当前位置:文档之家› 第三章 3.1 3.1.1 数系的扩充和复数的概念

第三章 3.1 3.1.1 数系的扩充和复数的概念

第三章  3.1  3.1.1 数系的扩充和复数的概念
第三章  3.1  3.1.1 数系的扩充和复数的概念

数系的扩充和复数的概念

3.1.1数系的扩充和复数的概念

预习课本P102~103,思考并完成下列问题

(1)实数系经过扩充后得到的新数集是什么?复数集如何分类?

(2)复数能否比较大小?复数相等的充要条件是什么?纯虚数、虚数、实数、复数关系如何?

[新知初探]

1.复数的有关概念

(1)复数

①定义:形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1,实部是a,虚部是b.

②表示方法:复数通常用字母z表示,代数形式为z=a+b i(a,b∈R).

(2)复数集

①定义:全体复数所成的集合.

②表示:通常用大写字母C表示.

[点睛]复数概念的三点说明

(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.

(2)复数的虚部是实数b而非b i.

(3)复数z=a+b i只有在a,b∈R时才是复数的代数形式,否则不是代数形式.

2.复数相等

在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .

3.复数的分类

对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:

复数z ?

????

实数(b =0),

虚数(b ≠0)(当a =0时为纯虚数).

[点睛] 复数集、实数集、虚数集、纯虚数集之间的关系

[小试身手]

1.判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)若a 为实数,则z =a 一定不是虚数.( )

(3)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( ) 答案:(1)× (2)√ (3)√

2.在2+7,2

7i,8+5i ,(1-3)i,0.68这几个数中,纯虚数的个数为( )

A .0

B .1

C .2

D .3

答案:C

3.若a -2i =b i +1,a ,b ∈R ,则a 2+b 2=________. 答案:5

4.设m ∈R ,复数z =-1-m +(2m -3)i. (1)若z 为实数,则m =________; (2)若z 为纯虚数,则m =________. 答案:(1)3

2

(2)-1

[典例] (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )

A .0

B .1

C .2

D .3

(2)当m 为何实数时,复数z =m 2-m -6

m +3+(m 2-2m -15)i.①是虚数;②是纯虚数.

[解析] (1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.

[答案] B

(2)①当?

????

m +3≠0,

m 2-2m -15≠0,

即m ≠5且m ≠-3时,z 是虚数. ②当?????

m 2

-m -6m +3=0,

m 2-2m -15≠0,

即m =3或m =-2时,z 是纯虚数. [一题多变]

1.[变设问]本例(2)中条件不变,当m 为何值时,z 为实数?

解:当?????

m +3≠0,m 2-2m -15=0,

即m =5时,z 是实数.

2.[变设问]本例(2)中条件不变,当m 为何值时,z >0. 解:因为z >0,所以z 为实数,需满足 ?????

m 2

-m -6m +3>0,m 2-2m -15=0,

解得m =5. 3.[变条件]已知z =log 2(1+m )+ilog 1

2(3-m )(m ∈R),若z 是虚数,求m 的取值范围.

解:∵z 是虚数,∴log 1

2(3-m )≠0,且1+m >0,

即????

?

3-m >0,3-m ≠1,1+m >0,

∴-1

∴m 的取值范围为(-1,2)∪(2,3).

复数分类的关键

(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.

(2)注意分清复数分类中的条件

设复数z =a +b i(a ,b ∈R),则①z 为实数?b =0,②z 为虚数?b ≠0,③z 为纯虚数?a =0,b ≠0.④z =0?a =0,且b =0.

[典例] (1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;

(2)关于x 的方程3x 2-a

2x -1=(10-x -2x 2)i 有实根,求实数a 的值.

[解] (1)∵x 2-y 2+2xy i =2i ,

∴?????

x 2-y 2=0,2xy =2,

解得????? x =1,y =1或?????

x =-1,y =-1.

(2)设方程的实数根为x =m , 则3m 2-a

2m -1=(10-m -2m 2)i ,

∴?????

3m 2-a 2m -1=0,

10-m -2m 2=0,

解得a =11或a =-

71

5

.

复数相等问题的解题技巧

(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解. (2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.

(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的. [活学活用]

已知关于实数x ,y 的方程组

?

????

(2x -1)+i =y -(3-y )i ,①

(2x +ay )-(4x -y +b )i =9-8i ,②有实数解,则实数a ,b 的值分别为________.

解析:由①可得?

????

2x -1=y ,

1=-(3-y ),

解得?????

x =52,

y =4.

把③代入②得5+4a -(6+b )i =9-8i 且a ,b ∈R ,

∴?????

5+4a =9,6+b =8, 解得?????

a =1,

b =2.

答案:1 2

层级一 学业水平达标

1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i

D .2+2i

解析:选A 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A. 2.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( ) A .2 B .3 C .-3

D .9

解析:选B 因为z 1=a +2i ,z 2=3+(a 2

-7)i ,且z 1=z 2,所以有?

????

a =3,a 2-7=2,解得a

=3.故选B.

3.若a ,b ∈R ,i 是虚数单位,a +2 018i =2-b i ,则a 2+b i =( ) A .2 018+2i B .2 018+4i C .2+2 018i

D .4-2 018i

解析:选D 因为a +2 018i =2-b i ,所以a =2,-b =2 018,即a =2,b =-2 018,所以a 2+b i =4-2 018i.

4.下列命题中:①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②纯虚数集相对于复数集的补集是虚数集;③若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3;④若实数a 与a i 对应,则实数集与复数集一一对应.正确的命题的个数是( )

A .0

B .1

C .2

D .3

解析:选A ①取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故①错; ②③

错;对于④,a =0时,a i =0,④错,故选A.

5.复数z =a 2-b 2+(a +|a |)i(a ,b ∈R)为实数的充要条件是( ) A .|a |=|b | B .a <0且a =-b C .a >0且a ≠b

D .a ≤0

解析:选D 复数z 为实数的充要条件是a +|a |=0,故a ≤0.

6.若复数z =a 2-3+2a i 的实部与虚部互为相反数,则实数a 的值为________. 解析:由条件知a 2-3+2a =0,解得a =1或a =-3. 答案:1或-3

7.如果(m 2-1)+(m 2-2m )i >1则实数m 的值为______.

解析:由题意得?????

m 2-2m =0,

m 2-1>1,

解得m =2.

答案:2

8.已知z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.

解析:由复数相等的充要条件有

????? n 2

-3m -1=-3,n 2-m -6=-4??????

m =2,n =±

2. 答案:2 ±2

9.分别求满足下列条件的实数x ,y 的值. (1)2x -1+(y +1)i =x -y +(-x -y )i ; (2)x 2-x -6x +1+(x 2-2x -3)i =0.

解:(1)∵x ,y ∈R ,

∴由复数相等的定义得?????

2x -1=x -y ,

y +1=-x -y ,

解得?

????

x =3,

y =-2.

(2)∵x ∈R ,

∴由复数相等的定义得?????

x 2

-x -6x +1=0,

x 2-2x -3=0,

即?

????

x =3或x =-2,且x ≠-1,

x =3或x =-1,∴x =3. 10.实数m 取什么值时,复数lg(m 2-2m -2)+(m 2+3m +2)i 分别是(1)纯虚数;(2)实

数.

解:(1)复数lg(m 2

-2m -2)+(m 2

+3m +2)i 为纯虚数,则?

????

m 2-2m -2=1,

m 2+3m +2≠0,

所以?

????

m =3或m =-1,

m ≠-2且m ≠-1,所以m =3.

即m =3时,lg(m 2-2m -2)+(m 2+3m +2)i 为纯虚数. (2)复数

lg(m 2-2m -2)+(m 2+3m +2)i

为实数,则

?

???

?

m 2-2m -2>0, ①m 2+3m +2=0, ② 解②得m =-2或m =-1, 代入①检验知满足不等式,

所以当m =-2或m =-1时,lg(m 2-2m -2)+(m 2+3m +2)i 为实数.

层级二 应试能力达标

1.若复数(a 2-a -2)+(|a -1|-1)i(a ∈R)不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1

D .a ≠2

解析:选C 若复数(a 2-a -2)+(|a -1|-1)i 不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故应选C.

2.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的值为( )

A .4

B .-1

C .4或-1

D .1或6

解析:选B 由题意知????

?

m 2-3m -1=3,m 2-5m -6=0,

∴m =-1.

3.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R)有实数根n ,且z =m +n i ,则复数z 等于( )

A .3+i

B .3-i

C .-3-i

D .-3+i

解析:选B 由题意知n 2+(m +2i)n +2+2i =0,

即????? n 2

+mn +2=0,2n +2=0.解得?

????

m =3,n =-1. ∴z =3-i ,故应选B.

4.若复数z 1=sin 2θ+icos θ,z 2=cos θ+i 3sin θ(θ∈R),z 1=z 2,则θ等于( )

A .k π(k ∈Z)

B .2k π+π

3(k ∈Z)

C .2k π±π

6

(k ∈Z)

D .2k π+π

6

(k ∈Z)

解析:选D 由复数相等的定义可知,???

sin 2θ=cos θ,

cos θ=3sin θ.

∴cos θ=

32,sin θ=12

. ∴θ=π

6

+2k π,k ∈Z ,故选D.

5.已知z 1=(-4a +1)+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R.若z 1>z 2,则a 的取值集合为________.

解析:∵z 1>z 2,∴?????

2a 2

+3a =0,a 2

+a =0,

-4a +1>2a ,

∴a =0,故所求a 的取值集合为{0}. 答案:{0}

6.若复数z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m -2+(m 2-5m )i ,m 为实数,且z 1>z 2,则实数m 的取值集合为________.

解析:∵z 1>z 2, ∴?????

m 3

+3m 2

+2m =0,m 2

-5m =0,m 2+1>4m -2,

解得m =0,

∴实数m 的取值集合为{0}. 答案:{0}

7.定义运算??????a c b d =ad -bc ,如果(x +y )+(x +3)i =????

??3x +2y -y i 1,求实数x ,y 的值.

解:由定义运算??????a c b d =ad -bc , 得????

??3x +2y -y i 1=3x +2y +y i , 故有(x +y )+(x +3)i =3x +2y +y i.

因为x ,y 为实数,所以有????

?

x +y =3x +2y ,x +3=y ,

得?

????

2x +y =0,

x +3=y ,

得x =-1,y =2.

8.已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i(其中i 是虚数单位,m ,λ,θ∈R).

(1)若z 1为纯虚数,求实数m 的值; (2)若z 1=z 2,求实数λ的取值范围. 解:(1)∵z 1为纯虚数,

则?

????

4-m 2=0,m -2≠0, 解得m =-2.

(2)由z 1=z 2,得?????

4-m 2

=λ+2sin θ,

m -2=cos θ-2,

∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3 =(sin θ-1)2+2. ∵-1≤sin θ≤1,

∴当sin θ=1时,λmin =2, 当sin θ=-1时,λmax =6, ∴实数λ的取值范围是[2,6].

复数概念及公式总结

数系的扩充和复数概念和公式总结 1.虚数单位i: 它的平方等于-1,即21 i=- 2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i 3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1 4.复数的定义:形如(,) a bi a b R +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,) =+∈ z a bi a b R 5.复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时, a bi a b R 复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N Z Q R C. 6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小 7.复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴 数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数 (3)原点对应的有序实数对为(0,0) 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数, 8.复数z1与z2的加法运算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 9.复数z1与z2的减法运算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.

数系的扩充和复数的引入教学设计

《数系的扩充与复数的引入》第1课时教案设计学校:江西省抚州市临川二中姓名:黄志彬联系方式: 学情分析: “数系的扩充与复数的引入”是北师大版选修2-2第五章第一节内容,是在学生已经学习了 x+=没有实数解,但实际需要要求此方程的解,实数以及实数有关的运算,知道方程210 所以有必要引出复数的概念以及复数的有关运算,建立新的数系。 ●教学理念: 本着“以学生为主体,教师为主导”的理念,采用探究式教学方法,按照提出问题,思考、交流进而分析得出结论的方法进行启发式教学。 教学目标: 知识技能: 1.了解数系发展原因,数集的扩展过程; 2.理解复数的有关概念以及符号表示; 过程与方法:经历了数系的扩充过程,体验了复数引入的必要,探究了复数相等的概念,领悟了类比的思想方法. 情感态度与价值观:在问题情境中了解数系的扩充过程,体会实际需求;在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. ●教学重难点: 重点:对引入复数的必要性的认识,理解复数的基本概念 难点:虚数单位的引入以及复数概念的生成. ●设计思路: 本节课主要采用“问题发现”与“讨论探究”等方式组织教学,凸显学生的主体地位,让教师成为活动的组织者、引导者、合作者,课堂展示学生的研究过程来激发学生的探索勇气。并灵活运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。 教学过程: 以问题为载体,以学生思考为主线 创设情境→建构知识→知识运用→归纳总结→作业布置→课后探究 1.提出问题,探究新知:以一分四十秒数学史录音视频开始,提出问题:自然数集,整数集,有理数集,实数集的关系,继续提出问题:数集扩充到实数集之后,是不是所有的方

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

复数概念及公式总结教学内容

复数概念及公式总结

数系的扩充和复数概念 1.虚数单位i:它的平方等于-1,即21 i=- 2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i; 3. i的周期性: 4.复数的定义:形如(,) +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成 a bi a b R 的集合叫做复数集,用字母C表示复数通常用字母z表示,即 z a bi a b R =+∈ (,) 5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时,复数 a bi a b R a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N___Z___Q___R___C. 6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较当两个复数不全是实数时不能比较大小 7. 复平面、实轴、虚轴:

点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示____________ (2)虚轴上的点都表示____________ (3)原点对应的有序实数对为(0,0) 设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数, 8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . 11.复数z 1与z 2的除法运算律: 12.共轭复数: 通常记复数z 的共轭复数为z 。例如z =3+5i 与z =3-5i 互为共轭复数 13. 共轭复数的性质 (1)实数的共轭复数仍然是它本身 (2)22Z Z Z Z ==? (3)两个共轭复数对应的点关于实轴对称 14.复数的两种几何意义: 15几个常用结论 (1)()i i 212=+,(2)()i i 212-=- (3)i i -=1, (4) i i i =-+11 16.复数的模: (5) i i i -=+-11 复数bi a Z +=的模22b a Z += (6)()()22b a bi a bi a +=-+ 点),(b a Z 向量OZ 一一对应 一一对应 一一对应 复数()R b a bi a Z ∈+=,

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

圆的方程知识点总结和典型例题

圆的方程知识点总结和经典例题 1.圆的定义及方程 注意点 (1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程. (2)对于方程x 2 +y 2 +Dx +Ey +F =0表示圆时易忽视D 2 +E 2 -4F >0这一条件. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2 +(y -b )2 =r 2 的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2 +(y 0-b )2 >r 2 . (2)若M (x 0,y 0)在圆上,则(x 0-a )2 +(y 0-b )2 =r 2 . (3)若M (x 0,y 0)在圆内,则(x 0-a )2 +(y 0-b )2 <r 2 . 3.直线与圆的位置关系 (1)直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A 2 +B 2 ≠0), 圆:(x -a )2 +(y -b )2 =r 2(r >0), d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的 判别式为Δ.

相离 d >r Δ<0 2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断. 3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系. (2)过一点的圆的切线方程的求法 1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程. 2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在. (3)求弦长常用的三种方法 1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2 =d 2 +? ?? ? ?l 22 解题. 2.利用交点坐标 若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长. 3.利用弦长公式 设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l = 1+k 2|x 1-x 2|= 1+k 2 [ x 1+x 2 2 -4x 1x 2]. 4. 圆与圆的位置关系 (1)圆与圆位置关系的判断方法 设圆O 1:(x -a 1)2 +(y -b 1)2 =r 2 1(r 1>0), 圆O 2:(x -a 2)2 +(y -b 2)2 =r 2 2(r 2>0). 方法位置关系 几何法:圆心距d 与r 1,r 2 的关系 代数法:两圆方程联立组成方 程组的解的情况

复数知识点精心总结

复数知识点 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. 1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ; ④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

1-1复数的基本概念

§1.1 复数的基本概念 授课要点:复数的定义,复数的代数表示,三角式、指数式及它们与复数几何表示(二维向量)之间的关系 1、 复数的定义: 设有一个有序数对(),a b ,遵从如下的运算法则 加法:()()()11221212,,,a b a b a a b b +=++ 乘法:()(),,(,) a b c d ac bd ad bc =-+ 则称这一有序数对(),a b 为复数,记为α,即 α=(),a b 其中a 为α实部,b 为α的虚部,记为 a =Re α, b =Im α 纯实数a =(),0a ,纯虚数记为b =()0,b ,所以有 α=(),0a +()0,b =a(1,0)+b (0,1) 其中(0,1)即为虚数单位,常记为i. 2、 复数的相等与大小 两个复数相等的充要条件是:实部、虚部分别相等. 复数不能比较大小!这一点可用反证法证明: 假设认为i >0,则在不等式两边同乘以一个大于0的数i ,不等式符号应当不变,即 20i > 即 -1>0,这显然是错误的! 3、 几个特殊的复数: (0,0):(0,0)(,)(,)(0,0)(,)(0,0)a b a b a b +=??=? (1,0):(1,0)(,)(,)a b a b = (0,1):(0,1)(0,1)=(-1,0)=-1 (0,1)是-1的平方根,是虚数单位,记为i =(0,1) 4、 共轭复数:(,)a b α=,* (,)a b α=-互为共轭复数 性质:**()αα=(共轭的共轭等于自己)

*2ααα+=为实数(两个互为共轭的复数相加,结果必为实数) *22a b αα?=+,为非负实数(α的模方) 5、 复数的减法、除法 减法:()()()()a ib c id a c i b d +-+=-+- 除法:2222()()()()a ib a ib c id ac bd bc ad i c id c id c id c d c d ++-+-==+++-++ ↑“分母实数化” 6、 复数的几何表示: (1) 任何一个复数都可以和复平面上的一点对应,将这一点和原点连起来(原点为起 点),形成一个二维矢量,这是一个二维自由向量,即将op 平移后,仍代表同一 矢量(如右图所示) (2) 加法的几何表示(平行四边形法则与三角形法则) γαβ=+ (3) 减法的几何表示:

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

高中数学复数的知识点总结

高中数学复数的知识点总结 高中数学复数的知识点总结 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complexnumber),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(realpart)记作Rez=a实数b称为复数z的虚部(imaginarypart)记作Imz=b.已知:当b=0时,z=a,这时复数成为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即(a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即(a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1) 复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的.模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一.数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: . (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数. 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2.复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的 平面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点 为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作 .即. 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

学习知识资料讲解复数(基础学习知识)

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈). 2. 概念

形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即: 如果,,,a b c d R ∈,那么a bi c di a c b d +=+?==且. 特别地: 00a bi a b +=?==. 应当理解: (1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样. (2)复数相等的充要条件是将复数转化为实数解决问题的基础. 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小。 6.共轭复数: 两个复数的实部相等,而且虚部相反,那么这两个复数叫做共轭复数。即: 复数z a bi =+和z a bi a bi =+=-(,a b R ∈)互为共轭复数。 考点二:复数的代数表示法及其四则运算 1.复数的代数形式: 复数通常用字母z 表示,即a bi +(,a b R ∈),把复数表示成a bi +的形式,叫做复数的代数形式。 2.四则运算

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

复数知识点总结

复数知识点总结 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《复数》知识点总结 1、复数的概念 形如(,)a bi a b R +∈的数叫做复数,其中i 叫做虚数单位,满足21i =-,a 叫做复数的实部,b 叫做复数的虚部. (1)纯虚数:对于复数z a bi =+,当00a b =≠且时,叫做纯虚数. (2)两个复数相等:,()a bi c di a b c d R ++∈、、、相等的充要条件是=a c b d =且. (3)复平面:建立直角坐标系来表示复数的平面叫做复平面,横轴为实轴,竖轴除去原点为虚轴. (4)复数的模:复数z a bi =+可以用复平面内的点Z(,)a b 表示,向量OZ 的模 叫做复数z a bi =+的模,表示为:||||z a bi =+ (5)共轭复数:两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数. 2、复数的四则运算 (1)加减运算:()()()()a bi c di a c b d i +±+=±++; (2)乘法运算:()()()()a bi c di ac bd ad bc i +?+=-++; (3)除法运算:2222()()()()(0)ac bd bc ad a bi c di i c di c d c d +-+÷+=++≠++; (4)i 的幂运算:41n i =,41n i i +=,421n i +=-,43n i i +=-.()n Z ∈ (5)22||||z z z z == 3、 规律方法总结 (1)对于复数(,)z a bi a b R =+∈必须强调,a b 均为实数,方可得出实部为a ,虚部为b

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一。数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: 。 (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数。 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2。复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的平 面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作.即 . 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

相关主题
文本预览
相关文档 最新文档