当前位置:文档之家› 浅谈建筑结构振动控制

浅谈建筑结构振动控制

浅谈建筑结构振动控制

结构振动控制中文

《结构振动控制》教学大纲 课程编号:1322009 英文名称:Control of Structural Vibration 课程类别:选修课学时:36 学分:2 适用专业:土木工程 预修课程:结构动力学、控制理论、随机振动 课程内容: 内容:主要介绍结构振动控制机理,各种减振控制装置,控制律设计中的重要问题以及智能控制。 预期目标:使学生掌握结构控制的原理,能针对不同的要求对结构采用不同的控制策略,提高学生解决实际问题的能力。 重点和难点:被动阻尼器的工作原理及实用设计方法;TMD的工作原理和设计方法;各种主动控制算法的计算步骤、优缺点和使用条件;结构振动的模糊控制和神经网络控制;结构振动控制设计中的模型降阶,溢出,传感器与作动器的定位,鲁棒性,时滞效应;结构半主动控制系统的原理和半主动控制算法;结构振动控制的Benchmark问题。 教材: 欧进萍.结构振动控制-主动、半主动和智能控制.科学出版社 参考书目: 1. 瞿伟廉 .高层建筑和高耸结构的风振控制设计.武汉测绘科技大学出版社 2. 顾仲权.振动主动控制.国防工业出版社 3. 吴波.李惠.建筑结构被动控制的理论与应用.哈尔滨工业大学出版社 4. T.T.Soong.Active Structural Control: Theory and Practice. Longman Scientific & Technical. 5. G.W.Housner.Structural Control: past, present and future.et al. ASCE Journal of Engineering Mechanics, 123(9): 897-971, 1997 考核方式与要求: 课程论文。

振动控制措施(2021新版)

振动控制措施(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0723

振动控制措施(2021新版) 振动是指物体在外力作用下,以中心位置为基准呈往复振荡的现象。 生产过程中的生产设备、工具产生的振动称为生产性振动。 振动的控制措施: (1)从工艺和技术上消除或减少振动源,是预防振动危害最根本的措施。如用油压机或水压机代替气(汽)锤,用水爆清沙或电液清沙代替风铲清沙、以电焊代替铆接等。 (2)选用动平衡性能好、振动小、噪声低的设备。在设备上设置动平衡装置,安装减振支架、减振手柄、减振垫层、阻尼层;减轻手持振动工具的质量等。 (3)基础隔振。将振动设备的基础与基础支撑之间用减振材料(橡胶、软木、泡沫乳胶、矿渣相等)、减振器(金属弹簧、橡胶减

振器和减振垫等)隔振,减少振源的振动输出。 在振源设备周围地层中设置隔振沟、板桩墙等隔振层,切断振波向外传播的途径。 (4)个体防护。穿戴防振手套、防振鞋等个人防护用品,降低振动危害程度。其中最重要的是防止手指受冷。 XXX图文设计 本文档文字均可以自由修改

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

浅谈建筑结构振动控制

浅谈建筑结构振动控制 摘要:文章从不同角度对结构振动控制进行了分类,介绍了其发展与现状,并对近年来控制理论在结构控制方而的新进展给以综述,最后对有待进一步研究的问题进行了探讨,以促进结构振动控制的研究。 关键词:结构振动控制;自主控制;上木工程结构 abstract: this article from a different perspective on the structural vibration control classification, its development and status, and give summarized in the the structure controlling party and the new advances in control theory in recent years, last discussed the issue needs further study .to promote the study of the structural vibration control.key words: structural vibration control; self-control; engineering structures on wood 中图分类号:c935 文献标识码:a 文章编号:2095-2104(2012)结构振动控制是一个应用领域广泛的工程问题。所谓结构振动控制(以下称为结构控制)是指采用某种措施使结构在动力载荷作 用下的响应不超过某一限量,以满足工程要求。 结构控制问题是一种多学科交叉的理论与工程问题,其结构类型繁多、控制目标不同、实现手段多样。目前,国内外控制界对这类问题的研究十分重视,有大量的学术论文发表,其中不少新结果得到了实际工程应用。本文旨在对当前结构控制的一此新进展加以

振动污染及其控制技术

振动污染及其控制技术 1402032026孙小飞环境工程(2)班 摘要:现如今随着社会的发展,物理性污染愈发严重。其中振动污染也是其中的一部分,本文着重介绍了振动污染及其控制技术的内容。 关键词:振动污染;控制技术。 一、概述 振动定义:(1)任何一个可以用时间的周期函数来描述的物理量,都称之为振动(2)当一个物体处于周期性往复运动的状态,即可说物体在振动。 1.振动现象 物理现象:声、光、热等物理现象都包含振动;生命和生活:心脏搏动、耳膜和声带的振动是人体的基本功能。 工程技术领域: 桥梁和建筑物在阵风或地震激励下的振动 飞机和船舶在航行中的振动, 机床和刀具在加工时的振动, 各种动力机械的振动, 控制系统中的自激振动等。 2.振动污染: 振动超过一定的界限,从而对人体的健康和设施产生损害,对人的生活和工作环境形成干扰,或使机器、设备和仪表不能正常工作。 振动污染源有自然源和人工源 自然源:地震、火山爆发等自然现象。 自然振动带来的灾害难以避免,只能加强预报减少损失。 人工源:工业振动源:旋转机械、往复机械、传动轴系、管道振动等,如锻压、铸造、切削、风动、破碎、球磨以及动力等机械和各种输气、液、粉的管道。特征参数:常见工厂振源附近面上加速度级:80~140dB;振级:60~100dB;峰值频率:10~125Hz。 工程振动源:工程施工现场的振动源主要是打桩机、打夯机、水泥搅拌机、辗压

设备、爆破作业以及各种大型运输机车等。特征参数:常见工程振源附近 振级:60~100dB。 铁路振源: 频率:一般在20~80Hz范围内; 离铁轨30m处的振动加速度级范围85~100dB,振动级范围75~90dB内 公路振源: 频率:一般在2~160Hz范围内,其中以5~63Hz的频率成分较为集中; 振级:多在65~90dB范围内。 二、振动的影响 振动的生理影响主要是损伤人的机体,引起循环系统、呼吸系统、消化系统、神经系统、代谢系统、感官的各种病症,损伤脑、肺、心、消化器官、肝、肾、脊髓、关节等人们在感受到振动时,心理上会产生不愉快、烦躁、不可忍受等各种反应。除振动感受器官感受到振动外,有时也会看到电灯摇动或水面晃动,听到门、窗发出的声响,从而判断房屋在振动。人对振动的感受很复杂,往往是包括若干其他感受在内的综合性感受。振动引起人体的生理和心理变化,导致工作效率降低。振动可使视力减退,用眼工作时所花费的时间加长。振动使人反应滞后,妨碍肌肉运动,影响语言交谈,复杂工作的错误率上升等。振动通过地基传递到构筑物,导致构筑物破坏。如,基础和墙壁龟裂、墙皮剥落,地基变形、下沉,门窗翘曲变形,构筑物坍塌,影响程度取决于振动的频率和强度。由于共振的放大作用,其放大倍数可由数倍至数十倍,因此带来了更严重的振动破坏和危害。 三、振动控制技术 振动控制的任务:通过一定手段使受控对象振动水平满足预定要求。 受控对象:各类产品、结构或系统的统称。 实现控制振动的目的需经历的五个环节(1)确定振源特性与振动特征 (2)确定振动控制水平 (3)确定振动控制方法 (4)进行分析与设计 (5)实现振动控制

浅谈建筑结构振动控制技术

龙源期刊网 https://www.doczj.com/doc/5d16419530.html, 浅谈建筑结构振动控制技术 作者:翟永兵 来源:《智富时代》2018年第03期 【摘要】近年来,随着我国经济的飞速发展,人民生活水平的日益提高,同时也带动了 我国建筑工程的快速发展,而在建筑工程结构振动控制技术中,传统的抗震结构体系是通过加强结构本身的性能从而达到“抗御”地震的目的。土木工程结构振动控制有利于降低结构在地震、流水、海浪、风、车辆等动力作用下结构所造成的损伤,能够有效地将结构抗震防灾能力相对增强。结构控制引起了世界各国地震工程界的广泛重视,是一种新型的结构抗震技术。但这种方法的作用与安全性相对是较低的,所以在这种不确定性的地震作用下,结构的安全性能并不能得到充分的保障,最后产生倒塌或遭到严重破坏,造成人员伤亡与巨大的经济损失。本文就建筑工程结构振动控制技术进行分析,并对其的发展进行讨论。 【关键词】建筑工程;震动控制;发展 一、结构控制的特点、发展与现状 (一)按控制对能量需求来划分 从控制对外部能量需求的角度,结构控制可分为:被动结构控制、主动结构控制、混合结构控制、半主动结构控制。除被动控制外,其他三种控制方式中的控制力全部或部分地根据反馈信号按照某种事先设计的控制律实时产生。主动结构控制效果较好,对环境有较强的适应力,但完全依赖外部能源,闭环稳定性比其他方式差。在被动控制中,控制力不是由反馈产生的。其主要优点是;成本低、不消耗外部能量、不会影响结构的稳定性;缺点是:对环境变化的适应力与控制效果不如其他方案。混合控制是指用主动控制来补充和改善被动控制性能的方案。由于混合了被动控制,因此减小了全主动控制方案中对能量的要求。半主动控制中通常包含某种对能量需求很低的可控设备,如可变节流孔阻尼器等作用时所需的外部能量通常比主动控制小得多。因此初步研究表明混合控制与半主动控制的性能大大优于被动控制,甚至可达到或超过主动控制的性能,并在稳定性与适用性方面要优于后者,因此成为当前研究的一个热点。 (二)按结构特性划分 从被控结构的特性划分,结构控制可分为柔性结构控制与刚性结构控制。其中柔性结构包括大型柔性空间结构、大跨度桥梁等;刚性结构则包括武器系统中稳定平台、车辆悬挂系统、多刚体机器人等。对于两类结构控制所用的主动控制设备也不相同,如在柔性结构控制中传感器与执行器常用的智能材料是分布智能材料,如压电材料;而刚性结构控制中传感器与执行器常用的智能材料是电智能材料,如磁致伸缩材料。

振动控制技术现状与进展

第28卷第3期 振动与冲击 JOI7RN^f.OFVIBRATIONAND.qHOCK 振动控制技术现状与进展 陈章位,于慧君 (浙江大学流体传动及控制国家重点实验室,杭州310027) 摘要:总结了白20世纪40年代开始振动试验研究以来振动控制技术的发展,论述了在振动控制算法以及振动试验激振设备等方面周内外研究所取得的主要成就。在此基础上提fi{r振动控制技术今后值得父注的研究方向和重点,如实际振动环境复现试验控制、多轴多自由度振动控制等。 关键词:振动控制;振动试验;进展;展望 中图分类号:TB534+.2文献标识码:A 自从在二次世界大战中战斗机等多种军用设备因受振动而造成损坏的现象引起重视后,为了更好地模拟产品的真实振动环境、对产品可靠性进行检验,20世纪40年代开始人们引入了振动试验。随着现代科学技术的进步,振动试验在产品的生产、设计以及可靠性、耐久性试验方面起到了越来越重要的作用。 振动试验系统主要由激振器、控制器、试件以及夹具所组成。在这几十年来的发展中,为了更真实地模拟实际的振动环境,激振器越来越复杂,同时也带来了问题就是如何精确地控制激振器使得激振器产生的振动信号能够与试验要求产生的信号一致,也即需要进一步提高控制器的性能。由此本文从三方面对振动控制技术进行综述,一是当前振动试验激振设备的发展;二是当前振动控制算法的发展以及在当前的振动试验产品中普遍采用的控制算法:三是当前控制器的发展,在此基础上提出了振动控制技术今后的研究方向和重点。 1国内外进展 1.1振动试验激振设备进展 用于振动试验的振动试验激振设备从其激振方式上主要可分为三类:机械式振动台、电液式振动台和电动式振动台¨“1。 1.1.1机械式振动台进展 机械式振动台主要有不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低,但只能在约5Hz一100Hz的频率范围工作,最大位移为6mm峰-峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心 收稿日期:2008-01-03 第一作者陈章位男,教授,1965年生量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低频域内,激振力大时,可以实现很大的位移,如100mm。但这种振动台工作频率仅限于低频,上限频率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 机械式振动台由于其性能的局限,主要应用于要求不高的领域。 1.1.2电动振动台进展 电动式振动台是目前使用较广泛的一种振动试验激振设备。它的工作原理是:根据电磁感应原理设计的,当通电导体处在恒定磁场中将受到力的作用,当导体中通以交变电流时将产生振动。振动台的激励线圈正是处在一个高磁感应强度的空隙中,需要的振动信号从信号发生器或振动控制器产生并经功率放大器放大后通到激励线圈上,使得振动台产生需要的振动波形。 电动式振动台的频率范围宽,小型振动台频率范围为0Hz一10kHz,大型振动台频率范围为0Hz~2kHz;动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波形。因此目前主要应用于高频率范围、推力较小、波形失真要求较高的试验领域。虽然目前电动振动台在推力方面已经做得越来越大,已经可以达到35t的推力,但是当它的推力超过10t以后,前述的电动振动台优势不是很明屁,各种因素的干扰也越来越大,而且成本增加很多。同时由电动式振动台的工作原理所决定,在振动试验的过程中,它的台面上不可避免会产生漏磁现象,这对于某些军用产品的试验是不可行的。因此,在这些情况下需要用电液振动台来进行试验。 1.1.3电液振动台进展 电液式振动台作为振动试验的常用设备之一。它的工作方式是采用电液伺服阀,通过液压控制传动装置产生振动激励。输入的电控信号经放大器放大进入伺服阀,伺服阀把与输入信号成比例的液压油输入液压缸,以驱动活塞并带动台面运动。 万方数据

土木工程结构振动控制技术及其应用研究.

万方数据

万方数据 万方数据 《6? 善s. 曼s. 蓑s. 辎4. 图6模拟结构阻尼比随TLMD频率比变化曲线 模拟结构阻尼比达到极值。频率比在0.96~0.98区间,即频率比在最优值附近改变±1%时,模拟结构阻尼比变化较为平缓且均在6%以上。

实桥通常采用多重TLMD(MTLMD进行减振,为此在室内进行了MTLMD减振性能试验。分别将1~4台频率和阻尼均调为优化值的减振器固定到上述模拟结构上进行试验,得到模拟结构阻尼比随TLMD总质量比变化的曲线如图7所示,按TMD 理论计算的相应曲线亦绘于图7。从图7可知,模拟结构的阻尼比随TLMD总质量比增加而增大,4台TLMD(质量比1.91%时,模拟结构阻尼比达到7.13%,抑振效果非常好。1~4台TLMD 的试验值与同质量比下的TMD理论计算值比较,模拟结构阻尼比分别提高27%、23%、35%和46%,说明新型TLMD双调谐减振器由于同时具有TLD 和TMD的抑振效能,抑振性能在TMD基础上有大幅提升。 图7MTLMD抑振性能的试验值与TMD理论僵对比3.1.3实桥试验 选取九江长江大桥三大拱中2根典型吊杆(C32A32和C10A10,对该新型减振器进行了减振性能实桥试验。在每根吊杆上安装4台活动质量均为10kg的减振器,如图8所示。首先撤下吊杆原有TMD减振器,分别进行激振并得到吊杆自身的自振特性;然后安装试验用新型减振器TLMD对吊杆激振,进行新型TLMD减振性能试验;最后对撤下的既有TMD减振器进行检修,使之恢复最佳状态,重新安装到吊杆上进行综合减振性能试验。试验结果如图9所示。 由图9可知,吊杆C32A32和C10A10在TLMD质量比分别为1.57%与1.56%的情形下, 图8新型TLMD实桥安装 图9实桥试验结果 目标振型阻尼比达到了5.09%和3.58%,阻尼分别提高了50.9倍和35.8倍。对非目标振型,结构阻尼比也有所提高。对比原TMD在质量比为1.9%时,目标振型阻尼比为3%左右,TLMD具有更好的减振效果。TLMD与TMD减振器共同工作时,目标振型的结构阻尼比进一步增加到5.47%和4.98%,非目标振型的结构阻尼比有更明显的提高。

振动半主动控制技术研究现状与前景展望

振动半主动控制技术研究现状与前景展望 在过去三十年左右的时间里,振动控制系统受到了广大研究者的普遍关注。这种保护系统可以用来降低自然灾害对土木工程建筑的损害。文章通过对结构振动控制的概述,介绍了半主动控制装置的理论基础及其在实际机械或土木工程中的应用,并对半主动控制技术未来的发展方向做了展望。 标签:半主动控制;主动变刚度(阻尼);磁流变阻尼器;电流变阻尼器 引言 随着科学技术的飞速发展,机器设备的转速和功率不断变大,刚度减小,对其稳定性的要求也提高,振动问题也就日益突出,机械振动不仅影响飞行器、船舶的寿命,还会影响机械设备的使用性能,因而如何对其采取控制和预防措施成了工程领域的重要课题。 半主动控制技术的控制效果接近于主动控制,而且只需要输入少量的能量即可实现,因而被认为是目前最具前景的结构振动控制技术。文章主要介绍几种主要半主动控制系统的工作机理、应用和研究现状,并阐述了半主动控制技术目前存在的问题和发展方向。 1 半主动控制系统研究现状 1.1 主动变刚度控制系统 该控制系统主要是在变刚度控制装置的作用下,使振动物体的附加刚度发生变化,从而使受控结构的固有频率不断发生变化,有效地避免共振的情况,达到减振的目的。在这个过程中,结构的能量发生了变化,经历了振动能量的吸收、消耗与释放这一过程。 日本学者Kobor i[1]利用主动变刚度系统做了振动台模型试验和原型结构试验,验证了这种控制系统的装置可以改变物体动力参数,且仅需要极少的外界能量,就可以得到十分明显的减振效果。在国内,李敏霞和刘季[2]等学者在这方面做了深入的研究,制作了类似的主动变刚度控制装置,并进行了一个40t足尺的主动变刚度装置的性能试验,该实验主要研究了电液伺服阀在Passive-on和Passive-off状态下主动变刚度控制装置的力学性能。杨润林,闫维明[3]等提出了一种新型的半主动变刚度(ISA VS)控制系统,并通过数值模拟验证了它的有效性。 1.2 主动变阻尼控制系统 变阻尼系统由Hovat首先提出[4],它是通过主动调节变阻尼装置,使其阻尼力变化至接近或等于主动控制力,得到的振动控制效果也和主动控制接近。主

结构振动控制技术的发展及存在的问题

结构振动控制技术的发展及存在的问题 郑瑞生 (福建省建筑科学研究院) 摘要:介绍了结构振动控制的概念和目前已有的结构振动控制的方法,即被动控制、主动控制等。介绍了各种控制方法的相关理论。概述了目前国内外结构振动控制的工程应用及发展现状,提出了结构振动控制今后有待进一步研究的课题,指出了目前我国结构振动控制应用中所面临的若干问题。 关键词:结构振动控制;被动控制;主动控制 中图分类号: 文献标识码: 文章编号: Development and some problems of structural vibration control ZHENG Ruisheng Abstract: The concept and existent type of structural vibration control are introduced, including passive control, active control, and et c. The correspondent control theories of these methods are then introduced. The practical application and the state-of-the-art of structural vibration control at home and abroad are summarized. The further research lessons of structural vibration control are presented from now on, and some problems in application of structural vibration control of our country now are pointed out. Key words: structural vibration control; passive control; active control 传统的抗震设计方法以概率理论为基础,提出三水准的设防要求,即小震不坏,中震可修,大震不倒,并通过两阶段设计来实现:第一阶段设计采用第一水准烈度的地震动参数,结构处于弹性状态,能够满足承载力和弹性变形的要求;第二阶段设计采用第三水准烈度的地震动参数,结构处于弹塑性状态,要求具有足够的弹塑性变形能力,但又不能超过变形限值,使建筑物“裂而不倒”。然而,结构物要终止在强震或大风作用下的震动反应(速度、加速度、位移),必然要进行能量转换或换散。传统抗震结构体系实际上是依靠结构及承重构件的损坏消耗大部分输入能量,往往导致结构构件严重破坏甚至倒塌,这在一定程度上是不合理的也是不安全的。为了克服传统抗震方法的缺陷,结构震动控制技术(简称结构控制)逐渐发展起来,并被认为是减轻结构地震和风振反应的有效手段。结构消能减震(又称消能减振)技术就是一种结构控制技术,《抗震规范》首次以国家标准的形式对房屋消能减震设计这种抗震设防新技术的设计要点做出了规定,标志着消能减震技术在我国已经由科学研究走向了推广应用阶段。 1 结构振动控制的概念 1972年美籍华裔学者姚治平(J.T.P.Yao )教授撰文第一次明确提出了土木工程结构控制的概念 ,近30年来,国内外学者在结构控制的理论、方法、试验和工程应用等方面取得了大量的研究成果。结构控制的概念可以简单表述为:通过对结构附加控制机构或装置,由控制机构或装置与结构共同承受震动作用,以协调和减轻结构的震动反应,使它在外界干扰作用下的各项反应值被控制在允许范围内。基于此定义,结构控制的减震机理,可简单地用一个结构动力方程予以说明: g []{()}[]{()}[]{()}()[]{}()M x t C x t K x t F t M I x t ++=- (1) 式中[]M 、[C ] 、[K ]—分别为结构的质量、阻尼和刚度矩阵; {I }—单位列向量; F (t)—外部作用(包括控制机构或装置施加的控制力、风或可能施加的其他外力)列向量; {}g x {(t)}x 、{(t)}x 、{()}x t —分别为结构在外部作用(或荷载)下的加速度、速度和位移反应列向量;

结构振动的主动控制技术

硕士研究生 非笔试课程考核报告 (以论文或调研报告等形式考核用) 2013 至 2014 学年 第 1 学期 考核课程: 防灾减灾学 提交日期: 2013 年 12月 20 日 姓 名 程伟伟 学 号 2012010305 年 级 研二 专 业 防灾减灾及防护工程 所在学院 土木工程学院 山东建筑大学研究生处制 考核成绩 考核人

结构振动的主动控制技术 程伟伟 (山东建筑大学土木工程学院,济南,250101) 摘要:主动控制是一项积极主动的智能化措施,是根据外界刺激和结构响应预估计所需的控制力,从而输入能量驱使作动器施加控制力或调节控制器性能参数,达到减震效果。对目前的主动控制技术的研究现状作了简要评述,阐述了振动主动控制中主要控制方法和策略及应用中存在的问题,并提出了振动主动控制技术的发展趋势。 Abstraction:Active Control is an intelligent proactive measures, are needed to control the pre-estimate based on external stimuli and response structures, thereby driving the input energy is applied to the actuator control or regulate the controller performance parameters to achieve the damping effect. The current research status of active control techniques are briefly reviewed, elaborated mainly active vibration control and application control methods and strategies for the problems and proposed active vibration control technology trends. 关键词:主动控制作动器与传感器控制方法 引言:主动控制是指在振动控制过程中,经过实时计算,进而驱动作动器对控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。近几年,随着科学技术的发展,特别是在计算机技术和测控技术的推动下,振动主动控制有了长足进步。主动控制在越来越多的实际工程中应用的越来越多。 正文 地震给世界各国人民造成了巨大的灾害,土木工程结构振动控制是工程结构抗震领域的新课题。姚治平将振动控制与土木工程相结合,首次提出了土木工程结构振动控制的概念。对有效减轻地震灾害有着重要的现实意义。主动控制在声学中并不是一个新概念,早在20世纪30年代,Paul Lueg 就提出了利用主动噪声抵消发代替被动噪声控制,对低频噪声进行控制。由于振动传递远比声音的传递复杂得多,致使主动振动控制的研究共走进展相对较慢,直到二次世界大战后的军备竞赛才促使其迅速发展。纵观主动振动控制的发展过程,将其划分为重点突破、广泛探索和重点攻关三个阶段。从20世纪50年年代起,主动控制取得了三项突破,即实现了机翼颤振的主动阻尼没提高了飞机航速;主动振动控制提供了超静环境,保证惯导系统满足核潜艇和洲际导弹导航的进度要求;磁浮轴承控制离心机转子成功,创造出分离铀同位素的新工艺。20世纪50-60年代主动振动控制发展的重点突破阶段。上述成就迅速吸引了众多的专家研究这项技术。于是20世纪70年代变成为空广泛探索主动振动控制在各个工程领域应用的阶段。进入20世纪80年代,主动振动技术在几个工程领域的应用前景相当明朗,其中就有控制高挠性土木工程结构振动在、控制,于是,主动振动控制研究进入重点攻关阶段。目前,对主动控制的研究主要集中在:传感器、致动器、动力学建模及其振动控制、传感器/致动器的优化配置等几方面。控制技术分为主动、被动和半主动等类型。主动控制是指在振动控制过程中,根据所检测的振动信号,应用一定的控制策略,经过计算,进而驱动作动器为控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。本文主要介绍主动控制技术的发展和展望。 主动控制是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗,是否具有完整的反馈控制回路。与被动控制相比,主动控制技术复杂、造价昂贵、维护要求高,但对于高层建筑或抗震设防要求高的建筑来说,主动控制具有更好的控制效果。主动控制装置大体上由仪器测量系统(传感器)、控制系统(控制器)、动力驱动系统(作动器)等组成。传感器测量姐欧股的动力响应或外部激励信息;控制器处理传感器测量的信息,实现所需的空置力,并输出作动器

结构振动控制

武汉理工大学 结构振动控制 Vibration Control of Structure 课程:工程结构振动控制理论 授课老师:周强 学生姓名:吴平 学号:104972081971 班级:土木研0803

结构振动控制 吴平 (土木研0803班) 摘要:本文主要介绍了结构振动控制的概念、基本原理以及分类。重点阐述了 被动控制、主动控制、半主动控制和混合控制的不同特点。 关键字:被动控制,主动控制,半主动控制,混合控制 Vibration Control of Structure Wuping (Department of Civil Engineering,Wuhan University of Technology) Abstract:This paper introduces the conceptand basic principles and classification of structural vibration control. Highlighted the differences among passive control, active control, semi-active control and hybrid control. Key words :passive control, active control, semi-active control,hybrid control. 引言 随着社会的发展,工程结构形式日益多样化以及轻质高强材料的应用,结构 的刚度和阻尼比变小。在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求。按照传统的抗风抗震设计方法,即通过提 高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震 方法,它很不经济,也不一定安全。而且失去了轻质高强材料自身的优势,还不 能满足口益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。 传统的抗震设计方法已不能满足需要,从而使结构振动控制理论在工程结构中开 始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应 和损伤,提高结构的抗震能力和抗灾性能。结构控制通过在结构上设置控制机构,由控制机构与结构共同控制抵御地震动等动力荷载,使结构的动力反应减小。结 构控制是人的主观能动性与自然的高度结合,是结构对策新的里程碑。

结构振动控制的概念与分类

结构振动控制的概念及分类-----------------------作者:

-----------------------日期:

耗能方案 耗能减震技术的研究、应用与发展 一、结构振动控制的概念及分类 传统的抗震设计是通过增强结构本身的抗震性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,中震可修,大震不倒。而这种抗震方式缺乏自我调节能力,在不确定的地震作用下,很可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大,这样既给建筑布置带来一定的困难,在经济上又要增加相当多的投资。近年来,在土木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构共同承受地震作用,以调谐和减轻结构的地震反应。 结构振动控制可分为被动控制、主动控制、半主动控制和混合控制。 被动控制——无外加能源的控制,其控制力是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸能减震技术。 主动控制——有外加能源的控制,其控制力是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作动器三部分组成。主动控制是将现代控制理论和自动控制技术应用于结构抗震的高新技术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质量阻尼系统(AMD)等。主动控制研究较多的国家是美国、日本和中国,我国自80年代末期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验大楼和Kankyu Chayamechi大楼。 半主动控制——有少量外加能源的控制,其控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调整自身的参数,从而起到调节控制力的作用。现有的半主动控制技术包括:半主动隔震装置、半主动T MD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 混合控制——在结构上同时应用被动控制和主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装置的长处,克服它们的弱点,以获得更好的控制效果。目前提出的混合控制方法主要有:同时采用AMD 和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和耗能减震相结合的混合控制系统。世界上第一个安装混合控制系统的建筑是位

浅析建筑工程施工中的振动控制技术

浅析建筑工程施工中的振动控制技术 建筑工程施工中的振动控制技术,就传统的抗震结构来说,是通过加强自身结构的性能来达到抗震的目的,这样的方法所产生的作用和安全性相对较低,同时根据传统方法所构成的抗震性能结构无法进行自我调节与我控制,因此,在这种不确定的状态下,导致工程结构的安全性无法得到有效的保障。对此,在当前,必须要采用振动控制技术来满足人们对于建筑物高品质的需求,同时在振动控制技术下建筑工程的发展得到了有益的推动,并产生了巨大的经济效益。本文将对振动控制技术进行相关分析。 一、建筑工程施工中振动控制技术应用的必要性 伴随城市化速度的不断加快,振动控制技术在建筑行业的发展中越发显得重要。第一,在建筑工程的施工中使用振动控制技术有利于减少结构在流水、地震、风、海浪、车辆等等动力作用下造成的损伤,有效的增强建筑结构的防灾抗震能力。结构振动控制技术,在国内外已经引起了工程行业的广泛重视,是一种新型的抗震技术。第二,在建筑工程施工中使用振动控制技术,能够促进输入结构中地震能量的耗散。近年来,国内外都先后展开了对结构控制的钻研,即是在结构上加入控制系统,由控制系统与结构共同抗御荷载的作用,使得结构在大地震的作用下能够进入非弹性状态时还能具备一定的延伸性,这也是为了耗散输入结构中的地震能量。同时该技术的理论简单、机理明确,对于不同烈度与结构的抗震要求都能够使用。结构的控制可以

分为主动、半主动、智能控制、基础隔震、被动耗能减震[1]。 二、建筑工程施工中的振动控制技术应用分析 (一)主动控制 针对主动控制的研究包含了数据处理、自动控制技术、计算机科学、随机振动、机械工程、材料科学、生物科学、结构工程,这是交叉性较强的一门学科。主动控制即是采用现代化的控制技术,对于结构反应和输入地振动实现练级的预测与跟踪,并且采用作动器对结构增加控制力,从而使得结构的系统性质产生一定程度的裱花,最终使得结构和系统都能够得到优化,使其能与优化的准则达成一致,从而达到降低且抑制结构地震反应的控制方法。结构的主动控制比被动控制产生的效果更为显著,但是由于在进行主动控制是,需要输入大量的外部能源,另外,设备的成本相对较高、时性非常复杂、系统的可靠性也存在一些问题等原因,因此,我国在主动控制的研究中,必须要集中研发探索控制装置、主动控制算法、仿真分析效果等内容[2]。 主动控制主要是由外加入能源产生主动施加的控制力,振动控制的设计目标在于如何科学的选择控制力的施加规律,使得结构中产生的控制力的效果能够达到最佳状态。主动控制包含了两种方式,开环控制和闭环控制。主动开环控制的方式是对系统扰动输入进行测量,并根据扰动输入显示的情况得出控制的规律;闭环控制的方法要求产生一定程度的控制作用,以此控制结构的震动,通过对应的系统输出反馈或者状态反馈,闭环控制下能够保持连续的高效控制并進行监测,具备有效的抗干扰能力,并且在线的计算量也比较庞大。

结构振动控制的研究进展与展望

第20卷第4期2009年8月中原工学院学报 J OU RNAL OF ZHON GYUAN UN IV ERSIT Y OF TECHNOLO GY Vol.20 No.4Aug.,2009  收稿日期:2009-07-28 作者简介:黄大宇(1957-),男,江苏南京人,副教授. 文章编号:1671-6906(2009)04-0043-04 结构振动控制的研究进展与展望 黄大宇 (中原工学院,郑州450007) 摘 要: 围绕结构振动的被动控制、主动控制、一体化控制等几个方面对当前研究的现状和最新进展进行了介绍,提出了目前结构振动主动控制存在的问题,对有待进一步研究的问题进行了探讨.关 键 词: 结构振动;被动控制;主动控制 中图分类号: V414.3;TP13 文献标识码: A DOI :10.3969/j.issn.1671-6906.2009.04.013 任何一个工程结构受到激励或干扰时,都会产生响应,表现为结构的振动和噪声.振动和噪声不仅会降低机械系统的性能,而且会造成环境污染.因此,必须对它进行控制. 所谓振动控制,就是针对控制对象的性质、工作环境和控制要求,运用各种力学原理来减小对结构有害的振动效应.传统的振动控制方法主要有结构元件的刚化、谐振系统的解谐与解祸、普通振动隔离、阻尼隔振、动力吸振等,这些方法各有特点,通过一种或几种方法的综合应用,基本上可以满足一般结构的减振要求.然而,随着时代的发展,传统的振动控制方法在某些方面已不能满足人们对结构的性能越来越高的要求.例如,现代飞机是一个装有各种精密仪器的复杂系统,在发动机的振动和气动力的干扰下,经常被诱发振动和噪声,严重地影响了仪器的性能和可靠性,降低了乘客和机组人员的舒适程度.常规的减振降噪方法是在飞机上附加多种阻尼材料,这增加了飞机的重量,降低了飞机性能,减振降噪效果也十分有限.因此,人们就提出了结构振动主动控制这个概念. 1 结构振动主动控制技术的研究现状 结构的被动振动控制通常是指结构系统的被动阻 尼设计(Passive Damping St ruct ural Design ).所有的被动阻尼设计的目标都是最大程度地吸收并耗散所关心频段内模态的应变能[1].常用的阻尼系统包括杆式阻尼器(St rut/Link Damper )[2-3]、阻尼饺(Joint/In 2terface Damper )[4-6]、质量调谐阻尼器(Tuned 2Mass Damper 简写为TMD )[7]、自由阻尼层和约束阻尼层 结构[8]等.筒形粘弹阻尼器的原理和力学模型如图1所示: 图1 筒形粘弹性阻尼器示意图

现代结构振动控制理论综述

现代结构振动控制理论综述及评析 1.前言 所谓结构振动控制(以下称为结构控制) 是指采用某种措施使结构在动力载荷作用下的响应不超过某一限量,以满足工程要求。这是一门最近30年发展起来的新兴学科,是综合控制论、计算机、结构振动理论与新材料科学等学科前沿的工程设计新技术。其目的就是要采取一定的控制措施,减轻和抑制结构在地震、强风及其它动力荷载作下的动力反应,增强结构的动力稳定性,提高结构抵抗外界振动的能力,以满足结构的安全性、适用性、舒适性的要求。 2.结构振动控制的发展 早期的控制手段无一例外都是被动控制,因其构造简单、造价低、易于维护且无需外部能源支持, 其中最主要的就是基础隔震技术。20世纪60年代叠层橡胶垫的应用使基础隔震技术进人了实用化时代。由于隔震技术的发展历史比较长, 因此它是目前应用比较广泛且成熟的一项结构控制技术, 已被应用到石油储运和石油化工等领域中。 现代控制技术的发展。现代结构控制技术是在1972年作为一个概念由美籍华人科学家姚治平提出的, 这标志着结构控制技术作为一种新兴的理论开始走上历史舞台, 并且逐步形成了一门新兴的边缘学科。 经典控制论虽然能够解决一些简单的结构控制问题, 但却未在土木工程中得到大规模应用, 因为它针对的是一种单输人单输出的系统, 而土木工程是具有其特殊性的, 其中一点是工程结构往往是多自由度多输出的。故而结构控制的重大飞跃还在等待更新的控制理论的出现。 20世纪70年代至今, 随着计算机技术的迅速发展和不断进步, 以及系统工程和系统论的进一步研究, 许多科学家和科技工作者进一步提出了大系统理论、人工智能学说、神经网络、模糊识别与模糊控制论等理论和技术, 使自动化技术的控制理论从“第二代控制理论”现代控制理论转向了以智能控制理论为基础的“第三代控制理论”智能控制理论。这一理论也正在向结构控制理论中映射, 并产生了一些阶段性的成果如结构模糊控制理论、结构智能控制理论等。 3.结构振动控制的分类及评析 结构振动控制根据所采取的控制措施是否需要外部能量可分为被动结构振动控制、主动结构振动控制、混合结构振动控制、半主动结构振动控制。 3.1被动结构振动控制 被动结构振动控制是一种无外加能源控制, 其控制力是控制装置与结构相互运动产生的。因其构造简单、造价低、易于维护且无需外部能源支持等优点而引起了广泛关注。许多被动控制技术已日趋成熟,并已在实际工程中得到应用。被动控制总体上可分为消能减振、基础隔震和被动调谐控制等三类。

相关主题
文本预览
相关文档 最新文档