当前位置:文档之家› 红外人体探测技术

红外人体探测技术

红外人体探测技术
红外人体探测技术

红外人体探测报警技术

在红外线探测器中,热电元件检测人体的存在或移动,并把热电元件的输出信号转换成电压信号。然后,对电压信号进行波形分析。一种红外线探测器,其特征在于,包括:热电元件;电流-电压变换器,它把来自所述热电元件的电流变换成电压信号。

1.菲涅尔透镜

1)简述

菲涅尔透镜 (Fresnel lens),又名螺纹透镜,多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是根据光的干涉及扰射以及相对灵敏度和接收角度要求来设计的。透镜的要求很高。一片优质的透镜必须表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积大、厚度薄及侦测距离远。菲涅尔透镜在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如幻灯机、薄膜放大镜、红外探测器等。

2)分类

设计上来划分

①正菲涅尔透镜:

光线从一侧进入,经过菲涅尔透镜在另一侧出来聚焦成一点或以平行光射出。焦点在光线的另一侧,并且是有限共轭。这类透镜通常设计为准直镜(如投影用菲涅尔透镜,放大镜)以及聚光镜(如太阳能用聚光聚热用菲涅尔透镜。

②负菲涅尔透镜:

和正焦菲涅尔透镜刚好相反,焦点和光线在同一侧,通常在其表面进行涂层,作为第一反射面使用。

从结构上划分

圆形菲涅尔透镜,菲涅尔透镜阵列,柱状菲涅尔透镜,线性菲涅尔透镜,衍射菲涅尔透镜,菲涅尔反射透镜,菲涅尔光束分离器和菲涅尔棱镜。

3)应用

菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR(被动红外线探测器)上产生变化热释红外信号。

4)原理

其工作原理十分简单:假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。

另外一种理解就是,透镜连续表面部分“坍陷”到一个平面上。从剖面看,其表面由一系列锯齿型凹槽组成,中心部分是椭圆型弧线。每个凹槽都与相邻凹槽之间角度不同,但都将光线集中一处,形成中心焦点,也就是透镜的焦点。每个凹槽都可以看做一个独立的小透镜,把光线调整成平行光或聚光。这种透镜还能够消除部分球形像差。

2.热释电红外探头

实现防盗功能以及其他类感应功能外部设备选取热释电红外探头,热释电红外探头采用外购RE200B型号热释电红外传感器,它是靠探测人体发射的红外线而进行工作的。探头收集外界的红外辐射通过聚集到红外感应源上面。红外感应源通常采用热释电元件,这种元件在接收了红外辐射温度发生变化时就会向外释放电荷,检测处理后产生报警。

双元RE200B型号热释电红外探头基本参数如下:

灵敏元面积:2.0×1.0m㎡

基片材料:硅

基片厚度:0.5mm

工作波长:7-14μm

平均透过率:>75%

输出信号>2.5V(420°k 黑体1Hz 调制频率0.3-3.0Hz 带宽72.5db 增益) 噪声<200mV

(mVp-p) (25℃)

平衡度<20%

工作电压2.2-15V

工作电流8.5-24μA

(VD=10V,Rs=47kΩ,25℃)

源极电压0.4-1.1V

(VD=10V,Rs=47kΩ,25℃)

工作温度-20℃- +70℃

保存温度-35℃- +80℃

视场139°×126°

该传感器采用热释电材料极化随温度变化的特性探测红外辐射,采用双灵敏元互补方法抑制温度变化产生的干扰,提高了传感器的工作稳定性。

红外感应源通常采用热释电元件,这种元件在接收了红外辐射温度发生变化时就会向外释放电荷,检测处理后产生报警。

1) 这种探头是以探测人体辐射为目标的。所以辐射敏感元件对波长为10μm左右的红外辐射必须敏感。

2) 为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的滤

光片,使环境的干扰受到明显的控制作用。

3) 被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

4) 一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。

5) 多视场的获得,一是多法线小镜面组成的反光聚焦,聚光到传感器上称之为反射式光学系统。另一种是透射式光学系统,是多面组合一起的透镜——菲涅尔透镜聚焦在红外传感器上。

6) 这要指出的是被动红外的几束光表示有几个视场,并非被动红外发红外光,视场越多,控制越严密。

优点:本身不发任何类型的辐射,器件功耗很小,隐蔽性好。价格低廉。

缺点:容易受各种热源、光源干扰,被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。易受射频辐射的干扰。环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。

由于上述缺点,误报的因素可以分为两类:

外界的因素 : 外界的热光源(尤其是白光光源):如阳光、照明光源等,外界的射频信号。

内部的因素 : 内部由于器件等的噪声和干扰,如光热释感应器的信号瞬变等。

针对以上情况,采用下列方法以降低误报率:

①信号出入分析

当有物体走入或走出一个探测区段时,在反极性探测感应器上会产生两个极性相反的信号,这种出入信号的能量将被独立分析并储存在内存记忆内。只有在一段特定的时间内,当两个感应器上都收集到足够的出入能量时才会触发警报。

其优点:能超乎想象地提高探头对气流、随机噪音及发热器的抗干扰能力。如再加上“四源红外反极性探测”,便能使探头具有超卓的抗干扰能力,是现今市场上最优秀的产品。

②四源红外反极性探测

探头内置两个红外感应器,移动信号会使两个感应器产生两个极性相反的信号,而非移动信号 ( 射频、电磁、火花、静电等干扰 ), 则使两个感应器产生两个极性相同的信号,利用此原理便可准确无误地区分移动和非移动信号。

其优点 :应用此技术所获得抗干扰能力是传统的滤波及屏蔽技术所无法相

比的,具有超卓的防小动物能力。

③自动脉冲数调节

“自动脉冲数调节”能检测每个红外信号能量的大小,然后把数据储存在内存记忆内。探头能自动跟据内存记忆内的能量水平改变工作模式 : 当能量水平高时(此时误报的机率较低),使用低脉冲数模式,功能跟一般非脉冲数调节探头一样。

当能量水平低时(误报的机率较高),使用高脉冲数模式(最高可达 25 个脉冲),可有效防止误报的发生。

优点:有效防止误报而不降低灵敏度。

人体感应开关红外感应延时开关(控制器)

人体感应开关红外感应延时开关(控制器) 人体是一特定波长红外线的发射体,由红外传感器检测到这种红外线的变化并予以放大选频处理后,可以推动适当的负载,此乃人体红外自动开关。这一检测技术较之超声、哑声、微波方式更为灵敏与准确。它要求PIR热释电人体红外传感器的信号放大处理电路有很高的灵敏度并要能准确 鉴别生物体与非生物体的运动,使误动作率降到最低。且体积小,自耗电微少。采用热释电红外传感器及专用单片集成电路构成的这种开关能成为人到灯亮、人走灯灭。它安装方便,可直接替换86型面板式开关,无需改动市电线路。为了方便业余爱好者们制作或维修,现介绍工作原理调试要点及电路,原理图如下。PIR(HWTT)热释电红外传感器的输出信号幅度较小(小于1mV),频率低(约0.1~0.8Hz),检测距离短,为此在PIR前加用一块半球面菲涅尔透镜,使范围扩展成90度圆锥型距离大于5米的检测面。集成电路内部含有二级运放、比较器、延时定时器、过零检测、控制电路、系统时钟等电路。PIR传感器检测到人体移动引起的红外热能之变化并将它转换为电压量,通过二级选频放大比较输入到控制电路中,由控制电路输出过零脉冲触发双向可控硅导通。采用交流过零触发能消除可控硅导通时浪涌电流,延长灯具的使用寿命。同时控制电路启动了延时

定时器,直至PIR传感器在接收到信号后,触发可控硅的信号延时到设定的时间后关断可控硅,做到自动关闭。改变R5阻值或C4容量可控制延时定时器的时间。IC电路的9脚为光控输入端,由光敏电阻串联R8接地,白天亮阻小9脚为低电平,封锁控制电路输出,待天暗时亮阻增大9脚转为高电平,并解除控制电路,因此能自动做到天暗时自动开关进入工作。调整R8电阻可适应不同的感光度。要将其改为日夜均能工作时,只需将光敏电阻或R8拆下即可。探测灵敏度的调整也十分方便,增大R9电阻阻值提高放大器的增益,它能使检测距离加远,反之则可缩短检测距离,一般可在2~8米之间调整。该电路只要选择元件无误及接焊无错均可一次成功。 1. 成品板带有光敏电阻 2. 红外人体感应带继电器控制的控制板本控制板可以直接接220V电源(供电),带有两对触点输出(一常开一常闭),负载可以达600W,可接任何负载如:卫生间的换气扇,节能灯,日光灯,电机,报警设备等.R9调节延时时间.阻值越大延时越长......(蓝色的端子为220V进线,绿色中间为公共端,两边为常开和常闭触点,板上分别标有220V~和NO(常开)NC(常闭)的字样,方便连接......3.带外壳的86型标准电源盒人体感应开关,可以直接替换现有的走廊开关控制电灯,达到人来灯亮人走后延时30S-2分钟熄灭,带有光控功能,白天或较亮时灯开关不工作,达到节能目的,感应距离5米左右,可以带电灯负

红外探测技术的应用

红外探测技术的应用 摘要:红外探测技术广泛应用于生活与科技的方方面面,不过红外技术的发展也经历了一个比较漫长的过程,从发现到应用,都是一点一丁的积累的。在这个过程中,红外技术也慢慢改变,极大方便人们的生活。 关键词:红外探测技术;应用;发展趋势 一、引言 红外辐射是波长介于可见光与微波之间的电磁波辐射,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。红外探测技术是利用目标辐射的红外线来搜索、探测和跟踪目标的一门高技术。 由于红外探测器环境适应性好、隐蔽性好、抗干扰能力强、能在一定程度上识别伪装目标,且具有设备体积小、重量轻、功耗低等特点,所以在军事,医疗,工程等领域都得到广泛的应用。 二、红外探测的发展历史 发展过程: 1800 年, 英国人赫婿尔用水银温度计发现红外辐射。 1821 年, 塞贝克发现温差电效应, 之后把热电偶、热电堆用于红外探测器。 1859 年, 基尔霍夫提出有关物体热辐射吸收与发射关系的定律。 1879~1884年, 斯特番?玻尔兹曼提出了有关绝对黑体总辐射能量与其绝对温度之间关系的定律。 1893 年, 维恩推出黑体分布的峰值与其温度之间关系的位移定律。

1900 年, 普朗克发表能量子模型和黑体辐射定律, 导出黑体光谱辐射出射度随温度和波长变化的关系式。上述这些工作为红外技术的发展奠定了坚实的理论基础。 在1910~1920 年的10 年中, 出现了探测舰船、飞机、炮兵阵地和冰山等目标的红外装置, 发展了通信、保安、红外测温等设备。二战期间, 出现了红外变像管、光子探测器等, 开创了夜视技术。1952~1953 年, 美国研制出世界上最早的热像仪,1956 年长波热像仪问世, 随后, 1964 年美国TI 公司研制的热像仪成功地用在越南战场上。 近20 年来, 红外技术得到了迅猛发展, 不仅用于机载前视红外, 而且也出现了大量的红外侦查搜索跟踪系统( IRST) ; 在天基红外方面, 天基红外相机蓬勃发展, 如哈勃太空望远镜, 其中的WFC3 型红外相机是一种比较新的星载相机; 又如我国发射的风云系列气象卫星, 正在发挥着重要作用。[1] 三、红外探测技术的原理 任何物体在常规环境下都会由于自身分子原子运动不停地辐射出红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈些。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。物体的温度越高,辐射出的红外线越多。物体在辐射红外线的同时,也在吸收红外线,物体吸收了红外线后自身温度就升高。红外线其实是无处不在的。光辉的太阳、燃烧的蜡烛、炽热的火炉固然会发出我们肉眼看不到的红外线;任何物体,只要它的温度比零下273度高,就无一例外地发射出红外线。[2] 红外探测器是将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。[3] 四、红外探测技术的应用 1、生活上的应用 在日常生活中,我们经常会看到感应灯,感应水龙头,感应开关等等,这些

人体红外感应模块 BISS0001

人体红外感应模块电路主要由人体红外传感器、菲涅尔透镜、专用芯片BISS0001组成。当有人出现在它的探测区,传感器便能探测到信号并把信号传给单片机,单片机再根据实际情况是否该开启器件设备或让房间的电器设备处于一种可开启状态。另外,关于走廊及洗手问用灯情况,当晚上有人经过时,人体红外感应到人便开启走廊用灯或者洗手间用灯。热释人体红外模块电路如图2所示。 图2 热释人体红外电路图 上图中,R3为光敏电阻,用来检测环境照度。当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。图中R6可以调节放大器增益的大小,原厂图纸选10K,实际使用时可以用3K,可以提高电路增益改善电路性能。输出延迟时间Tx由外部的R9和C7的大小调整,触发封锁时间Ti由外部的R10和C6的大小调整,R9/R10可以用470欧姆,C6/C7可以选0.1U。 3.1.1 BISS0001芯片介绍(小四号黑体) BISS0001是一款传感信号处理集成电路。静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器。广泛用于安防、自控等领域能。 特点:CMOS工艺 数模混合 具有独立的高输入阻抗运算放大器

内部的双向鉴幅器可有效抑制干扰 内设延迟时间定时器和封锁时间定时器 采用16脚DIP封装 3.1.1.1管脚图 表3-1 管脚说明引脚名称I/O功能说明 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复触发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳前沿触发,使V o输出从低电平跳变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的上跳变时,V o保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端 7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器复位 9 VC I 触发禁止端。当VcVR时允许触发(VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端 13 2IN- I 第二级运算放大器的反相输入端 14 1IN+ I 第一级运算放大器的同相输入端 15 1IN- I 第一级运算放大器的反相输入端 16 1OUT O 第一级运算放大器的输出端 工作原理

主动红外与被动红外探测器的区别及应用

主动红外与被动红外探测器的区别及应用 主动红外入侵探测器是由发射机和接收机组成,发射机是由电源、发光源和光学系统组成,接收机是由光学系统、光电传感器、放大器、信号处理器等部分组成。 主动红外探测器是一种红外线光束遮挡型报警器,发射机中的红外发光二极管在电源的激发下,发出一束经过调制的红外光束(此光束的波长约在0.8~0.95微米之间), 经过光学系统的作用变成平行光发射出去。此光束被接收机接收,由接收机中的红外光电传感器把光信号转换成信号,经过电路处理后传给报警控制器。 由发射机发射出的红外线经过防范区到达接收机,构成了一条警戒线。正常情况下,接收机收到的是一个稳定的光信号,当有人入侵该警戒线时,红外光束被遮挡, 接收机收到的红外信号发生变化,提取这一变化,经放大和适当处理,控制器发出的报警信号。目前此类探测器有二光束、三光束还有多光束的红外栅栏等。 一般应用在周界防范居多,最大的优点就是防范距离远,能达到被动红外的十倍以上探测距离。 被动红外探测器主要是根据外界红外能量的变化来判断是否有人在移动。人体的红外能量与环境有差别,当人通过探测区域时,探测器收集到的这个不同的红外能量的位置变化,进而通过分析发出报警。 但外界环境是:不但人体会发出红外能量,许多物体在一定的条件下都会散发红外能量,而在可见光中这种能量尤其突出,所以任何被动红外探测器的抗白光干扰就成了一个重要的指标。在室内光线稳定、红外能量比较恒定的情况下,这种探测方式表现非常好。但室外情况就不同了,长期以来被动红外红外探测在室外只有极少数厂家才能做到。正所谓室内室外一小步,科技含量三大步。 主动红外探测器设备选择 1.根据防范现场最低、最高温度及其持续时间,选择工作温度与之适合的主动红外入侵探测器;若环境温度过低可使用专用加热器以保证探测器的正常工作。 2.主动红外入侵探测器受雾影响严重,室外使用时均应选择具有自动增益功能的设备(此类设备当气候变化时灵敏度会自动调节);另外,所选设备的探测距离实际警戒距离留出20%以上的余量,以减少气候变化引起系统的误报警。 3.在室外使用时一定要选用双光束或3光束主动红外入侵探测器,以减少小鸟、落叶等引起系统的误报警。 4.主动红外入侵探测器中所用红外发光二极管波长分别在0.85μm 和0.95μm附近。前者有红曝现象产生,其隐蔽性不如后者好。 5.多雾地区、环境脏乱风沙较大地区的室外不宜使用主动红外入侵测器。 6.在空旷地带或在围墙上、屋顶上使用主动红外入侵探测器时,应选择具有避雷功能

《红外感应开关的设计》专业课程设计分析

2017届课程设计 《红外感应开关的设计》课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业计算机科学与技术 班级 指导教师 教师职称 塔里木大学教务处制

目录 摘要 (3) 1.绪论 (4) 2. 红外感应开关电路原理 (5) 2.1红外感应开关电路图 (5) 2.2元件图表 (6) 2.3注意事项: (6) 3.1红外光波谱 (7) 3.2 红外收发系统 (7) 4.红外控制和传统开关控制的比较 (8) 4.1传统开关的缺陷 (8) 4.2红外线感应开关的优势 (8) 4.3方案设计 (8) 5.设计调试 (9) 5.1 调试前不加电源的检查 (9) 5.2 静态检测与调试 (9) 5.3 动态检测与调试 (9) 6.CD4093单片机 (10) 7. PCB板实体图 (11) 8.总结 (12) 9.致谢 (13) 10.参考文献 (14)

摘要 本文介绍了红外线感应开关的原理,采用红外探头将接收到的微弱信号加以放大,然后驱动继电器,制成红外感应开关。本开关能探测来自环境中物体的红外辐射,探测环境中存在感应到的物体,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到自动化的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防范作用。 科技使人们的生活更美好。进入21世纪以来,科学技术不断地飞速发展,电子类技术更是不断地改变着人们的生活。从常见的手机到翱翔在太空的宇宙卫星,各种电子类产品是现代人们必不可少的工具,渗透在人们的日常生活中。 本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用范围广,所以可以通过扩展而达到实际的应用。本课程设计主要通过红外线感应开关的制作,深入浅出地学习其设计,工作原理以及其工作环境、效率等,为日后进一步学习和以后工作学习奠定基础。 关键词:红外线感应开关自动化

红外探测技术及红外探测器发展现状

红外探测技术及红外探测器发展现状 中国安防行业网2014/7/25 14:10:00 关键字:红外,探测技术,发展现状浏 览量:6731 一、技术现状 红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。 其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟,甚至可以分析物质的分子组成; 远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。 只有近红外,由于其强度小,穿透力一般,故长期以来没有引起重视,只是近些年来才成为研究热点,因为用近红外技术可以做某些成分的定量检测,最关键的是还不必破坏试样。 (一)技术优势 红外技术有四大优点:环境适应性好,在夜间和恶劣天候下的工作能力优于可见光;隐蔽性好,不易被干扰;由于是靠目标和背景之间、目标各部分的温度和发射率差形成的红外辐射差进行探测,因而识别伪装目标的能力优于可见光;红外系统的体积小,重量轻,功耗低。 (二)制约因素 目标的光谱特性;探测系统的性能;目标和探测口之间的环境和距离——这三大因素是红外技术发展过程中需要解决的主要问题。例如:为充分利用大气窗口,探测器光谱响应从短波红外扩展到长波红外,实现了对室温目标的探测;探测器从单元发展到多元,从多元发展到焦平面,上了两大台阶,相应的系统实现了从点源探测到目标热成象的飞跃;系统从单波段向多波段发展;发展了种类繁多的探测器,为系统应用提供了充分的选择余地。 (三)国内领先技术 红外探测器芯片一直受制于西方政府和供应商。为打破国外技术垄断,2012年4月,高德红外用2.4亿元超募资金实施“红外焦平面探测器产业化项目”。2014年2月25日,高德红外公告,公司“基于非晶硅的非制冷红外探测器”项目成果已获湖北省科技厅鉴定通

红外热成像仪检测人体温度

疫情的爆发,鉴于其特征之一即发热咳嗽这一典型症状,当下在公共区域的疫情监控与防治环节,非接触式人员测温筛查成为关键的防疫手段。相较于传统的接触式体温筛检设备,非接触式设备可以依托红外线强度对目标体进行在线温度监测,实现了有效快速的筛检人群,大幅提升了筛选效率。在本次疫情防控当中,基于红外热成像技术的测温筛查设备红外热像仪装备需求旺盛。 红外热成像仪怎么实现人体测温? 正常人体的温度分布有一定的稳定性和特征性,机体各部位温度不同,形成了不同的热场,当人体某处发生疾病或功能改变时,该处血流量会相应发生变化,导致人体局部温度改变,表现为温度偏高或偏低,通常人体体表的比较高的温度一般处于鼻根部周围及眼窝、口腔内部等部位,该部位的血管较多且表皮较薄,可以很好地反映被测人体的温度状态,故红外热像仪检测人脸部的位置为宜。 根据这一原理,通过热成像系统采集人体红外辐射,并转换为数字信号,形成伪色彩热图,利用专用分析软件,经专业医师对热图分析,判断出人体病灶的部位、疾病的性质和病变的程度,为临床诊断提供了可靠依据。

为什么要用红外热成像仪做体温初筛呢? 1.提示炎症:鼻炎、副鼻窦炎、口腔炎症、咽喉炎、甲状腺炎、肺炎、胆囊炎、阑尾炎、胃肠炎、前列腺炎、附件炎等全身各部位的炎症。 2.肿瘤的早期预警:鼻咽癌、甲状腺癌、肺癌、乳腺癌、肝癌、胃癌、肠癌、皮肤癌等癌症的预警作用。 3.周围神经疾病的提示:面瘫、面肌痉挛、偏头痛、三叉神经痛的提示。皮肤疾病的提示与研究,烧伤与冻伤面积与深度的测定,植皮疗效的观察。 4.血管疾病的提示:人的肢体温度主要由血液循环状态所决定,当存在血管病变时,血循环发生障碍,皮温降低。如闭塞性脉管炎、动脉栓塞、动脉瘤等,通常表现为病变部位温度异常,用红外热像仪可清楚显示出病变部位及范围。用红外热成像技术,不但能显示出病变的存在,而且能看出各趾病变的程度和范围,通过早期诊断和及时治疗,可避免肢体发生严重损害,如溃疡和坏死。 红外热像仪,契合疫情防控对高效安全测温的要求,最近备受各方关注。

主动红外入侵探测器原理与应用

主动红外入侵探测器原理与应用 主动红外入侵探测器由主动红外发射机和主动红外接收机组成,当 发射机与接收机之间的红外光束被完全遮断或按给定百分比遮断时能产生报警状态的装置,叫主动红外入侵探测器。 主动红外发射机通常采用红外发光二极管作光源,其主要优点是体积小、重量轻、寿命长,交直流均可使用,并可用晶体管和集成电路直接驱动。现在的主动红外入侵探测器多数是采用互补型自激多谐振荡电路作驱动电源,直接加在红外发光二级管两端,使其发出经脉冲调制的、占空比很高的红外光束,这既降低了电源的功耗,又增强了主动红外入侵探测器的抗干扰能力 主动红外接收机中的光电传感器通常采用光电二极管、光电三极管、硅光电池、硅雪崩二极管等,按GBl0408.4—2000《入侵 探测器第 4 部分:主动红外入侵探测器》规定:“探测器在制造厂商 规定的探测距离工作时,辐射信号被完全或按给定百分比遮光的持续时间大于40ms时,探测器应产生报警状态。”目前市售的主动红外入侵探测器均给出最短遮光时间范围,例如:某品牌的主动红外入侵探测器最短遮光时间范围是30m—600ms为什么要给出一个范围呢?原因是不同的使用部位可以设定(调节)不同的最短遮光时间,这有益于减少系统的误报警。例如:将主动红外入侵探测器构成电子篱笆警戒时,就应将最短遮光时间调至30ms附近;用在围墙上或围墙内侧警戒时,就应将 最短遮光时间调至600ms附近。具体数值使用者可通过试验确定主动红外发射机所发红外光束定发散角,在GBI0408.4 —2000 标准中规定:“室内使用时,发射机与接收机经正确安装和对准,并工

作在制造厂商规定的探测距离,辐射能量有75%。被持久地遮挡时,接收机不应产生报警状态。”从另一角度理解这句话的意思就是:当接收机接收的能量小于25%时,系统就要产生误报警。为了减少由此引起的误报警,安装使用中应让发射机与接收机轴线重合。 目前,除单光束主动红外入侵探测器外,还有双光束和4光束的。工作原理是:当两光束完全或按给定百分比同时被遮断时,探测器即可进入报警状态。这种主动红外入侵探测器可以减少小鸟、落叶等引起系统的误报警。市售的双光束主动红外入侵探测器有两类,一类是采用双边凹透镜结构的,此结构的探测器两光束之间距离较近,一般只在10cm左右。若上下各用一组双边凹透镜,即构成了4光束主动红外入侵探测器。再一类就是采用两对红外发射和红外接收装置构成的双光束主动红外入侵探测器。该探测器上下两光束距离可达20cm—25cm又称同步型双光束主动红外入侵探测器。 应用探讨:

人体感应开关原理

采用热释电红外探头并对探头接收到的微弱信号加以放大,人 然后驱动继电器,可以制成热释电人体感应开关。人体感应开关电路 它可应用于电灯的节能自动开关、自动门、安全防护、防盗等设备中。 [电路工作原理] 该电路采用LN074B作探头。当探头接收到人体释放的热释红外信号后,由控头内部转换成一个频率约 0.3~3Hz微弱的低频信号,经VT 1、IC2两级放大器放大后输入电压比较器IC3。两级电压放大采用直流放大器,总增益约70~75分贝。 IC3等组成电压比较器,其中RP为参考电压调节电位器,用来调节电路灵敏度,也就是探测范围。平时,参考电压(IC3的 (2)脚电压)高于IC2的输入电压(IC3的 (3)脚电压),IC3输出低电平。当有人进入探测范围时,探头输出探测电压,经VT1和IC2放大后使信号输出电压高于参考电压,这时IC3的 (6)脚输出高电平,三极管VT2导通,继电器J1能电吸合,接通开关。 电路xxVT 3、C 7、R 8、~R10组成开机延时电路。当开机时,开机人的感应会使IC3输出高电平,造成误触发。开机延时电路在开机的瞬间,由电容C7的充电作用而使VT3导通,这样就使IC3输出的高电平经VT3通地,VAT2可以保持截状态,防止了开机误触发。开机延时时间由C7与R8的时间常数决定,约20秒。 [元件选用]热释红外探头选用LN074B型。I

C2、IC3选用高输入阻抗的运算放大器CA3140。该电路采用结型场效应管作差分输入级,输入阻抗高达 1.5*10 (12)xx,输入失调电流仅 0.5pA,频带宽达 4.5MHz,转换速率为9V/us,是一种性能十分优良的运算放大器,很适合于作微弱信号的放大级。 探头安装在高度距离地面为2米左右。外壳设计时应使透镜对地面呈13度左右的俯角,这样就可以形成一个监视区。由于探测器控制角只有86度左右,所以在安装时应选择最优良角度,使死区尽量减小。 [电路调试] 电路调试主要是调节电位器RB,选择合适的参考电压,以达到最佳灵敏度。

电气设备状态检修中红外检测技术的应用研究

电气设备状态检修中红外检测技术的应用研究 摘要:本文首先对红外检测技术的基本原理进行简单介绍,了解红外检测技术 的基本情况,重点研究红外诊断方法和影响诊断准确性的因素及对策,在此基础 上深入研究红外检测技术在电气设备状态检修中的应用,希望通过本文的研究能 够对红外检测技术的原理、应用方法以及影响因素形成全面的认识,同时也为后 期更好的应用红外检测技术对电气设备进行状态检修提供参考。 关键词:电气设备;状态检修;红外检测技术 1引言 在电气设备的使用过程中,合理的状态检测是保障电气设备正常使用的重要 手段。红外检测技术就是对电气设备进行状态检测的重要方法,能够实现在不接触、远距离情况下的状态检测,检测过程安全快速,结果相对可靠。但是在红外 诊断费方法的使用过程中也存在诸多因素对其准确性造成影响。因此在现阶段加 强对于电气设备状态检修中红外检测技术的应用研究具有重要的现实意义,能够 更加全面的掌握关于红外检测技术的原理方法,针对影响诊断准确性的因素进行 有效的控制,从而更好的发挥红外检测技术在电气设备状态检修中的作用,更好 的保障电气设备的正常运行。 2红外检测技术的基本原理 在电气设备使用过程中,往往会出现各种不同类型的故障,虽然发展形式比 较复杂,但是基本都会以设备热状态的异常为主要表现形式。红外检测技术最根 本的原理就是对电气设备的辐射信号进行探测,得到相应的热像特征图谱,然后 利用分析软件对得到的图谱进行专业的分析,通过与设备正常运行时的图谱进行 对比分析,判断设备的运行状态,进而分析可能存在故障的位置及其类型。 不同的物体之间存在宏观或者微观的热量传递,主要有传导、辐射和对流三 种形式,往往是三种形式同时进行。当电气设备出现故障时,也会出现不同类型 的发热以及热量传递,比如接触电阻发热、介质发热、涡流发热等。设备故障引 起的发热还会对设备的内部介质性能以及外部的表面性能造成破坏,甚至会影响 到整体的热平衡,而热量也会以各种形式传递到表面,使得表面的温度发生明显 的变化。利用红外检测技术能够检测到表面红外辐射信息的情况,进而得到设备 在不同状况、不同故障下的温度情况,结合设备结构等就能分析判断电气设备具 体的故障类型以及严重程度。 3红外诊断方法和影响诊断准确性的因素及对策 3.1红外诊断方法 红外检测诊断会遇到复杂的故障状况,针对不同的情况需要选择合适的方法 进行分析。目前常用的红外诊断方法主要包括以下几种:设备表面温度分析法是 对设备的表面发热情况进行分析,测得表面温度后结合设备温度及温升极限的相 关标准分析具体的故障,这种方法适用于电流致热和电磁效应造成的设备故障; 横纵向比较法是对同组、同相以及相同类型的设备之间的温度进行对比,对比的 数据包括某些部位的温升、温度值等,具体数值的选择要参照设备发热的具体情况;一些电压致热※的电气设备,其温度升高变化比较小,利用上述方法分析效 果不明显,可以利用热像图进行分析,对比设备在正常状态和故障状态下的热像 图的差异来分析设备的故障,需要注意的是在使用热像图分析法进行红外检测时 要使三相设备同时充满成像视场,这样能够有效避免其他因素的干扰,提升检测 准确性;除此之外还有相对温差判断法、历史数据分析判断法和连续分析判断法。

人体红外感应开关电路原理

红外热释电处理芯片BISS0001 BISS0001是一款具有较高性能的传感信号处理集成电路,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 特点 *CMOS工艺 *数模混合 *具有独立的高输入阻抗运算放大器 *内部的双向鉴幅器可有效抑制干扰 *内设延迟时间定时器和封锁时间定时器 *采用16脚DIP封装 管脚图

管脚说明

工作原理 BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。 以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。不可重复触发工作方式下的波形 首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压Vc

触发信号Vs向下级传递;而当Vc>VR时,COP3输出为高电平,进入延时周期。当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。 以下图所示的可重复触发工作方式下的波形,来说明其工作过程。可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内一直保持有效状态。在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。

人体感应模块(方案)

人体红外感应测距——判断电脑休眠待机 一.项目概况 1.客户:联想 2.应用途径:装在电脑或一体机显示器模块上,用于判断是否有用户在电脑前,来控 制电脑进行休眠或者待机的操作。 3.基本原理:人体红外感应模块不断判断是否有人靠近电脑。有人靠近电脑后,红外 测距模块判断电脑前的人是否在向电脑靠近。如果进入一定的范围(比如人与电脑的 距离在80cm内),则通知电脑自动从休眠状态唤醒。如果人离开电脑到一定的距离,且出了人体感应范围(可设置为1—2米),且超过一定的时间。则判断用户离开电 脑,通知电脑进行休眠操作。 二.工作环境 1.工作环境:室温 2.工作电压:5V 三.产品及功能实现概述 1.产品框架 由图中我们可以看出此模块所用到的主要器件为: 1.红外发射头 2.红外接收头 3.热释电人体红外感应头 4.菲涅尔透镜 5.运算放大器 6.MCU 7.电阻电容若干

2.模块功能概述 (1)人体感应模块 感应范围:可以通过菲涅尔透镜配合人体红外感应探头调节。5—6米的距离内都可以实现;感应角度可以为60°—80°的锥形区域。 运算放大器:将人体红外感应模块感应到的电信号进行放大 (2)红外测距模块 红外发射头:发射经MCU编码的红外线 红外接收头:接收经MCU编码的红外线 抗干扰性:由于红外发射和接收的光信号都是通过特定编码的光信号,所以不会受其它红外射线的干扰。 红外发射的距离和范围:通过调节供给红外发射管的电流来调节红外发射管的发射距离。1—2米的距离内都可以实现;感应角度可以为60°—80°的锥形区域。 (3)MCU 1.产生用于红外发射头发射的的特殊编码驱动电信号。 2.接收由红外接收头收到的经编码的电信号。 3.结合红外人体感应模块返回的信号与红外接收头返回的信号来判断电脑面前 是否有用户。 4.发送特定的休眠、待机信号给EC。 (4)POWER POWER可以从主板上提取一个5V的电压 (5)与EC通讯的线路 这部分可通过座子、线材与主板连接,并最终加到EC芯片上。 3.工作模式 下面我们从上电开始分析各种不同情况下的工作判断模式 (1)开机后模块何时开始工作(有三种选择) 工作流程图如下: (2)模块正常工作后 用户用电脑有两种模式:1.在电脑前包公(离电脑比较近)2.用电脑看碟之类的休 闲活动(离电脑相对远一些);所以我们定义一个检测有 效距离D1。 功耗问题:如果红外测距与红外人体感应模块一直不停地工作,会导致此模块功

红外线感应开关设计

红外线感应门铃设计方案 一:选题意义: 科学技术是第一生产力,科技使人们的生活更美好。进入21世纪以来,科学技术不断地飞速发展,电子类技术更是不断地改变着人们的生活。从常见的手机到翱翔在太空的宇宙卫星,各种电子类产品是现代人们必不可少的工具,渗透在人们的日常生活中。 本课程设计主要通过红外线感应开关的制作,深入浅出地学习其设计,工作原理以及其工作环境、效率等,为日后进一步学习和以后工作学习奠定基础。 二:总体方案 1.设计任务要求: 通过检测发射的红外线编码信号是否被反射来判断是否有物体在门面前,从而控制门铃动作。 2.总体电路模板设计: 3.单元电路设计: 1 )感应电路2)门铃控制电路 4.选择元器件 5.安装和调试元器件 三:各部分设计以及原理分析 1 )感应电路 2)门铃控制电路

四.功能分析 电源供电电路:接入12V直流电进行供电。 开关控制电路:可接入工作设备,由开关电路控制。 该红外线对射式电子门铃电路由红外线发射电路、红外线接收电路、集成运放电路、音频振荡器和音频输出电路等组成,如图3-1所示。 电路中,红外线发射电路:由红外发射管(红外线发光二极管)D1、驱动晶体管VT1内电路及有关外围元器件组成;红外线接收电路:红外接收管(红外线光敏晶体管)VD2;信号放大由集成电路LM741和电阻器R5、R4,电容器C1、C2等组成;音频振荡器由LM567内部的或非门D3与D4和电阻器R6、电容器C5等组成;音频输出电路由放大晶体管V3、电阻器R7和扬声器BL等组成。 3.3 电路的工作原理 VD1发射红外线,VD2接收红外信号。 LM567第⑤、⑥脚为译码中心频率设定端,一般通过调整其外接可变电阻W 改变捕捉的中心频率。 图中红外载波信号来自LM567的第5角,也即载波信号与捕捉中心频率一致,能够极大的提高抗干扰特性。 当接收到的红外载波信号和捕捉中心频率一致时,说明不是干扰,LM567的第8角输出低电平。 1、LM567输出部分与普通数字IC等有所不同,其内部是一个集电极开路的 NPN型三极管,使用时,⑧脚与正电源间必须接一电阻或者其它负载,才能保证

红外探测技术的应用相关

红外技术的应用及前景(红外探测技术)

红外技术的应用及前景 (1) 摘要 (2) 第1章绪论 (2) 第2章红外探测技术 (4) 摘要 本文在第一章中主要介绍了红外线的基础、红外线的特性以及红外技术的发展历史,在第二章中,重点介绍了红外线在探测方向的应用,以及不同的红外探测器的分类和特性,并且通过对探测原理的推导,了解探测器工作的方法,最后介绍了红外探测器的发展前景。 关键字:红外线、探测器 第1章绪论 1.1引言 目前红外技术作为一种高技术,它与激光技术并驾齐驱,在军事上占有举足轻重的地位。红外成像、红外侦察、红外跟踪、红外制导、红外预警、红外对抗等在现代和未来战争中都是很重要的战术和战略手段。在70年代以后,军事红外技术又逐步向民用部门转化。红外加热和干燥技术广泛应用于工业、农业、医学、交通等各个行业和部门。红外测温、红外测湿、红外理疗、红外检测、红外报警、红外遥感、红外防伪更是各行业争相选用的先进技术。标志红外技术最新成就的红外热成像技术,它与雷达、电视一起构成当代三大传感系统,尤其是焦平面列阵技术的采用,将使它发展成可与眼睛相媲美的凝视系统。 1.2 红外简介 1.2.1红外线概述 1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。而波长为

HC-SR501 普通型 人体红外感应模块

? ?6543653654365(⊙o⊙) (363636536363564365465346536536535356436563563656) ?HC-SR501 普通型人体红外感应模块热释电红外传感器提 供电子资料 技术参数: 1.工作电压:DC5V至20V 2.静态功耗:65微安 3.电平输出:高3.3V,低0V 4.延时时间:可调(0.3秒~18秒) 5.封锁时间:0.2秒 6.触发方式:L不可重复,H可重复,默认值为H 7.感应范围:小于120度锥角,7米以内 8.工作温度:-15~+70度 9.PCB外形尺寸:32*24mm,螺丝孔距28mm,螺丝孔径2mm,感应透镜尺寸:(直径):23mm(默认)

功能特点: 1.全自动感应:当有人进as入其感应范围则输入高电平,人离开感应范围则自动延时关闭高电平。输出低电平。 2.光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。 光敏电阻请拍这里: 3.两种触发方式:L不可重复,H可重复。可跳线选择,默认为H。 A.不可重复触发方式:即c感应输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。 B.可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一 次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。 4.具有感应封锁时间(默认设置:0.2秒):感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。 5.工作电压范围宽:默认工作电压DC5V至20V

人体红外感应模块

HC-SR501 人体红外感应模块热释电红外传感器探头

功能特点: 1.全自动感应:当有人进入其感应范围则输入高电平,人离开感应范围则自动延时关闭高电平。输出低电平。 2.光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。 3.两种触发方式:L不可重复,H可重复。可跳线选择,默认为H。 A.不可重复触发方式:即感应输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。 B.可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。 4.具有感应封锁时间(默认设置:3-4秒):感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。 5.工作电压范围宽:默认工作电压DC5V至20V 6.微功耗:静态电流65微安,特别适合干电池供电的电器产品。 7.输出高电平信号:可方便与各类电路实现对接。 使用说明: 1感应模块通电后有一分钟左右的初始化时间,在此时间模块会间隔地输出0-3次,一分钟后进入待机状态。 2. 应尽量避免灯光等干扰源近距离直射模块表面的透镜,以免引进干扰信号产生误动作;使用环境尽量避免流动的风,风也会对感应器造成干扰。 3. 感应模块采用双元探头,探头的窗口为长方形,双元(A元B元)位于较长方向的两端,当人体从左到右或从右到左走过时,红外光谱到达双元的时间、距离有差值,差值越大,感应越灵敏,当人体从正面走向探头或从上到下或从下到上方向走过时,双元检测不到红外光谱距离的变化,无差值,因此感应不灵敏或不工作;所以安装感应器时应使探头双元的方向与人体活动最多的方向尽量相平行,保证人体经过时先后被探头双元所感应。为了增加感应角度范围,本模块采用圆形透镜,也使得探头四面都感应,但左右两侧仍然比上下两个方向感应范围大、灵敏度强,安装时仍须尽量按以上要求。

红外探测技术的应用及发展

电子技术 ? Electronic Technology 88 ?电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】红外探测技术 应用 发展 1 引言 红外探测技术通过对目标与背景之间的红外辐射不同的信息来取得目标与背景信息,包含光学系统与探测器、显示设备、信息处理器、信息输出接口、扫描与伺服控制、中央计算机等设施。红外接收光学系统的作用是取得目标或者目标区域之内的红外辐射。红外探测器的结构与接收光学系统相似。传统的接收光学必须在红外范围内工作,其光学材料和涂层需要和工作波长兼容。红外探测器把目标与背景的红外辐射转换成电信号。红外探测器经非均匀性校正放大后,红外辐射以视频的状态输出到信息处理器。信息处理器由软件与硬件构成。在合成过程中,对视频进行加快处理,获取目标。显示装置可以通过数据接口的输出实时显示视频信号与状态信息。中央计算机的作用是向系统提供时间、状态、接口还有内部与外部命令。扫描伺服控制器控制光学扫描器或伺服平台以与光学扫描器或伺服平台。服务平台的角度位置信息发送给中央计算机。 2 红外探测技术的原理 假如无论什么样的物体的温度高于绝对零度,它就会释放红外辐射。由于物理对象不同部分的温度相异,辐射率会区别,呈现出不同的辐射特性。红外检测设备通过大气传输接收图像,然后通过光电转换,可以用肉眼观察图像。红外探测技术使用目标和背景。由红外辐射差异形成的热点或图像用于获取目标和背景信息。检测系统包括:中央计算机和激光测距,光学系统和检测器,信息处理器,扫描和伺服控制,显示设备,信息输出接口等。 红外接收光学系统的构成类似于传统的接收光学系统。由于它在红外波段工作,红外接收光学系统的光学材料和涂层需要与其他波长兼容。红外探测器将最终目标和背景的红外辐射转换成电信号,并在非均匀性校正和扩大后以动态影像形式输出到信息处理器。信息处 红外探测技术的应用及发展 文/吴安茂 骆定辉 理器由硬件和软件构成。在迅速处理视频之后,可以获得目标信息。通过数据接口输出,显示设备可以实时显示视频信号和状态信息。 3 红外探测技术的应用与发展趋势 3.1 几种红外探测技术的应用 红外探测技术拥有特别的优点:无形的红外辐射,保密性好; 良好的环境适应性; 无源接收系统,抗干扰能力强; 体积小,重量轻,功耗低; 可以揭示伪装的目标; 分辨率优于微波,因此广泛应用于红外夜视,红外探测,红外引导等领域。 3.1.1 红外侦查、监视 红外侦察监视主要包括空间、空中、地面的红外侦查与监视,按工作方式来分可划分为主动装置和被动装置。IDRS(红外探测装置)的应用范围非常广:负有监视任务的监视卫星,负有警戒任务的警戒装置,负有救援任务的救援直升机等,舰艇配备的监视系统等等,都需要安装红外探测装备。3.1.2 红外制导 通过目标本身的红外辐射引导导弹自动接近目标,提高命中率。红外制导的常用工作方式有空对空、空对地、地对空、反坦克导弹等,红外焦平面显示制导技术具有较高的识别诱饵能力。而有非常高的命中率。3.1.3 红外对抗 为保护大型飞机和直升机免遭红外制导导弹的威胁,红外对抗系统得到迅猛发展。基于激光的多波段对抗系统用来躲避热寻导弹的威胁,保护直升机和攻击机;定向红外对抗系统保护作战平台免受热寻导弹威胁。3.1.4 探测和预报 (1)红外技术在隧道岩溶探测与预测中的应用,对于隧道的岩溶探测,特别是在隧道的工作面,目前还没有有效的方法。传统的探地雷达方法耗时长,而且探测距离又短,精度又低。考虑到地质灾害的主要来源是水,在隧道中引入了红外探测技术。红外波段的电磁波向外发射时,红外辐射场具有密度、能量、动量、方向等信息。岩层会向外辐射红外线。同时,岩层内部的地质信息以红外辐射场强度变化的形式传递。 (2)在安防领域,红外探测技术得到了深化发展。一旦入侵人进入探测区域内,红外探测器中的热电元件就能检测感知人体的存在或移动,并把热电元件的输入信号转换成电压信号,再通过微处理器处理并发现报警信息。红外探测器可用在需要防护的围墙,草坪,室内和其他空间区域。 它使用和安装方便,能够和其他探测器结合使用。 它安全性好,可 靠性好,经济性好,是目前民防产品的主要选择。 (3)在森林防火领域,红外探测技术得到了长足进步。我国普遍采用加强警示和处罚等“人防”手段,这种做法成本不低,且需耗费大量人力物力。因而,如何在“人防”手段之外,辅以较为高效、安全的“技防”手段,便成为了一个不得不思考的问题。在国内景区、森林火灾报警装置中,火灾探测器是火灾报警系统的重要部件和传感机构。倘若发生火灾,火灾的特征物理量,例如温度、烟雾、气体和辐射强度,被转换成电信号,并且报警信号被立即发送到火灾报警控制器。 3.2 红外探测技术发展趋势的预测发展分析随着红外技术的高速发展,红外仪器在使用方面有更高需求:由于探测目标、最小可探测辐照度、噪声等,要求高探测灵敏度;随着定位跟踪精度、抗干扰能力和智能化能力的提高,对红外仪器的运行机理、结构方面和信号方面处理提出了提升的要求。探测器从单元进展到多个线性阵列,再进展到区域阵列,单元面积越来越小;由信号调制机制进展到扫描机制;从单视场发展到可变视场,从简单信息进展到多信息的收购和处理,这些都将成为今后红外探测技术趋势的发展。 4 总结 因多波段运作、数据的融合、复杂的检测与各种各样高科技应用的扩展,红外预警探测系统的灵敏度、成率和定位精度都越来越高,探测的距离也越来越长,误差率也明显变低。所以,红外探测技术会在以后发挥更大的作用。 参考文献 [1]李创业.基于GPRS 和红外探测技术的家 庭安防系统的研究与设计[D].湖南大学,2014. [2]赵庆珍.红外探测技术用于预测煤与瓦 斯突出的试验[J].采矿与安全工程学报,2009,26(04):529-533. [3]刘琦.256×320阵列多功能红外读出电路 的设计[D].南京邮电大学,2016. 作者简介 吴安茂(1984-),男,浙江省台州市人。台州市环科环保设备运营维护有限公司工程师。研究方向为环保工程。 作者单位 台州市环科环保设备运营维护有限公司 浙江省台州市 318000

相关主题
文本预览
相关文档 最新文档