当前位置:文档之家› 一般不等式研究在中国的新进展

一般不等式研究在中国的新进展

一般不等式研究在中国的新进展
一般不等式研究在中国的新进展

七年级数学思维探究(14)不等式(组)的应用(含答案)

徐宝騄(1910-1970),浙江杭州人,中国著名的数理统计学家.1936年徐宝騄进入当时的数理统计研究中心伦敦大学学院学习数理统计,1940年回国任教.作为我国概率统计方面的学科带头人,在数理统计的许多领域,他都做出了杰出贡献,Springer 出版的专著介绍了对他的评价:“徐宝騄是20世纪中最渊博、富有创造性的统计学家之一.” 14.不等式(组)的应用 解读课标 现实世界中不等关系是普遍存在的,许多现实问题是很难确定或不需确定具体的数值,但可以求出或确定某个量的变化范围或变化趋势,从而对所研究问题有一个较清晰的估算或认识,这就是不等分析的基本思想. 不等式的应用主要表现在: (1)求代数式的取值范围; (2)作差或作商比较数的大小; (3)求代数式的最值; (4)列不等式(组)解决实际问题. 问题解决 例1 若a 、b 满足2357a b +=,2 23s a b =-,则s 的取值范围是______________. 试一试 用s 的代数式表示2a 、b ,由20a ≥、0b ≥建立关于s 的不等式组. 例2 1a 、2a ,…,2004a 都是正数,如果()()122003232004M a a a a a a =+++++ +, ()()122004222003N a a a a a a =++ +++ +,那么M 、N 的大小关系是( ). A .M N > B .M N = C .M N < D .不确定的 试一试 作差比较M 、N 的大小,解题的关键是如何简化M 、N ,不妨换元. 例3 为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一次小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但又不少于4人,这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤? 试一试 设共在x 个交通路口安排值勤,则共派478x +名学生值勤,解题的关键是,若每个路口安排8人,则最后一个路口安排人数用怎样的不等式表示. 例4 某工厂生产A 、B 两种产品共50件,其生产成本与利润如下表:

不等式解法探究论文

不等式解法探究 摘要:不等式可以求最大值、最小值,给我们的日常生活带来了效率。不等式在高中数学中不是孤立存在的,在函数、数列、解析几何、平面向量……,几乎所有的章节都有不等式的知识,可以说不等式贯穿了整个高中数学,由此可见不等式的重要性。不等式题目呈现不同形式,包括函数定义域、解不等式、与简易逻辑相结合、与圆锥曲线相结合、与数列相结合、求取值范围、均值不等式……。本文针对各种不等式,给出一些解法供大家学习参考。 关键词:不等式;解法;探究 Abstract:Inequality can be maximum, minimum, bring to our daily life efficiency. Inequality in the high school math do not exist in isolation, in function and sequence, analytic geometry, plane vector and so on , almost all the chapters have the knowledge of the inequality, to say the inequality throughout the high school mathematics, the importance of this inequality. Inequality present different forms, including function domain, inequality, combined with a simple logic, combined with a conic, combined with a progression, scope, and the mean inequality. This paper in view of the various kinds of inequality, I give some solution to consult for everybody to learn. Key words:inequation ; solutio;explore

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,) 01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

(基本不等式)公开课教案知识分享

基本不等式 2a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2 a b +≤的证明过程。 难点:2a b +≤等号成立条件。 三、教学过程 1.课题导入 2a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的 面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有222a b ab +=。 2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(22ab b a ≥+ 4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤ 22a b ab +≤ 用分析法证明: 32a b ab +≤的几何意义 探究:课本第98页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过 点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本 2a b ab +≤的几何解释吗?

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

在abc1条件下的不等式探究

在1a b c ++=条件下的不等式探究 在有关不等式的题目中,笔者发现有一类不等式,它的成立是建立在1a b c ++=的条件之下的,形式多种多样,但万变不离其宗,它的成立都离不开1a b c ++=这一条件。在本文中,笔者就是对这一类不等式作了一些研究。发现这一类不等式虽然解法也是形式各样,但是都离不开如何利用好1a b c ++=这一条件。利用好1a b c ++=这一条件,那么这一类不等式的解法就是手到擒来。 【例1】 已知,,a b c 是正数且1a b c ++=,求证:2221 3 a b c ++≥ 分析:这是一个对称不等式,取等号的条件应为:13 a b c ===,笔者在研究这个不等式的时候,通过研究1a b c ++=这个条件发现这个不等式的的证明方法有很多,下面我们来一一研究。 我们利用代入、比较和配方,就可以得到以下三个证法。 证法1: 因为 ()()()2 222222 133 a b c a b c a b c ++++-=++- 222 1 2222223 a b c ab bc ca ??=++---?? ()()()222 103a b b c c a ??=-+-+-≥? ? 所以 2221 3a b c ++≥(当且仅当13 a b c ===时取等号)。 证法2: 因为 ()()2 2222a b c a b c ab bc ca ++=++-++ ()22212a b c ≥-++ 所以 22213a b c ++≥(当且仅当13 a b c ===时取等号)。 证法3:

因为 ()2 222221a b c a b a b ??++=++-+?? ()2222221a ab b a b =++-++ 2222111()()()3 3 3 3 a b a b =+-+-+-+ 13 ≥ 所以 22213 a b c ++≥(当且仅当13 a b c ===时取等号)。 我们利用换元法,又可以得到以下二种证法。 证法4: 令 123111,,3 3 3a t b t c t =+=+=+,则1230t t t ++=, 222222123111()()()3 3 3 a b c t t t ++=+++++ 222123123121()()3 3 3 t t t t t t =++++++≥ 当且仅当1230t t t ===,即1 3 a b c ===时取等号。 证法5: 令222a b c t ++=,即222a b t c +=-, 设22,a t c b t c θθ=-=-,代入1a b c ++=得 2(cos sin )1t c c θθ-+=- 所以有2 sin()4 2t c πθ+= - 由 2 112c t c -≤- 得23111()2333t c ≥-+≥,即2221 3a b c ++≥ 当且仅当13 a b c ===时取等号。 我们还可以应用函数、方程和数形结合的数学思想,就可以得到下面三种证法: 证法6:

《基本不等式》教案

普安县第五届中小学优质课评选授课教案 【课题】3.4 基本不等式(1) 【执教人】吴应艳 【上课时间】2013、12、 【教学方法】探究学习、学案导学 【教学手段】投影仪、彩笔 【课型】新授课 【总课时数】1课时 【教学内容分析】 本节课是必修5第3章第4节的内容,内容安排在实数的性质与不等式性质之后,所以对于不等式的证明不存在太大难度。本节课内容的应用又十分广泛,因此引导学生学习好本节内容显得十分重要。 【学生学习情况分析】 授课的班级学生程度不太高,基础差不多,学习的知识结构较为合理。因此设计时也注重对探究能力的培养,同时也注意对基本不等式的应用教学。【教学目标】 知识目标:1、使学生了解基本不等式及其证明;2、让学生感知与基本不等式相近的一些不等式的证明与几何背景。 能力目标:1、通过对基本不等式的探究,培养学生观察、归纳、抽象的能力和语言表达能力;2、让学生初步了解用分析法证明不等式,培养学生分析问题能力与逻辑思维能力 情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好的探究学习习惯及勇于探索精神及灌输问题教学法。 【教学重点与难点】 重点:应用数形结合的思想理解基本不等式并从不同角度探索不等式的证明

过程,并能说明基本不等式的意义 难点:利用基本不等式推导一些与其相似的不等式 一、教学过程 (一)情景设置 【探究】右图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。 现将图中的“风车”抽象成下图, 这个会标中含有怎样的几何图形?你能否在这个图案中找出一些相等关系或不等关系? 问题1:我们把“风车”造型抽象成图一.在正方形ABCD 中有4个全等的直角三角形.如果设直角三角形的两直角边长为a、b,你能用a、b表示哪些图形的面积,这些面积有什么关系?那么正方形的边长为多少?面积为多少呢?4个直角三角形的面积和是多少呢?(由学生回答,培养学生独立思考问题的能力) (22 a b +,22a b +、2ab ) 问题2:比较大正方形的面积与4个直角三角形的面积,你能找到怎样的不 等关系? (根据观察4个直角三角形的面积和正方形的面积,我们可容易得到一个不等 式, >(a ≠b)) 图一 2 2 b a +a b 2

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学基本不等式解题技巧研究①

龙源期刊网 https://www.doczj.com/doc/5815619754.html, 高中数学基本不等式解题技巧研究① 作者:何丽梅 来源:《学习与科普》2019年第27期 摘要:新课改的快速推进与持续深入,高考试题呈现出的灵活性不断提高,对学生数学 学习提出更为严格的标准。高考试卷对基本不等式的考点始终是学习的关键内容,同样成为学习阶段交易产生错误的环节,其解题方法较为灵活,学习掌握存在一定的难度,基于此,教师与学生务必加以高度重视,对不等式解题技巧做出深入分析研究,提高不等式解题正确率。 关键词:高中数学;基本不等式;解题技巧 前言:数学作为学生各个学习阶段非常关键的基础学科之一,存在相应的规律性以及逻辑性。基本不等式作为高中数学教育教学阶段的关键内容,在高考数学考试中占有相应的比例。高中生数学学习阶段,如果对基本不等式解题技巧、方法与思路的学习与掌握存在不足,致使在解题过程中出现困难问题,使得解题速度无法有效提高。基于此,高中数学学教育教学阶段,对基本不等式的学习,教师务必教授学生学习并掌握科学正确的解题技巧、方法与思路,从而提高基本不等式的教学效果。 一、反证法解不等式技巧 针对反证法来讲,实质主要为部分不等的正式,正面证明相对较难,因此可通过反向思考问题的角度进行证明,即若对不等式A>B做出证明,可假设A≤B,通过题设与不同性质,推断获得矛盾,以此得出A>B。若是需要证明不等式属于否定命题或以及唯一命题或是存在特 定的词语情况下,可运用反证法做出合理正确解答。运用反证法对不等式做出正确合理的证明阶段,务必需对命题结论相反的情况全部导出矛盾。针对几何与不等式问题方面的解题,反证法的应用较为普遍[1]。 比如,已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a>0,b>0,c>0。解:假设a、b、c并非全部为正数,其中之上存在一个为非正数。假设a≤0,则分别对a=0以及a0能够求得bc0,因此得知b+c>-a>0,得知ab+bc+ac=a(b+c)+bc0,同理能够求得b>0,c>0同样成立,因此命题结论成立。针对此种类型题目来讲,解题时从正面对做出证明存在一定的解题难度,通过采用反证法运用反向思想做出解答,可以使解题的难度明显降低,解题速度明显提高,并确保解题正确率。 二、绝对值不等式解题技巧 绝对值不等式作为不等式考查的重点内容,是存在一定难度的题型。对其作出解答时,针对不等式存在的式子,运用同解原理将式子转变成不等式组。通常来讲,不等式组一般有一次或二次不等式构成。针对超过两个绝对值构成的不等式,可分别假设绝对值式子等于零的情

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

基本不等式

基本不等式2 b a a b +≤ (一) 学习目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并 掌握定理中的不等号“≥”取等号的条件. 学习重点:基本不等式的证明,正确运用基本不等式. 你看到市场买鸡蛋,商贩用不等臂天平秤称量,先把鸡蛋放在左盘,砝码放 在右盘,砝码质量为x ,然后把鸡蛋放在右盘,砝码放在左盘,此时,砝码质量为y ,最后商贩告诉你,鸡蛋质量为 2 y x +,并让你付钱,请问你觉得公平吗? 学习任务:阅读课本第97页至第100页,完成下列问题: 1.对于基本不等式2 b a a b +≤ ,你用能什么方法证明? 2.比较不等式ab b a 22 2≥+与2 b a ab +≤ ,它们有什么关系?有什么区别?它们适用范围和等号成立的条件各是什么? 3.基本不等式2 b a a b +≤ 有何结构特点?利用这个结构可以解决什么问题?应用时应注意什么? 4.精读课本P 97例1,思考:0,0>>y x (1)如果y x ?是定值P ,和y x +有最值吗?若有,是多少?何时取得最值? (2)如果y x +是定值S ,积y x ?有最值吗?若有,是多少?何时取得最值? 5.动手做例2. 6.证明:0,0>>y x (1) 2≥+x y y x (2)21 ≥+x x (3)(y x +)(2 2 y x +)(3 3 y x +)≥83 3y x 必做题: P 100练习2、3、4基本不等式2 b a a b +≤ (二) 芅蚀芃螆蒇罿袃 学习目标:会应用基本不等式求某些函数的最值,能够解决一些简单的实际问 题. 膀膁羃芆莀螂袄 学习重点:会恰当地运用基本不等式求数学问题中的最值. 学习任务: 1.(1)若0>x ,求x x x f 312 )(+= 的最小值. (2)若0>y x ,且 19 1=+y x ,求y x +的最小值. (2)已知:0,0>>y x ,且082=-+xy y x ,求y x +的最小值. (3)已知:1->x ,求1 3 32+++=x x x y 的最小值. 4. 学校食堂定期从某粮店以每吨1500元的价格买大米,每次购进大米需支付 运输劳务费100元. 已知食堂每天需要大米1吨,储存大米的费用为每吨每天2元,假如食堂每次均在用完大米的当天购买,问食堂多少天购买一次大米能使平均每天所支付的费用最少? 5. 经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y (千辆/ 时)与汽车的平均速度V (千米/时)之间的函数关系为y = 1600 39202 ++V V V (V > 0). (1)在该段时间内,当汽车的平均速度V 为多少时,车流量最大?最大车流 量是多少?

基本不等式案例的研究

“基本不等式”案例的研究 早上我们一块听了“许高”王瑞敏老师、“二高”苗付雨老师关于“基本不等式”的两节“同课异构”课,与昨天也恰好是一个女老师、一个男老师,一个是热情型的、一个是沉稳型的.我还是首先向两位老师的精心准备和辛勤劳动表示感谢与尊敬. 今天的交流方式与昨天一样:我、授课教师、听课教师三方互动,希望大家多发言;昨天谈过的今天我尽量不重复.我发言的容分为四部分: (1)案例研究的认识 (2)不等式的教学分析 (3)案例分析的实施 (4)数形结合 1 案例研究的认识. 1-1 什么叫案例 “案例”一词源于法学,就是一个案件,哈佛法学院将案例应用于法律人才的培养,产生案例教学;哈佛工商学院将其应用于工商管理人才的教学,取得显著成效;之后,人们把“病例”用于医生培养,把“战例”用于军官培养,把“课例”用于教师培养,都叫做案例教学.教师教育中的案例教学始于20世纪70年代,伴随案例教学而进行的分析、反思、提炼又促进了“案

例研究”的发展.这里有三个词:案例、案例教学、案例研究.案例是一个教学实例,案例教学是一种教学方法,案例研究是一类研究方法.三者既有联系又有区别. (1)案例(课例)的界定:数学教育上的案例是具有典型意义的教学过程的描述. 对于数学教学上的案例,我们更习惯叫做课例(或个案),在形式上,可以是体现教育理论与教学技能的课堂实录,可以是学生学数学的生动故事,可以是教师教数学的有趣设计,还可以是教学实践中遇到的意外与困惑的事件.为了教学研究的需要,课例的叙述可以对课堂信息的摄取有所侧重,对课堂之外的情况(如教师、学生的背景)及心理活动有所描述(动机、态度、思想、意图、需要等),这就使得用于教学分析的课例与记录教学实验的课例略有区别.创作课例可以是一种“教育叙事”,用记叙文的体裁表示出来.(2)案例的作用:教学课例包含有充分多的信息(可以代表一类事物),蕴含一定程度的理论原理,反映了教学实践的经验与方法,渗透着对特定教学问题的深刻反思,可以帮助数学教师树立一种观念,明白一个道理,理解一个概念,学到一种方法;案例是了解教学的窗口,是问题解决的源泉,是教学理论的故乡,是教师发展的阶梯. (3)案例的特征:典型性、研究性、启发性. 1-2 什么叫案例研究

柯西不等式的几何意义

柯西不等式的几何意义和推广 3. 柯西不等式的几何意义 柯西不等式的代数形式十分简单,但却非常重要。数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦掌握了它,就使这个结果变得不言而喻了。而一个代数结果最简单的解释,通常驻要借助于几何背景。现在就对柯西不等式的二维、三维情况做出几何解释。 (1)二维形式 2222()()()a b c d a c b d ++ ≥+ y x Q (c ,d ) P (a ,b ) O 图3-1 如图,可知线段OP ,OQ 及PQ 的长度分别由下面的式子给出: OP OQ PQ ===θ表示OP 与OQ 的夹角。由余弦定理,我们有 2 2 2 2cos PQ OP OQ OP OQ θ=+-? 将OP ,OQ ,PQ 的值代入,化简得到cos θ= 而2 0cos 1θ≤≤,故有2 2 2222 ()cos 1()() ac bd a b c d θ+=≤++ 于是 2222()()()a b c d a c b d ++≥ + 这就是柯西不等式的二维形式。 我们可以看到当且仅当2cos 1θ=,即当且仅当θ是零或平角,亦即当且仅当

,,O P Q 在同一条直线上是时等号成立。在这种情形,斜率之间必定存在一个等 式;换句话说,除非0c d ==,我们们总有 a b c d =. (2)三维形式 2222 22 12312311 2233()()()a a a b b b a b a b a b ++++ ≥++ 对于三维情形,设123123(,,),(,,)P a a a Q b b b 是不同于原点(0,0,0)O 的两个点,则OP 与OQ 之间的夹角θ的余弦有 2 3c o s θ= 又由2cos 1θ≤,得到柯西不等式的三维形式: 2222 2 2 12312311 2233()()()a a a b b b a b a b a b +++ + ≥++ 当且仅当,,O P Q 三点共线时,等号成立;此时只要这里的123,,b b b 都不是零,就有 3 12123 a a a b b b == 4. 柯西不等式的推广 前面的柯西不等式都是限制在实数范围内的,在复数范围内同样也有柯西不等式成立。 定理:若12(,,)n a a a a =???和12(,,,)n b b b b =???是两个复数序列,则有 2 2 2 1 1 1 ()()n n n k k k k k k k a b a b ===≤∑∑∑, 当且仅当数列a 和b 成比例时等式成立。 证明:设λ是复数,有恒等式 2 22 2 1 1 1 1 1 ()()2Re()n n n n n k k k k k k k k k k k k k k a b a b a b a b a b λλλλ λ=====-=--=+-∑∑∑∑∑ 若12 1n k k k n k k a b b λ=== ∑∑(其中0b ≠),则有 22 2 1 2 1 1 1 0n k k n n k k k k n k k k k a b a b a b λ====-=- ≥∑∑∑∑ 由此推出了复数形式的柯西不等式。

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

相关主题
文本预览
相关文档 最新文档