈S,有x l*x= e,则称x l是关于运算*的左逆元;

(2)若存在x r∈S,有x*x r = e,则称x r是关于运算*的右逆元;

(3)若存在a'∈S,有a'*x=x*a'= e,则称a'是关于运算*的逆元。

定理5.1.5 设*是集合S上可结合的二元运算,e 为关于运算*的单位元,x∈S,且x l,x r分别为x关于运算*的左和右逆元,则x l= x r且它是x关于运算*的唯一逆元。

对S上可结合的二元运算*,若x∈S可逆,则其逆元惟一,因此我们可将之记为x-1。x和x-1互为逆元,即(x-1)-1=x。

[例5.1.5]在R中,任一实数关于加法的逆元是它的相反数,任一非零实数关于乘法的逆元是它的倒数;但零关于乘法是不可逆的。

定义5.1.13 设*是A上的二元运算,?x,y,z∈A,

x*y=x*z?y=z; y*x= z*x ?x=y,

则称*满足消去律。

[例5.1.6]任一实数关于加法*满足消去律;任一非零实数关于乘法*满足消去律;n

阶方阵的乘法运算不满足

*满足消去律。

5.2代数系统及其子代数和积代数

5.2.1代数系统

定义5.2.1 设S 为非空集合,若

*1,*2,…,*n 为S 上的代数运算,则称为一个代数系统(代数结构)

。称S 为该代数系统的定义域。若|S|是有限数,则称之为有限代数系统,并称|S|为该代数系统的阶。

[例5.2.1](1),<ρ(A),∩,∪,>都是代数系统;

(2) 设∑是有限个字母组成的集合,∑*表示∑上的串集合,∑*上的连接运算 定义为α,β∈∑*,α β=αβ,则<∑*

, >是一个代数系统。

说明:单位元、零元等叫代数常数。

5.2.2 子代数 定义5.1.2 设为一个代数系统,T 为S 的非空子集。若T 关于*1,

*2,…,*n 都封闭,且T 为S 含有相同的代数常数,则称代数结构

>的子代数。 [例5.2.1] 的子代数,而的子代数。

5.2.3积代数

定义5.1.2设V 1=, V 2=是两个代数系统,V 1与V 2的积代数V 1?V 2= 其中S=S 1?S 2,,,,,2211><>

>*>=<<21212211,,,y y x x y x y x

5.3 同态与同构

定义5.3.1 设V 1=, V 2=

* >是两个代数系统,如果存在映射?:S 1→ S 2

,使得?x,y ∈ S 1都有 )()()(y x y x ???*=

则称?是从V 1到 V 2的同态映射,并称V 1和 V 2是同态的。

特别地

(1)若?是单射,则称?为单一同态;

(2)若?是满射,则称?为满同态,记为V 1∽V 2;

(3)若?是双射,则称?为同构映射,并称V 1和V 2是同构的,记为V 1≌V 2;

(4)若V 1=V 2,则称?为自同态;

(5)若V 1=V 2,且?为双射,则称?为自同构。

[例5.3.1] x

x R R 2)(,:=→+??是的同态映射,也是同构映射. [例5.3.2] ][)(,:x x Z Z n =→??是的同态映射,不是同构映射. 定义5.2.3 设V 1=和V 2=是两个代数系统,函数f :S →S '。若f 保持运算,即:

)()()(y f x f y x f '=,)()()(y f x f y x f *'=*

则称f 是从V 1到V 2的同态映射,并称V 1和V 2是同态的。类似定义单同态、满同态、同构映射、自同态、自同构等概念。

[例5.2.3] ][)(,:x x Z Z n =→??是(?⊕,表示模n 加乘)

定理5.2.4 若h 是从A =

*,+>到A ′=的满同态映射,*,+为

S 上的二元运算,则 1) 若

*满足交换律,则?也满足交换律;

2) 若*满足结合律,则?也满足结合律;

3) 若*对+满足分配律,则?对⊕也满足分配律;

4) 若e 为关于运算*的么元,则h(e)是关于?的么元;

5) 若θ为关于运算*的零元,则h(θ)是关于?的零元;

6) 若a ∈S 关于运算*是可逆的,则h(a) 关于?也是可逆的,且h(a -1)=h(a)-1

代数式 教案

教学目标 1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步; 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。 5.对本节例题的分析: 例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍. 例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已. 7.教学重点、难点: 重点:用字母表示数的意义 难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。 教学设计示例 代数式 教学目标 1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步; 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法. 教学重点和难点 重点:用字母表示数的意义 难点:学会用字母表示数及正确地说出代数式所表示的数量关系 课堂教学过程设计 一、从学生原有的认知结构提出问题 1 在小学我们曾学过几种运算律?都是什么?如可用字母表示它们? (通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律a+b=b+a; (2)乘法交换律a·b=b·a; (3)加法结合律(a+b)+c=a+(b+c); (4)乘法结合律(ab)c=a(bc); (5)乘法分配律a(b+c)=ab+ac 指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”; (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数 2 (投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0. 25小时,试问步行、骑车、乘汽车的速度分别是多少? 3 若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗? 4 (投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少? (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

第五章习题几个典型的代数系统

第五章习题几个典型的代数系统 .设A={0,1},试给出半群的运算表,其中为函数的复合运算。 .设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。 .设Z为整数集合,在Z上定义二元运算如下: x,y∈Z,x y=x+y-2 问Z关于运算能否构成群为什么 .设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下: f 1(x)=x,f 2 (x)=x-1,f 3 (x)=1-x, f 4(x)=(1-x)-1,f 5 (x)=(x-1)x-1, f 6 (x)=x(x-1)-1 令F为这六个函数构成的集合,运算为函数的复合运算。 (1) 给出运算的运算表。 (2) 验证是一个群。 .设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。.证明群中运算满足消去律.

.设G为群,若x∈G有x2=e,证明G为交换群。 .设G为群,证明e为G中唯一的幂等元。 .证明4阶群必含2阶元。 设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。 .(1) 设R 1,R 2 是环,证明R 1 与R 2 的直积R 1 ×R 2 也是环。 (2) 若R 1和R 2 为交换环和含幺环,证明R 1 ×R 2 也是交换环和含幺环。 . 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。 (1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。 (2) A={-1,0,1},运算为普通加法和乘法。 (3) A=M 2 (Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。 (4) A是非零有理数集合Q*,运算为普通加法和乘法。 .设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba. .设H是群G的子群,x∈G,令 xHx-1={xhx-1|h∈H}, 证明xHx-1是G的子群,称为H的共轭子群。 .设

代数式中的相关概念

代数式中的相关概念 1. 代数式:用运算符号(+、—、×、÷、乘方)将数与表示数的字母连接起来 的式子叫做代数式。单独一个数或者一个字母也称代数式。 注意:代数式中不含“=、≠、≤、≥、<、>、≈”等符号 2. 代数式的书写规范: (1)数与字母,字母与字母相乘,乘号可以省略,数字与数字相乘,乘号不能省略,数字要写在前面; (2)带分数与字母相乘一定要写成假分数; (3)在含有字母的除法中,一般不用“÷”号,而写成分数的形式; (4)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。 3. 单项式:由数与字母的乘积形式组成的代数式;单独的一个数字,单独的 一个字母也是单项式. (1)单项式的系数:数字因数(带符号) (2)单项式的次数:所有字母的指数和 注意:(1)π 是数字,不是字母。 (2)分母上含有字母的不是单项式 4. 多项式:由几个单项式的和组成的代数式 (1)多项式的项:多项式中每一个单项式称为该多项式的项(带符号) (2)多项式的次数:次数最高的项的次数即为该多项式的次数 (3)常数项:不含字母的项称为常数项 (4)多项式通常说成几次几项式,如12324+-n n 是4次3项式。 5. 整式:单项式和多项式统称为整式。(整式中不含有字母) 6. 难点:(1)已知系数和次数求代数式中某个字母的值类型,如 已知多项式2223434n x y z x y -+-是八次三项式,则n = ____; (2)当多项式中不含某一项(某一项“名存实亡”),那么该项的系数即为0. (3)规律类的题目:一定要学会列表,注意观察序列号(n=1,n=2,n=3……n )与变化的数(个数)之间的对应变化关系。

离散数学重点笔记

第一章,0命题逻辑 素数 = 质数,合数有因子 和或假必真同为真 (p→q)∧(q←→r),(p∧q)∧┐r,p∧(q∧┐r)等都是合式公式,而pq→r,(p→(r→q)等不是合式公式。 若公式A是单个的命题变项,则称A为0层合式 (┐p∧q)→r,(┐(p→┐q))∧((r∨s)┐p)分别为3层和4层公式 【例】求下列公式的真值表,并求成真赋值和成假赋值。 (┐p∧q)→┐r 公式(1)的成假赋值为011,其余7个赋值都是成真赋值 第二章,命题逻辑等值演算 (1)双重否定律??A?A (2)等幂律 A∧A?A ; A∨A?A (3)交换律 A∧B?B∧A ; A∨B?B∨A (4)结合律(A∧B)∧C?A∧(B∧C);(A∨B)∨C?A∨(B∨C) (5)分配律(A∧B)∨C?(A∨C)∧(B∨C);(A∨B)∧C?(A∧C)∨(B∧C)(6)德·摩根律?(A∨B)??A∧?B ;?(A∧B)??A∨?B (7)吸收律 A∨(A∧B)?A;A∧(A∨B)?A (8)零一律 A∨1?1 ; A∧0?0 (9)同一律 A∨0?A ; A∧1?A (10)排中律 A∨?A?1 (11)矛盾律 A∧?A?0

(12)蕴涵等值式 A→B??A∨B (13)假言易位 A→B??B→?A (14)等价等值式 A?B?(A→B)∧(B→A) (15)等价否定等值式 A?B??A??B??B??A (16)归缪式(A→B)∧(A→?B)??A (p∧┐q)∨(┐q∧┐r)∨p (p∨q∨r)∧(┐p∨┐q)∧r 一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式 主范式【∧小真,∨大假】 ∧成真小写 【例】 (p→q)→(┐q→┐p) = ┐(┐p∨q)∨(q∨┐p) (消去→) = (p∧┐q)∨┐p∨q (┐内移) (已为析取范式) = (p∧┐q)∨(┐p∧┐q)∨(┐p∧q)∨(┐p∧q)∨(p∧q) (*) = m2∨m0∨m1∨m1∨m3 = m0∨m1∨m2∨m3 (幂等律、排序) (*)由┐p及q派生的极小项的过程如下: ┐p = ┐p∧(┐q∨q) = (┐p∧┐q)∨(┐p∧q) q = (┐p∨p)∧q = (┐p∧q)∨(p∧q)

七年级数学代数式试题

代数式与列代数式 知识要点: 1.代数式的概念:用基本的运算符号(指加,减,乘,除,乘方 )把数或表示 数的字母连结而成的式子叫做代数式。单独一个数或字母也 是代数式。 2. 代数式的书写: (1)系数写在字母前面 (2)带分数写成假分数的形式 (3)除号用分数线“-”代替 (4)字母之间的乘法要省略,或用“?”代替。 典型例题 例1 在10,x 2,b a 2-,r c π2=, s t ,a <0中,代数式的个数有( ) A 、5个 B 、4个 C 、3个 D 、2个 例2 下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213 E. mn 35 F. -3×6 例3(1) 某市出租车收费标准为:起步价5元,3千米后每千米价1.2元,则乘坐出租车走x(x ﹥3)千米应付______________元. (2)一个两位数,个位上的数字是为 a ,十位上的数字为 b ,则这个两位数是 (3)若 n 为整数,则奇数可表示为 ,则偶数可表示为 , 例4 下列各题中,错误的是( ) A. 代数式.,22的平方和的意义是y x y x + B. 代数式5(x+y)的意义是5与(x+y)的积 C. x 的5倍与y 的和的一半,用代数式表示为2 5y x + D. 比x 的2倍多3的数,用代数式表示为2x+3 例5 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.

强化练习 一、填空题 1. 代数式2a-b 表示的意义是_____________________________. 2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________. ⑵a 、b 两数的和的平方与它们差的平方和________________. 3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米. 4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元. 5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------ 请你将猜想到的规律用自然数n(n ≥1)表示出来______________________. 6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________, 当a=5时,这个两位数为__ _______. 二、选择题 1. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ) A. 0.7a 元 B.0.3a 元 C.a 310 元 D. a 7 10元 2. 根据下列条件列出的代数式,错误的是( ) A. a 、b 两数的平方差为a 2-b 2 B. a 与b 两数差的平方为(a-b)2 C. a 与b 的平方的差为a 2-b 2 D. a 与b 的差的平方为(a-b)2 3. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ) A. –2005 B. 2005 C. -1 D. 1 4. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ) A. ( mx+ny )元 B. (m+n)(x+y) C. (nx+my )元 D. mn(x+y) 元 5. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ) A. 14 B. –50 C. –14 D. 50 三、解答题 1. 已知代数式3a 2-2a+6的值为8, 求12 32+-a a 的值.

离散数学 代数系统

第三部分:代数系统 1.在代数系统,S *中,若一个元素的逆元是唯一的,其运算*必定可结合。( ) 2.每一个有限整环一定是域,反之也对。( ) 3.任何循环群必定是阿贝尔群,反之亦真。( ) 4.设(),A ∧∨是布尔代数,则(),A ∧∨一定为有补分配格。( ) 5.设Q 为有理数集,Q 上运算*定义为max(,)a b a b *=,则 ,Q * 是半群。( ) 6.阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。( ) 7.群中可以有零元(对阶数大于一的群)。( ) 8.循环群一定是阿贝尔群。( ) 9.每一个链都是分配格。( ) 1. 对自然数集合N ,哪种运算不是可结合的,运算定义为任,a b N ∈ ( ) A. min(,)a b a b *= B. 2a b a b *=+ C. 3a b a b *=+- D. a b a b *=+ (mod 3) 2. 任意具有多个等幂元的半群,它 ( ) A. 不能构成群 B. 不一定能构成群 C. 不能构成交换群 D. 能构成交换群 3. 循环群33,Z +的生成元为[][]1,2,它们的周期为 ( ) A. 5 B. 6 C. 3 D. 9 4. 设是环,则下列正确的是 ( ) A. 是交换群 B. 是加法群 C. 对*是可分配的 D. *对 是可分配的 5. 下面集合哪个关于减法运算是封闭的 ( ) A. N B. {2|}x x I ∈ C. {21|}x x I +∈ D. {x |x 是质数} 6. 具有如下定义的代数系统,G ?*?,哪个不构成群 ( ) A. G={1,10},*是模11乘 B. G={1,3,4,5,9},*是模11乘 C. G =Q(有理数集),*是普通加法 D. G =Q(有理数集),*是普通乘法 7. 设G ={23|,m n m n I *∈},*为普通乘法.则代数系统,G ?*?的么元为 ( ) A.不存在 B. e =0023? C. e =2×3 D. e =1123--? 8. 任意具有多个等幂元的半群,它( A ) A. 不能构成群 B. 不一定能构成群 C. 必能构成群 D. 能构成交换群 9. 在自然数集N 上,下面哪个运算是可结合的,对任意a ,b N ∈ ( ) A. a b a b *=- B. max(,)a b a b *= C. 5a b a b *=+ D. ||a b a b *=-

计算机代数系统第5章-方程求解

第五章 方程求解 1 代数方程(组)求解 1.1 常用求解工具—solve 求解代数方程或代数方程组, 使用Maple 中的solve 函数. 求解关于x 的方程eqn=0的命令格式为: solve(eqn, x); 求解关于变量组vars 的方程组eqns 的命令为: solve(eqns, vars); > eqn:=(x^2+x+2)*(x-1); := eqn () + + x 2x 2() - x 1 > solve(eqn,x); ,,1- + 1212I 7- - 1212 I 7 当然, solve 也可以求解含有未知参数的方程: > eqn:=2*x^2-5*a*x=1; := eqn = - 2x 25a x 1 > solve(eqn,x); , + 5a 14 + 25a 28 - 5a 1 + 25a 28 solve 函数的第一个参数是有待求解的方程或方程的集合, 当然也可以是单个表达式或者表达式的集合, 如下例: > solve(a+ln(x-3)-ln(x),x); 3e a - + 1e a 对于第二个参数, Maple 的标准形式是未知变量或者变量集合, 当其被省略时, 函数indets 自动获取未知变量. 但当方程中含有参数时, 则会出现一些意想不到的情况: > solve(a+ln(x-3)-ln(x));

{}, = x x = a - + ()ln - x 3()ln x 很多情况下, 我们知道一类方程或方程组有解, 但却没有解决这类方程的一般解法, 或者说没有解析解. 比如, 一般的五次或五次以上的多项式, 其解不能写成解析表达式. Maple 具备用所有一般算法尝试所遇到的问题, 在找不到解的时候, Maple 会用RootOf 给出形式解. > x^7-2*x^6-4*x^5-x^3+x^2+6*x+4; - - - + + + x 72x 64x 5x 3x 26x 4 > solve(%); + 15 - 15()RootOf , - - _Z 5_Z 1 = index 1()RootOf , - - _Z 5_Z 1 = index 2()RootOf , - - _Z 5_Z 1 = index 3,,,,, ()RootOf , - - _Z 5_Z 1 = index 4()RootOf , - - _Z 5_Z 1 = index 5, > solve(cos(x)=x,x); ()RootOf - _Z ()cos _Z 对于方程组解的个数可用nops 命令获得, 如: > eqns:={seq(x[i]^2=x[i],i=1..7)}; := eqns {},,,,,, = x 12x 1 = x 22x 2 = x 32x 3 = x 42x 4 = x 52x 5 = x 62x 6 = x 72 x 7 > nops({solve(eqns)}); 128 但是, 有时候, Maple 甚至对一些“显而易见”的结果置之不理, 如: > solve(sin(x)=3*x/Pi,x); ()RootOf - 3_Z ()sin _Z π 此方程的解为0 ,6 π±, 但Maple 却对这个超越方程无能为力, 即便使用allvalues 求解也只有下述结果: > allvalues(%); ()RootOf , - 3_Z ()sin _Z π0. 另外一个问题是, Maple 在求解方程之前,会对所有的方程或表达式进行化简, 而不管表达式的类型, 由此而产生一些低级的错误: > (x-1)^2/(x^2-1); () - x 12 - x 21 > solve(%); 1

代数式的值知识点一代数式的相关概念

代数式的值知识点一 代数式的相关概念 1.代数式的定义 用加、减、乘、除及乘方等运算符号把数或表示数的字母连接而成的式子,叫做 代数式单个的数或字母也是代数式.如a+b,2ab a y x xy t s a ,2 1,0,,,1 等。 温馨提示: (1)代数式中不含有“=”“>”“<”“≠”等符号 (2)代数式中,除了含有数、字母和运算符号外,还可含有括号如2(x+y)也是代数式 例1 在式子m+5、ab 、a+b<1、x 、-ah 、s=ab 中,代数式的数是 ( ) 2代数式的读法 (1) 按运算顺序读:a+b 读作“a 加b ”,t s 读作“s ”除以“t ”或“t 分之s ” (2)按运算结果读:a+b 读作“a 与b 的和”, t s 读作s 与t 的商 温馨提示: (1)一个代数式无论按哪种读法,都要体现运算顺序,而且不至于引起误解 (2)括号内的代数式应看成一个整体,按运算结果来读 3.书写要求 (1)数与字母相乘或字母与字母相乘时,“×”可以省略不写或用“·”代替; (2)数与字母相乘时,数要写在字母前面,如4xa 应写作4a (3)数字因数是1或-1时,“1”常省略不写,如1×mn 写成m,-1*mn 写成-mn; (4)带分数与字母相乘时应把带分数化为假分数,如211×a 应写成a 2 3

(5)含有字母的除式应写成分数的形式,如b÷a应写成 a b (6)式子后面有单位且式子是和或差的形式时,应把式子用括号括起来,如(3+a)米,4+2(m-1)]千克等 例2 下列各式:3.、350×3,x-1,2a÷b,其中符合书写要求的有 ( ) 个个个 D4个 4.列代数式 (1)列代数式的含义:列代数式就是把问题中与数量有关的词语用含有数、字母和运算符号的式子表示出来 (2)列代数式的步骤:首先要认真审题,弄清问题中表示的数量关系与运算顺序,然后将题中表示数量关系的词 语正确地转化为代数式 温馨提示 (1)正确理解问题中的数量关系是列代数式的 关键,特别是要弄清楚问题中“和”“差”“积”“商”及“大”“小”“多”“少”“倍”“几分之几”等词语的含义 (2)若所列代数式的结果是含有加、减的式子,且后面带有单位,要用括号把整个代数式括起来,再在后面写上单位 例3用代数式表示: (1)a除b的商与5的差; (2)比m小3的数的35%; (3)m与n的和乘m与n的差 (4)a的一半与b的2倍的和 5.代数式表示的实际意义 (1)若将代数式中的数、字母及运算符号赋予具体的含义,则代数式就表示某些实际意义 (2)解释一个代数式的实际意义时,可联系生活,构造问题情境,使所叙述的数量关系与代数 式中的数量关系一致如代数式 3b + 2a 的实际意义可解释为购买甲种糖果2千克,乙种糖果1

离散数学代数系统练习

一、填空 1.下列集合中, 对普通加法和普通乘法都封闭。 ( ) (A ){}1,0 (B ){}2,1 (C ){}N n n ∈2 (D ){} N n n ∈2 2、在自然数集N 上,下面哪种运算是可结合的? ( ) (A )b a - (B )),max(b a (C )b a 2+ (D )b a - 3、有理数集Q 关于下列哪个运算能构成代数系统? ( ) (A )b a b a =* (B )()1ln 22++=*b a b a (C )()b a b a +=*sin (D )ab b a b a -+=* 4、下列运算中,哪种运算关于整数集I 不能构成半群? ( ) (A )()b a b a ,max =* (B )b b a =* (C )ab b a 2=* (D )b a b a -=* 5.设代数系统?A ,·?,则( )成立. A .如果?A ,·?是群,则?A ,·?是阿贝尔群 B .如果?A ,·?是阿贝尔群,则?A ,·?是循环群 C .如果?A ,·?是循环群,则?A ,·?是阿贝尔群 D .如果?A ,·?是阿贝尔群,则?A ,·?必不是循环群 6.设?L ,∧∨,?是格,?L ,≤?是由这个格诱导的偏序集,则( )不成立. A .对任意a L b a ,,∈≤b b a b =∨? B .∧∨对是可分配 C .∧∨,都满足幂等律 D .?L,≤?的每对元素都有最小上界与最大下界 7.在下列四个哈斯图表示的偏序集中( )是格.

8. 已知偏序集的哈斯图,如图所示,是格的为( ) 9. 6阶有限群的任何子群一定不是()。 (A) 2阶(B) 3 阶(C) 4 阶(D) 6 阶 10. 下列哪个偏序集构成有界格() (1) (N,≤)(2) (Z,≥) (3) ({2,3,4,6,12},|(整除关系))(4) (P(A),?) 11. 下面代数系统中(G、*)中()不是群 A、G为整数集合*为加法 B、G为偶数集合*为加法 C、G为有理数集合*为加法 D、G为有理数集合*为乘法 12. 设 是阶大于1的群,则下列命题中()不真。 A、存在零元 B、存在幺元 C、G中每个元素都有逆元 D、运算*是可结合的 13. 若的真子群,且|H︳= n|G︳= m, 则有 A、n整除m B、m整除n C、n整除m且m整除n D、n不整除m且m不整除n 14. 设?L,≤?是一条链,其中|L︳≧3,则?L,≤?是() A、不是格 B、有补格 C、分配格 D、布尔格

初一代数式的概念

代数式的概念 考点名称:代数式的概念 代数式: 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。 单独一个数和字母也是代数式。 例如:ax+2b,-2/3,b^2/26,√a+√2等。 代数式的性质: (1)单独一个数或一个字母也是代数式,如-3,a. (2)代数式中只能有运算符号,不应含有等于号(=、≡)、不等号(≠、?、?、<、>、≤、≥)、约等号≈,也就是说,等式或不等式不是代数式,但代数式中可以含有括号。可以有绝对值。例如:|x|,|-2.25| 等。 (3)代数式中的字母表示的数必须使这个代数式有意义,即在实际问题中,字母表示的数要符合实际问题。 代数式的分类: 在实数范围内,代数式分为有理式和无理式。

一、有理式 有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。 这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算. 整式有包括单项式(数字或字母的乘积或单独的一个数字或字母)和多项式(若干个单项式的和). 1.单项式 没有加减运算的整式叫做单项式。 单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数 2.多项式 个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。 多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。 齐次多项式:各项次数相同的多项式叫做齐次多项式。 不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。

代数式与整式的概念及运算

代数式与正式的概念及运算 一、代数式的概念 1、代数式的概念 用运算符号把数和表示数的字母连接而成的式子,叫做代数式,单独的一个数或一个字母,也是代数式. 【注意点】代数式中除含有数,字母和运算符号外,还可以有括号,但不能含“ =”、“≠”、“>”、“<”、“≥”、“≤”符号. 例1 判断下列式子是不是代数式 2、代数式的分类; 单项式:都是数与字母的积的代数式叫做单项式,单独的一个数或字母也是单项式。 多项式:几个单项式的和叫做多项式 整式:单项式和多项式统称整式. 分式:如果整式A除以整式B,可以表示成A B 的形式,且除式B中含有字母,那么称式子为分 式. 有理式:整式和分式统称有理式. 所以总结: ; 2 )1 ( )8( ;0 )6( ; )4( ;0 1 )2( + = ≥ - n n vt S x ; )9( ;0 4 )7( ; )5( ; 2 1 )3( ;4 3 )1( t s x a ah x = + +

练习: 1、填空题 (1)某种足球a 元,则涨价20%后是 元; (2)m 箱橘子重x kg ,每箱重 kg ; (3)购买单价为a 元的笔记本8本,共需人民币 元; (4)小明的体重是a kg ,小红比小明重b kg ,则小红的体重是 kg ; (5)练习本每本定价0.6元,铅笔每支定价0.2元,买a 本练习本,b 支铅笔共需_______元; (6)三个连续偶数中间的一个为2n ,则这三个数的和表示为_________。 2、选择题: (1)在一次数学测验中,30名男生平均得分为a,20名女生平均得分为b ,这个班所有同学的平均得分是( )。 A.2a b + B.30202a b + C.302050a b + D. 50 a b + (2)一种小麦磨成面粉后重量减轻15%,要得到m 千克面粉,需要小麦( )千克。 A.(1+15%)m B.(1-15%)m C.15%m + D.15%m - 3、设某数为x ,用x 表示下列各式: (1)某数与12的差;(2)某数的12与13 的和;(3)某数与1的差的平方;(4)某数与2的和的倒数 二、列代数式和代数式所表示的实际意义 (1) 列代数式 在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来即列代数式,使问题变得简洁,更具一般性,但列代数式的关键是正确分析数量关系,弄清运算顺序,掌握诸如和、差、积、商、倍分、大、小、多、少、增加了,增加到,除、除以等概念.

第一课 对“代数式”的基本概念的学习

第九章 整式 第一课 对“代数式”的基本概念的学习 犹如 六年级第一课一样,我们先学习“数”的一些知识点,七年级的第一课,我们先学习“式”的一些知识点。 一、学习“代数式”的基本概念 学习两个重要概念:什么是代数式?什么是代数式的值? A 】什么是“代数式”:用运算符号和括号....... 把数或者表示数的字母连接而成的式子叫做代数 式 单独的一个数字和字母都是代数式:3 、x 、0 等等,所以某 种程度,只要不含“=、>、≤……”等符号的式子,都是代数式 B 】什么是“代数式的值”:把字母代表的数代入..代数式,计算出来的结果....... (数值)是值 二、教材9.1~9.3的内容,核心就是:会列代数式,会代入求代数式的值。 A 】会列代数式 列代数式要注意的几个问题 1、数字和数字相乘时,用“×”联结:3×15 2、数字和字母、字母和字母相乘时,则省略“×、?”,并且数字写在字母的前面: 3x 、 5 y 、()55mn mn ?-=-、()()()33a b a b +?-=-+,遇到带分数时候,则 需要化成假分数:15222 x x ?=,遇到字母乘以1或者-1时,1省略不写 3、除法的时候,一般以分数形式表达:55y y ÷= 4、遇到负数的时候,通常带有括号:()22=2--的平方、 ()3=3x x --减去的相反数的差 【学生练习时间】列代数式 1、一支圆珠笔 a 元,5 支圆珠笔共 元。 2、“a 与 b 的2倍的和”用代数式表示为 。 3、比 a 的 2 倍小 3 的数是 。 4、某商品原价为 a 元,打 7 折后的价格为 元。 5、一个圆的半径为 r ,则这个圆的面积为 。 6、代数式 x 2-y 的意义是 。 7、一个两位数,个位上的数字是为 a ,十位上的数字为 b ,则这个两位数是 。

内蒙古大学离散习题代数系统部分答案

《离散数学》代数系统 1.以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有 可逆元素的逆元. 1)P(B)关于对称差运算⊕,其中P(B)为幂集. 构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。 2)A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b. 2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算?(2)在A上可以定义多少不同的具有交换律的二元 运算?24个不同的二元运算;23个不同的具有交换律的二元运算 3.设A={1,2},B是A上的等价关系的集合. 1)列出B的元素. 2元集合上只有2种划分,因此只有2个等价关系,即B={I A,E A} 2)给出代数系统V=的运算表. 3)求出V的幺元、零元和所有可逆元素的逆元. 幺元E A、零元I A;只有E A可逆,其逆元为E A. 4)说明V是否为半群、独异点和群?V是为半群、独异点,不是群 4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律. 1)给出关于*运算的一个运算表. 其中表中?位置可以是a、b、c。 2)*运算是否满足结合律,为什么?不满足结合律;a*(b*b)=c≠(a*b)*b=b 5.设是一个代数系统。 *是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法). 证明:: 是独异点. 6.如果是半群,且*是可交换的. 证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b. (a*b)*(a*b) = a*(b*a)*b 结合律 = a*( a*b)*b 交换律 = (a* a)*(b*b) = a*b. 7.设是一个群,则?a,b,c∈S。试证明:群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c. 8.求循环群的所有生成元和子群. 生成元有:1、3、5、7、9、11、13、15 子群有:<0>、<1>、<2>、<4>、<8>. 9.设是群,a∈G . 现定义一种新的二元运算⊙:x⊙y=x*a*y,?x,y∈G . 证明:也是群. 证明:显然⊙是G上的一个二元运算。 ?x,y,z∈G,(x⊙y)⊙z=(x⊙y)*a*z=(x*a*y)*a*z=x*a*(y*a*z)= x*a*(y⊙z)= x⊙(y⊙z).故运算⊙满足结合律.

第5章代数系统的一些性质

第五章代数系统的一般性质 代数的概念与方法是研究计算机科学和工程的重要数学工具。众所周知,在许多实际问题的研究中都离不开数学模型,而构造数学模型就要用到某种数学结构,而近世代数研究的中心问题是代数系统的结构:半群、群、格与布尔代数等等。近世代数的基本概念、方法和结果已成为计算机科学与工程领域中研究人员的基本工具。在研究形式语言与自动机理论、编码理论、关系数据库理论、抽象数据类型理论中,在描述机器可计算的函数、研究计算复杂性、刻画抽象数据结构、研究程序设计学中的语义学、设计逻辑电路中有着十分广泛的应用。 5.1 代数运算及其性质 5.1.1代数运算的定义 定义5.1.1 设S是一个非空集合, (1)函数f:S→S,称为一个S上的一个一元运算。 (2)函数f:S?S→S,称为一个S上的一个二元运算。 记号: f(x,y)=z, xfy=z x y=z (3)函数f:S?S?…?S →S,称为一个S上的一个n元运算。 [例5.1.1](1)数理逻辑中的联结词;集合论中的并运算、交运算和补运算;整数集中的加法、减法和乘法运算都是相应集合上的运算. (2)但Z中的除法不是一个二元运算。 (3) 在Z商定义x*y=x+y-2,则*是一个二元运算。 当S是有限集时,S上的一元、二元运算可用运算表来定义。 定义5.1.2 设 是集合S上的n元运算,S是S的一个非空子集。若对?x1,x2,…,x n∈S,有 (x 1,x 2,…,x n)∈S,则称S关于运算 是封闭的。 [例5.1.2]实数集关于数的普通除法是封闭的,整数集关于数的普通加法不是封闭的。

5.1.2代数运算的性质 定义5.1.3 设*是集合S上的二元运算。若?x,y∈S,x*y=y*x, 则称运算*满足交换律(或称*是可交换的)。 定义5.1.4 设*是集合S上的二元运算。若?x,y,z∈S,(x*y)*z = x*(y*z),则称运算*满足结合律(或称*是可结合的)。 定义5.1.5 设*是集合S上的二元运算。若?x∈S,x*x = x,则称运算*满足幂等律。定义5.1.8 设*和 是集合S上的二元运算。若?x,y,z∈S, x*(y z)=(x*y) x*z), (y z)*x =(y*x) (z*x), 则称*关于 满足分配律。 定义5.1.9设*和 是集合S上的二元运算。若?x,y∈S, x*(x y)=x x (x*y)=x 则称*关于 满足分配律。 [例5.1.3]R上的加法和乘法运算是可交换的,也是可结合的;但减法却是不可交换和 不可结合的;乘法关于加法是可分配的,但加法关于乘法则是不可分配的。任一集合的幂集 上的并和交运算是可交换和可结合的,并且它们是相互可分配的。 注:若运算*是可结合的,则有时我们简称*为乘法,而把x*y简记为xy,称为x 与y的积。 5.1.3特殊元素:单位元、零元、逆元 定义5.1.10 设*是集合S上的二元运算。 (1)若e l∈S,使得?x∈S,有e l*x=x,则称e l是关于运算*的左单位元(左么元); (2)若e r∈S,使得?x∈S,有x*e r=x,则称e r是关于运算*的右单位元(右么元); (3)若e∈S,使得?x∈S,有e*x=x*e=x,则称e是关于运算*的单位元(么元)。 定理5.1.3 设*是集合S上的二元运算,且e l,e r分别为关于运算*的左和右么元,则

代数式的概念知识点总结及习题

第12讲 代数式 【知识要点】 1、 代数式 代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。 如:3 ,),(2,,),1(),1(34a t s n m ab b a x x x x +++++-+等等。 代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; ^ (4)带分数化成假分数。 2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。 【典型例题】 【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么 … 【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式哪些不是代数式 (1) 123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)2 7 ;(6)5332>。 @ 【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 24 38-中,符合代数式书写要求的有 。 【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱 ` 【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。 … 注意:单独一个数或 一个字母也是代数式。

【课堂练习】 一、填空 三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、 六、某长方形的长是宽的2 3 倍,且长是a cm ,则该长方形的周长是 cm ; 七、棱长是a cm 的正方体的体积是 cm 3 ; 八、产量由m kg 增长10%,就达到 kg ; 九、【 十、 学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,在 捐给社区的图书为 册; 十一、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。 十二、农民张大伯因病住院,手术费用为a 元,其他费用为b 元,由于参加农村合作医疗,手术费用报销85%,其他费用报销60%,则张大伯此次住院可报销 元,他自己应付 元。 二、 三、 选择题 (1)某商场将一种商品按标价9折又优惠20元出售,若标价a 元,则售价为( ) } A 、(9a-20)元 B 、(9a-20)元 C 、(+20)元 D 、()元 (2)当2x =-,3y =时,代数式 22x y x y -+的值是( ) A 、-8 B 、8 C 、5 D 、-5

代数式知识点

第二章:代数式 基础知识点: 一、代数式 1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。 2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。 3、代数式的分类: ??? ????????????无理式分式 多项式单项式整式有理式代数式 二、整式的有关概念及运算 1、概念 (1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。 单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。 单项式的系数:单项式中的数字因数叫单项式的系数。 (2)多项式:几个单项式的和叫做多项式。 多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。 多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。 升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。 (3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。 2、运算 (1)整式的加减: 合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。 添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。 整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。 (2)整式的乘除: 幂的运算法则:其中m 、n 都是正整数 同底数幂相乘:n m n m a a a +=?;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。 单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个

离散数学结构 第6章 集合代数

第六章集合代数 1. 集合,相等,(真)包含,子集,空集,全集,幂集 2. 交,并,(相对和绝对)补,对称差,广义交,广义并 3. 文氏图,有穷集计数问题 4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同一 律,排中律,矛盾律,余补律,双重否定律,补交转换律等) 学习要求 1. 熟练掌握集合的子集、相等、空集、全集、幂集等概念及其符号化表示 2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、广义交、广义并的定义及其性 质 3. 掌握集合的文氏图的画法及利用文氏图解决有限集的计数问题的方法 4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零 律、同一律、排中律、矛盾律、余补律、双重否定律、补交转换律) 5. 准确地用逻辑演算或利用已知的集合恒等式或包含式证明新的等式或包含式

6.1 集合的基本概念 一.集合的表示 集合是不能精确定义的基本概念。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。例如: 方程x2-1=0的实数解集合; 26个英文字母的集合; 坐标平面上所有点的集合; …… 集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。 表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。例如 A={a,b,c,…,z} Z={0,±1,±2,…} 都是合法的表示。谓词表示法是用谓词来概括集合中元素的属性,例如集合 B={x|x∈R∧x2-1=0} 表示方程x2-1=0的实数解集。许多集合可以用两种方法来表示,如B也可以写成{-1,1}。但是有些集合不可以用列元素法表示,如实数集合。 集合的元素是彼此不同的,如果同一个元素在集合中多次出现应该认为是一个元素,如{1,1,2,2,3}={1,2,3} 集合的元素是无序的,如 {1,2,3}={3,1,2} 在本书所采用的体系中规定集合的元素都是集合。 元素和集合之间的关系是隶属关系,即属于或不属于,属于记作∈,不属于记作,例如 A={a,{b,c},d,{{d}}} 这里a∈A,{b,c}∈A,d∈A,{{d}}∈A,但b A,{d} A. b和{d}是A的元素的元素。可以用一种树形图来表示这种隶属关系,该图分层构成,每个层上的结点都表示一个集合,它的儿子就是它的元素。上述集合A的树形图如图6.1所示。图中的a,b,c,d也是集合,由于所讨论的问题与a,b,c,d的元素无关,所以没有列出它们的元素。鉴于集合的元素都是集合这一规定,隶属关系可以看作是处在不同层次上的集合之间的关系。

文本预览
相关文档 最新文档