当前位置:文档之家› 直角三角形的证明

直角三角形的证明

直角三角形的证明
直角三角形的证明

第一章 三角形的证明 第二节 直角三角形(二)

模块一 预习反馈 一、学习准备 1、一般三角形全等判定方法有: 。 2、直角三角形的判定:①有一个角是_____的三角形叫做直角三角形。 ②有两个角互余的三角形是_____三角形。

③如果三角形两边的平方___等于第三边的______,那么这个三角形是____三角形。

3、阅读教材:第2节《直角三角形》 二、教材精读

4、已知:如图,△ABC 和△A’B’C’中∠C=∠C’=90°,且AB=A’B’,BC=B’C’, 求证:△ABC ≌△A’B’C’

证明:Rt △ABC 和Rt △A’B’C’中,

AC 2=___________ , A’C’2=____________2,(勾股定理) ∵AB=A’B’,BC=B’C’,’ ∴AC 2=______ ∴AC=_______

∴△ABC ≌A’B’C’( )

归纳:斜边和一条___________对应相等的两个______三角形全等。(“斜边、直

角边”或“__”)

推理格式:在Rt △ABC 和Rt △A’B’C’中,∠C=∠C’=90°

∵ AB=A’B’

BC=B’C’

∴△ABC ____A’B’C’(HL) 实践练习:

如图,∠B =∠E = 90°,AC = DF ,BF = EC 。求证:BA = ED 。 模块二 合作探究

5、在Rt △ABC 中,∠C = 90°,且DE ⊥AB ,CD = ED ,求证:AD 是∠BAC 的角平分线。

E

A C

B A D E

21E F A

B C

6、如图,∠ACB = ∠ADB = 90°,AC = AD ,E 是AB 上的一点,求证:CE = DE 。

7、用三角尺可以作角平线,如图,在已知∠AOB 的两边上分别取点M 、N ,使OM=ON ,再过点M 作OA 的垂线,过点N 作OB 的垂线,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线。 证明:

模块三 形成提升

1、如图,Rt △ABC 和Rt △DEF ,∠C =∠F =90°。

(1)若∠A =∠D ,BC =EF ,则Rt △ABC ≌Rt △DEF 的依据是__________. (2)若∠A =∠D ,AC =DF ,则Rt △ABC ≌Rt △DEF 的依据是__________. (3)若AC =DF ,CB =F E ,则Rt △ABC ≌Rt △DEF 的依据是__________.

2、如图,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,BD = CD 。 求证:EB = FC 。

模块四 小结反思 一、本课知识: 1、斜边和一条___________对应相等的两个______三角形全等。(“斜边、直角边”或“__”)

C B A D

E

第一章 三角形的证明

第三节 线段的垂直平分线(一)

模块一 预习反馈 一、学习准备

1、段的垂直平分线:垂直且______一条线段的直线是这条线段的垂直平分线。

2、线段垂直平分线上的____到这条线段两个端点的距离__________。

3、阅读教材:第3节《线段的垂直平分线》 二、教材精读

4、已知:如图,直线MN ⊥AB ,垂足是C ,且AC=BC ,P 是MN 上的任意一点。 求证:PA=PB 。

证明:∵MN ⊥AB ,

∴∠PCA=_______=90° ∵在△PC 和△PCB 中,

∴△PCA ≌△PCB ( ) ∴PA=PB (全等三角形的对应边相等)

归纳:线段垂直平分线上的____到这条线段两个端点的距离__________。

推理格式:∵PC ⊥AB ,AC=____(点P 在线段AB 的垂直平分线MN 上),

∴ =PB

5、这个定理的逆命题:到线段两个端点的距离相等的点,

______________________________,它是___命题。如果是真命题请证明。 已知:如图,AB=AC

求证:点A 在线段BC 的垂直平分线上

证明:(提示:利用等腰三角形三线合一)

归纳:定理:到一条线段两个端点距离__________的点,在这条线段的____________线上。

推理格式:∵AB = AC ,∴____点在线段BC 的 __。 模块二 合作探究 6、已知:线段AB 解:作图如下: 求作:线段AB 的垂直平分线CD 。

作法:(1)分别以点A 、B 为圆心,以大于1

2 AB 的长为半径作弧,两弧相交于点C 、D (2)作直线CD 。

即直线CD 就是线段AB 的垂直平分线。

A B

C B A

E D A

B C E D A B

C

B

A

D

E

归纳:因为直线CD 与线段AB 的交点就是AB 的中点,

所以我们也用这种方法作线段的_____________。 7、如图,在△ABC 中,∠C = 90°,DE 是AB 的垂直平分线。 1)则BD = ;

2)若∠B = 40°,则∠BAC = °,∠DAB = °,

∠DAC = °,∠CDA = °;

3)若AC= 4, BC = 5,则DA + DC = __ ,△ACD 的周长为 __ 。 8、如图,DE 为△ABC 的AB 边的垂直平分线,D 为垂足,DE 交BC 于E , AC = 5,BC = 8,求:△AEC 的周长。

模块三 形成提升

在△ABC 中,AB = AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60cm 和38cm ,求AB 、BC 。

模块四 小结反思 一、本课知识:

1、线段垂直平分线上的____到这条线段两个端点的距离__________。

2、到一条线段两个端点距离__________的点,在这条线段的____________线上。

第一章 三角形的证明

第三节 线段的垂直平分线(二)

模块一 预习反馈 一、学习准备

1、尺规作图是指用 作图。

2线段垂直平分线上的点到 。 3、到一条线段两个端点距离相等的点,在 。 4、阅读教材:第3节《线段的垂直平分线》 二、教材精读

5、已知:如图,在△ABC中,设AB、BC的垂直平分线相交于点P,

求证:AB,BC,AC的垂直平分线相交于点P,且AP=BP=CP。

证明:连接AP、BP、CP,

∵点P在线段AB的垂直平分线上,

∴PA=____(线段垂直平分线上的点到这条线段两个端点距

离相等)

∵点P在线段BC的垂直平分线上,

归纳:三角形三条边的__________线相交于_____,并且这一点到三个______的距离相等。

推理格式:∵点P是△ABC的三条边的垂直平分线的交点,

∴PA=_____=_______.

6、做一做:已知底边上的高,求作等腰三角形。

已知:线段a、h

求作:△ABC,使AB=AC,且BC=a,高AD=h.

作法:

(1)作线段AB=a;解:作图如下:

(2)作线段AB的垂直平分线l,交BC于点D,

(3)在L上作线段DC,使DC=h

(4)连接AC,BC。△ABC为所求的等腰三角形。

模块二合作探究

7、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站建在什么地方,才能使它到A、B的距离相等?

8、已知直线AB和AB上(外)一点P,利用尺规作l的垂线,使它经过点P。

模块三 形成提升 1、△ABC 的三条边的垂直平分线相交于点P ,若PA = 10,则PB= _ ,PC=_ 。 2、已知:线段a =3cm 、C=5cm 求作:Rt △ABC ,使斜边AB = C 作法:

3、已知:△ABC 中,AB=AC ,AD 是BC 边上的中线,AB 的垂直平分线交AD 于O 。

求证:OA=OB=OC .

模块四 小结反思 一、本课知识: 1、三角形三条边的__________线相交于_____,并且这一点到三个______的距离相等。

A B

2直角三角形(一)

第一章 三角形的证明 2.直角三角形(一) 【学习目标】 (1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。 (2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立. 【学习过程】 一.认真思考(课堂互动) 1.复习引入 问题1.直角三角形的两锐角有怎样的关系?为什么? 问题2.如果一个三角形有两个锐角互余,那么这个三角形是直角三角形吗? 结论:1. 2. 教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗? 请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法. 2.探究直角三角形勾股定理及其逆定理 (一)勾股定理及其逆定理的证明. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 已知:如图,在△ABC 中,∠C =90°,BC =a ,AC =b ,AB =c . 求证:a 2+b 2=c 2. 证明: 反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗? 师生共同来完成. 已知:如图:在△ABC 中,AB 2+AC 2=BC 2 求证:△ABC 是直角三角形. (分析:要从边的关系,推出∠A =90°是不容易的,如果能借助于△ABC 与一个直角三角形全等,而得到∠A 与对应角(构造的三角形的直角)相等,可证.) 证明: 勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (二).互逆命题和互逆定理. 观察下面各组命题,它们的条件和结论之间有怎样的关系? (1)直角三角形两锐角互余; 如果一个三角形有两个锐角互余,那么这个三角形是直角三角形 (2)在直角三角形中,两直角边的平方和等于斜边的平方. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (3)两直线平行,内错角相等; 内错角相等,两直线平行 C A B C A B

(完整版)全等三角形基础练习证明题

全等三角形的判定 班级: 姓名: 1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。 2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF 3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD 4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD 5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE . 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE 7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A B C E H A C M E F B D A B C D F E C B D E F D C F E A B A D E B C 1 2 A D C E F B A D B A D F E C M A B C D 1 2 D C F E A B

全等三角形证明100题(无重复)解析

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C B A C D F 2 1 E

5:已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE : 6:.:如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 11:如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA : F A E D C B

12:如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 13:已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 14:如图:DF=CE ,AD=BC ,∠D=∠C 。求证:△AED ≌△BFC 。 O E D C B A F E D C B A

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

证明(二)之直角三角形

第三课时:直角三角形的证明 [知识要点] 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方,即2 2 2 b a c +=(c 为斜边). 2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系:2 22c b a =+,那么这 个三角形是直角 三角形,且c 边所对的角为直角. 3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 4、“HL ”公理作用:判定两个直角三形全等. [典型例题] 例1 如图,在Rt △DBC 中,∠C=900,∠A=300,BD 是∠ABC 的平分线,AD=20,求BC 的长。 例2 如图所示,在ABC ?中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直于AB 、 AC ,垂足为 E 、 F .求证:EB=FC . 例3 如图,在等腰直角三角形ABC 中,90=∠C o,D 是斜边AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 并交CD 的延长线于F ,CH ⊥AB 于H ,交AE 于G .求证: A B C E F D A B D C

[经典练习] 1、满足下述条件的三角形中,不是直角三角形的是( ). A 、三内角之比为1:2:3 B.三边之比为 C 、三边长为41,40,9 D. ,8 2、不能判定两个直角三角形全等的方法是( ) A .两个直角边对应相等. B .斜边和一锐角对应相等 C .斜边和一条直角边对应相等 D .面积相等 3、如图1所示,ABC ?中AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于O ,AO 的延长线交 BC 于F ,则图中全等直角三角形的对数为( ) A .3对 B .4对 C .5对 D .6对 4、如图2所示,在ABC ?中,MD 垂直平分AB 于M ,交BC 于D ,N E 垂直平分AC 于N ,交BC 于E , 若θ=∠BAC ,则∠DAE 等于( ) A .2θ B .180 o-2 θ C .-θ290o D .-θ2180o o 5,、如图5, Rt △ABC 中,AC=6cm,BC=8cm,将此三角形折叠,使直角边AC 落在斜边AB 上,点C 与点D 重合, 折痕为AE,则BE 的长为( )。 6、如图7,直线L 过正方形ABCD 的顶点B,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。 图5 图6 7、点A 、E 、F 、C 在一条直线上,AE=CF ,过点E 、F 分别作DE ⊥AC ,BF ⊥AC ,若AB=CD 。 (1)求证:BD 平分EF A B C E F D 图1 A B C 图2 A D C E D L A C B M N B A C E F G

全等三角形证明题含答案

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 A D B C

∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。∴ ∠BAF=∠EAF (∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o B A C D F 2 1 E A

直角三角形的定理及规律(新)

直角三角形的定理及知识要点 一、补充定理 直角三角形的定理 1、直角三角形两锐角互余。 2、直角三角形斜边上的中线等于斜边的一半。 3、勾股定理:直角三角形两直角边的平方和等于斜边的平方。 30角所对的直角边等于斜边的一半。 4、直角三角形中0 直角三角形的逆定理 1、两锐角互余的三角形是直角三角形。 2、一条边上的中线等于这边的一半的三角形是直角三角形。 3、勾股定理的逆定理:两边的平方和等于第三边的平方的三角形是直角三角形。 30。 4、直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边的对角为0 等腰三角形的定理 1、三角形中等边对等角。 2、三线合一:等腰三角形底边的中线、底边的高、顶角的平分线三线合为一线。 60。 3、等边三角形三内角都是0 逆定理 1、三角形中等角对等边。 等边三角形的判定 60的三角形是等边三角形。 1、有两个角等于0 2、三个角相等的三角形是等边三角形。 60的等腰三角形是等边三角形。 3、有一个角是0

二、常见的图形及规律 1、Rt△ABC中,若∠A=30°, ∠C=90°, 则 BC:AC:AB=2。 2、Rt△ABC中,若∠A=45°, ∠C=90°, 则 BC:AC:AB= 三、常见的勾股数 (一)3、4、5序列 6.8.10 5 12 13 三、最短路线问题 1、在圆柱体(底面半径为r,高为h)中,从A到B的最短路线为AB 2、在长方体(长为a,宽为b,高为h)中, (1)当a=h时,A到D的最短路线为AD=

(2)当a ≠ h 时,若a>h ,则A 到D 的最短路线为 AD = 若a

三角形的证明练习题

1.等腰三角形 一、主要知识点 1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性 质是对应边相等,对应角相等。 2、等腰三角形的有关知识点。 等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一) 3、等边三角形的有关知识点。 判定:有一个角等于60°的等腰三角形是等边三角形; 三条边都相等的三角形是等边三角形; 三个角都是60°的三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。 性质:等边三角形的三边相等,三个角都是60°。 4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从 而证明命题的结论一定成立。这种证明方法称为反证法 2.直角三角形 一、主要知识点 1、直角三角形的有关知识。 直角三角形两条直角边的平方和等于斜边的平方; 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 3.线段的垂直平分线 4.角平分线 一、主要知识点 1、线段的垂直平分线。 线段垂直平分线上的点到这条线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 2、角平分线。 角平分线上的点到这个角的两边的距离相等。 在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。 3、逆命题、互逆命题的概念及反证法 如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

新人教版八年级数学《全等三角形基础证明题》练习

全等三角形的判定班级:姓名: 1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,求证BE=CF。2.已知AC=BD,AE=CF,BE=DF,求证AE∥CF 3.已知AB=CD,BE=DF,AE=CF,求证AB∥CD 4.已知在四边形ABCD中,AB=CD,AD=CB,求证AB∥CD 5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,求证⊿ABD≌⊿ACE. 6.已知CD∥AB,DF∥EB,DF=EB,求证AF=CE 7.已知BE=CF,AB=CD,∠B=∠C,求证AF=DE A B C D F E C D E F D C F E A B A D E B C 1 2 A D C E F B A D

8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A E H A C M E F B D B A D F E C M A B C D 1 2 D C F E A B

15.已知∠A =∠D ,AC ∥FD ,AC =FD ,求证AB ∥DE 。 16.已知AC =AB ,AE =AD , ∠1=∠2,求证∠3=∠4。 17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,求证⊿ABC ≌⊿DEF 。 18.已知AD =AE ,∠B =∠C ,求证AC =AB 。 19.已知AD ⊥BC ,BD =CD ,求证AB =AC 20.已知∠1=∠2,BC =AD ,求证⊿ABC ≌⊿BAD 。 A B C E F D A B C E D F A D E B C A B C D A D E B C 1 2 3 4

直角三角形的判定定理“HL”

1 / 2 第2课时 直角三角形的判定定理“HL ” (参考用时:30分钟 ) 1. 如图所示,∠C=∠D=90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件: ①∠ABC=∠ABD;②AC=AD; ③BC=BD;④∠BAC=∠BAD. 适合的有( B ) (A)1个 (B)2个 (C)3个 (D)4个 2. 如图,△ABC 中,AB=AC,BD ⊥AC 于D,CE ⊥AB 于E,BD 和CE 交于O,AO 的延长线交BC 于F,则图中全等的直角三角形有( D ) (A)3对 (B)4对 (C)5对 (D)6对 3. 如图,在△ABC 中,∠BAC=90°,AB=AC,AE 是经过A 点的一条直线,且B,C 在AE 的两侧,BD ⊥AE 于D,CE ⊥AE 于E,CE=2,BD=6,则DE 的长为( D ) (A)2 (B)3 (C)5 (D)4 4.已知:如图,AE ⊥BC,DF ⊥BC,垂足分别为 E,F,AE=DF,AB=DC,则△ ABE ≌△ DCF (HL). 第4题图 5.如图,MN ∥PQ,AB ⊥PQ,点A,D,B,C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7, AD=EB,DE=EC,则AB= 7 . 第5题图 6. 如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD,AC 与BD 相交于点 O. (1)求证:△ABC ≌△DCB; (2)△OBC 是何种三角形?证明你的结论. (1)证明:在△ABC 和△DCB 中,∠A=∠D=90°, AC=BD,BC=CB.所以Rt △ABC ≌Rt △DCB(HL). (2)解:△OBC 是等腰三角形. 因为Rt △ABC ≌Rt △DCB,所以∠ACB=∠DBC, 所以OB=OC,所以△OBC 是等腰三角形. 7. 如图,已知Rt △ABC 中,∠ ACB=90°,CA=CB,D 是AC 上一点,E 在BC 的延长线上,且AE=BD,BD 的延长线与AE 交于点F.试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性 . 解:猜想:BF ⊥AE. 理由:因为∠ACB=90°,所以∠ACE=∠BCD=90°. 又BC=AC,BD=AE,所以△BDC ≌△AEC(HL). 所以∠CBD=∠CAE. 又因为∠CAE+∠E=90°,所以∠EBF+∠E=90°. 所以∠BFE=90°,即BF ⊥AE. 8.(1)如图1,点A,E,F,C 在一条直线 上,AE=CF,过点E,F 分别作DE ⊥AC,BF ⊥AC,若AB=CD,试证明BD 平分线段EF; (2)若将图1变为图2,其余条件不变时,上述结论是否仍然成立?请说明理由 . (1)证明:因为DE ⊥AC,BF ⊥AC, 所以∠DEC=∠BFA=90°. 因为AE=CF, 所以 AE+EF=CF+EF,

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长. 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠ 2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 A D B C

3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又,EF ∥AB ∴,∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E B A C D F 2 1 E A

几何证明-直角三角形

直角三角形全等的判定与直角三角形的性质 【知识精要】 直角三角形全等的判定 1、如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L ) 2、三角形全等的判定方法:S.S.S, S.A.S, A.S.A, A.A.S, 在直角三角形中仍可用 直角三角形的性质 1、直角三角形的两个锐角互余 2、在直角三角形中,斜边上的中线等于斜边的一半 3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 4、在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 直角三角形中常用的辅助线 1、斜边的中线 2、斜边的高 3、等腰三角形底边中线或地边上的高构造直角三角形。 【精解名题】 例1、有两条高相等的锐角三角形是等腰三角形。 例2、如图,在△ABC 中,AE 平分∠BAC ,DE 垂直平分BC 于点D ,EF ⊥AC ,交AC 的延长线于点F 。求证:AB=AC+2CF. 提示:联结EB 、EC ,作EG ⊥AB 于点G 。 例3、如图,在正方形ABCD 中,E 为AD 的中点,F 是BA 延长线上的一点,AF=2 1AB 。 求证:(1)DF=BE (2)DF ⊥BE

例4、如图,在锐角△ABC中,∠ABC=2∠C,AD⊥BC于点D,E为AC中点,ED的延长线交AB的延长线于点F . 求证:BF=BD 例5、如图,在Rt△ABC中,∠ACB=90°,点D、E在AB上,AD=AC,BE=BC。 求证:∠DCE=45° 例6、如图,已知AB=AC,∠A=120°,MN垂直平分AB,交BC于点M,求证:CM=2BM 提示:联结AM 例7、如图,在△ABC中,AB=AC,∠BAC=90°,AD//BC,BD=BC。求证:∠DCA=∠DBC

新人教版八年级数学全等三角形基础证明题练习(供参考)

1文档来源为:从网络收集整理 全等三角形的判定 班级:姓名:1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,求证BE=CF。2.已知AC=BD,AE=CF,BE=DF,求证AE∥CF 3.已知AB=CD,BE=DF,AE=CF,求证AB∥CD 4.已知在四边形ABCD中,AB=CD,AD=CB,求证AB∥CD 5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,求证⊿ABD≌⊿ACE. 6.已知CD∥AB,DF∥EB,DF=EB,求证AF=CE 7.已知BE=CF,AB=CD,∠B=∠C,求证AF=DE 8.已知AD=CB,∠A=∠C,AE=CF,求证EB∥DF 9.已知M是AB的中点,∠1=∠2,MC=MD,求证∠C=∠D。 10.已知,AE=DF,BF=CE,AE∥DF,求证AB=CD。 11.已知∠1=∠2,∠3=∠4,求证AC=AD 12.已知∠E=∠F,∠1=∠2,AB=CD,求证AE=DF 13.已知ED⊥AB,EF⊥BC,BD=EF,求证BM=ME。 14.在⊿ABC中,高AD与BE相交于点H,且AD=BD,求证⊿BHD 15.已知∠A=∠D,AC∥FD,AC=FD,求证AB∥DE。 16.已知AC=AB,AE=AD,∠1=∠2,求证∠3=∠4。 17.已知EF∥BC,AF=CD,AB⊥BC,DE⊥EF,求证⊿ABC≌⊿DEF 18.已知AD=AE,∠B=∠C,求证AC=AB。 19.已知AD⊥BC,BD=CD,求证AB=AC 20.已知∠1=∠2,BC=AD,求证⊿ABC≌⊿BAD。 21.已知AB=AC,∠1=∠2,AD=AE,求证⊿ABD≌⊿ACE. 22.已知BE∥DF,AD∥BC,AE=CF,求证⊿AFD≌⊿CEB 23.已知AD=AE,BD=CE,∠1=∠2,求证⊿ABD≌⊿ACE 24.已知AB=AC,AD=AE,∠1=∠2,求证CE=BD。 25.已知CE⊥AB,DF⊥AB,AC∥DB,AC=BD,求证CE=DF 26.如图,AD=BC,AE=BE,求证∠C=∠D。 27.已知∠1=∠2,AC=BD,E,F,A,B在同一直线上,求证∠ 28.已知D O⊥BC,O C=O A,O B=O D,求证CD=AB 29.已知CE=DF,AE=BF,AE⊥AD,FD⊥AD,求证⊿EAB≌⊿FDC 30.已知AB与CD相交于点E,EA=EC,ED=EB,求证⊿AED≌⊿ 31.已知AB=AC,D,E分别是AB,AC的中点。求证BE=CD。 32.已知DE=FE,FC∥AB,求证AE=CE。 33.已知CE⊥AB,DF⊥AB,CE=DF,AE=BF,求证⊿CEB≌⊿DFA 34.如图,D,E,F,B在一条直线上,AB=CD,∠B=∠D,BF=DE

直角三角形的射影定理

A A ′ M N N A A ′ B ′ M 直角三角形的射影定理 教学目标 (一) 知识与技能 1.能应用相似三角形的性质解决相关的几何问题; 2.通过对射影定理的探究,使学生经历探索数学问题的过程,逐步形成探究问题的意识,发展探究问题的能力. (二)过程与方法 借助相似三角形的判定定理及性质定理,推导出射影定理. 教学重点 射影定理的证明. 教学难点 建立三角形以外的和三角形有关的元素与三角形相似比之间的关系. 教学过程设计 一 复习引入 在前面的学习中,大家已经知道了射影,请作出点A 及线段AB 在直线MN 上 的射影. 如图,⊿ABC 是直角三角形,CD 为斜边AB 上的高. 则 AC 、CD 在斜边AD 二 新知探究 如图,⊿ABC 是直角三角形,CD 为斜边AB 上的高.提出问题: 1.在这个图形中,有哪几组相似三角形? 2.结合相似三角形对应边成比例的性质,寻找每组三角形中的线段长度关系: ⊿ACD 与⊿CBD 中,CD 2= , ⊿BDC 与⊿BCA 中,BC 2 = , ⊿CDA 与⊿BCA 中,AC 2= . 这三个关系式形式完全一样,可结合射影定义及图像,观察三个关系式的特点记忆。 射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项. 三 例题分析 例1 如图,圆O 上一点C 在直 径AB 上的射影为D .AD=2,DB=8,求 CD 、AC 和BC 的长. B A D C A D O B C B

例2 如图,⊿ABC 中,顶点C 在AB 边上的射影为D ,且CD 2 =AD ·BD .求 证:⊿ABC 是直角三角形. (该例题表明,射影定理的逆定理也是成立的.在这个命题的证明中,可能对如何建立条件与结论之间的关系有些困难.可从如下两方面来思考:①“射影”总是与“垂直”相伴,由此可以与“直角三角形”相联系; ②我们往往将等式CD 2=AD ·BD 变形为DB CD CD AD ,这个比例式启发我们应当通过“相似三角形”来推出“直角三角形” .明确了上述思路就容易得出本例的证明了.) 四 课堂练习 1.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =6, DB =5,则AD 的长为________. 2.如图,矩形ABCD 中,E 是BC 上的点,AE ⊥DE ,BE =4, EC =1,则AB 的长为________. 3. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD = 6,AD ∶DB =2∶3,则AC =________. 4.如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的半径等于________.

直角三角形全等的证明及三角形全等提高题

7.如图,在△ABC中,已知D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF. 求证:AB=AC 8.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.你能说明BE与DF相等吗? 9.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A=30°.求证:BD=1 4 AB C D F 1 2 A B

10.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E . (1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C . (2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由. 1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BE A B D C E 1 2 2已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 F E A C D B A E D C B

4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。① AB=AC ② BD=CD ③ BE=CF 7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A’B’C’。 A B C D E F O A B C D E F A B C D A' B' C' D' 1 2 3 4

全等三角形基础证明题

③ ② ① D A C B 三角形全等证明题练习 一、填空题 1. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =DE ,则∠ACE =____. (第2题) (第3题) 2.如图,∠A =∠D ,再添加条件___ 或条件_____,就可以用____定理来判定△ABC ≌△DCB . 3. 如图,某人不小心把一块三角形的玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带去碎片中的第______块。 F D A C G E B A P ' C P B D A C E B (第4题) (第5题) (第6题) 4.已知如图,F 在正方形ABCD 的边BC 边上,E 在AB 的延长线上,FB =EB ,AF 交CE 于G ,则∠AGC 的度数是______. 5. 如图, BC 是Rt △ABC 的斜边,P 是△ABC 内一点,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,如果AP =3,那么PP ′的长等于______. 6. 如图,已知在△ABC 中,90,,A AB AC CD ∠=?=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm . 7. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角 形与△ABC 全等,这样的三角形最多可以画出_____个. D A C E B D A C F E B D A O E B 第1题 C B A D E

(第7题) (第8题) (第9题) 二、选择题(每小题3分,共30分) 8.下列说法不正确的是( ) . A. 全等三角形周长相等 B. 全等三角形能够完全重合 C. 形状相同的图形就是全等图形 D.全等图形的形状和大小都相同 9.如图,已知△ABC ≌△DEF ,且AB =4,BC =5,AC =6,则DE 的长为( ). A.4 B.5 C.6 D.不能确定 10.如图,若△OAD ≌△OBC ,且∠0=65°,∠C =20°,则∠OAD 等于( ). A. 85° B. 95° C. 65° D. 105° 11. 如图,已知∠1=∠2,要使△ABC ≌△ADE ,还需条件( ). A. AB =AD ,BC =DE B. BC =DE ,AC =AE C. ∠B =∠D ,∠C =∠E D.AC =AE ,AB =AD D A C 2 1 E B F A C E B D A C B 12. 如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ; ④∠EAB =∠FAC ,其中正确结论的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个 13.如图,已知△ABC 中,AB =AC ,它的周长为24,又AD ⊥BC 于D ,△ABD 的周长为20,则AD 的长为( ). A. 6 B. 8 C. 10 D. 12 三、证明题 1.已知:如图点C 是AB 的中点,CD ∥BE ,且CD=BE.求证:∠D=∠E. A C B E D

直角三角形的射影定理教案

第一讲 相似三角形的判定及有关性质 3.4 直角三角形的射影定理 备课组:高二数学组 主备人:柴海斌 持案人: 授课班级: 授课时间: 教学目标 知识与技能:掌握直角三角形中成比例的线段的性质,并能初步用它解决“直角三角形斜边上的高”图形中的计算和证明问题. 方法与过程: 通过问题设计,层层跟进,引导学生探索和发现射影定理。 情感与价值观:培养特殊化研究问题的方法和方程、转化思想。 教学重难点 重点:直角三角形的射影定理的证明及应用; 教学过程 二、教学引入 点和线段的正射影简称为射影 (让学生复习并挖掘下图中的基本性质.) 已知:如图,∠ACB=90°,CD ⊥AB 于D. (1)图中有几条线段? (答:6条,分别记为AB=c,AC=b,BC=a,CD=h,AD=m,BD=n.) (2)图中有几个锐角?数量有何关系? (3)图中有几对相似三角形?可写出几组比例式? 由图中ΔACD ∽ΔCBD ∽ΔABC ,可分别写出三组比例式: CD AD BD CD CB AC == (ΔACD ∽ΔCDB);AC CD BC BD AB CB == (ΔCBD ∽ΔABC); CA DA BC CD AB AC == (ΔACD ∽ΔABC). (4)观察第(3)题的结果,有几个带有比例中项的比例式?如何用一句话概括叙述这几个比例 中项的表达式? 只有三个比例中项的表达式,CD AD BD CD =,BC BD AB CB =,CA DA AB AC = (5)由上可得到哪些等积式? CD 2=AD ·BD ,BC 2=BD ·BA ,AC 2=AD ·AB (二)直角三角形的射影定理 直角三角形斜边上的高是两直角边在斜边上的射影的比例中项;两直角边分别是它们在斜边上的射影与斜边的比例中项。 请同学们自己写出已知条件并证明。 已知:在RT △ABC 中,∠ABC=90。 ,CD ⊥AB 于D 。 求证:CD 2=AD*BD BC 2=BD*AB AC 2=AD*AB 证明:在RT △ABC 中,因为∠ABC=90。 CD ⊥AB ∠B+∠DCB=90o , ∠ACD+∠DCB=90o A B A B

相关主题
文本预览
相关文档 最新文档