当前位置:文档之家› 线粒体的结构与功能.

线粒体的结构与功能.

线粒体的结构与功能.
线粒体的结构与功能.

线粒体的结构与功能

生命科学与食品工程系,050601030, 易永洁

摘要:线粒体是细胞质中重要的细胞器之一,普遍存在于真核细胞中。它是生物氧化和能量转换的主要场所,以氧化磷酸化(OXPHOS)方式将食物内蕴藏的能量转变为可被机体直接利用的ATP高能磷酸键。细胞生命活动所需能量的80%来源于线粒体,因此线粒体在细胞的生长代谢和人类的遗传中都有重要的作用。

关键词:线粒体;;结构;功能;遗传病;mtDNA

自1890年Altaman首次发现线粒体以来,生物学家就一直以极大的热情给予关注,到目前为止,其结构和功能方面的研究已经越来越深入明了。

1线粒体的结构

1.1外膜(out membrane)

含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。

1.2内膜(inner membrane)

含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。

线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。

内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状、②管状,但多呈板层状。

1.3膜间隙(intermembrane space)

是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。

1.4基质(matrix)

为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。

基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。

2线位体的功能

生命要存活就必须要有源源不断的能量供应,线粒体扮演着能量供应站的角色。糖、脂肪、氨基酸,最终氧化放能的场所是线粒体。线粒体内膜上含有呼吸链酶组,它是由5个酶复合体(Ⅰ-Ⅴ)组成的,分别是:NADH-Q还原酶(复合体Ⅰ),琥珀酸-Q还原酶(复合体Ⅱ),细胞色素还原酶(复合体Ⅲ),细胞色素氧化酶(复合体Ⅳ),及ATP合酶(复合体Ⅴ)。糖、脂肪、氨基酸,最终氧化的共同途径是三羧酸循环和氧化磷酸化;三羧酸循环是在线粒体基质中进行的,氧化磷酸化过程是在呼吸链酶组分参与下完成的。三羧酸循环的最终产物为CO2、NADH和FADH2。后两者的电子进入内膜呼吸链并沿呼吸链酶组分传递,其间释放的能量用以将基质中的H+定向转运至内膜外,从而形成跨线粒体内膜两侧的H+梯度和电位梯度,电子在呼吸链的终端将O2还原成H2O,H+借助电化学梯度从内膜外进入基质的过程中释放能量,在内膜的A TP合成酶作用下促使ADP和Pi结合生成A TP。生物体能量的储存和利用以A TP为中心,细胞生命活动所需能量的95%是以ATP的形式直接提供的。除产生ATP外,线粒体跨内膜电化学梯度还执行另一个重要的功能,即摄取Ca2+,以维持胞浆中游离钙离子的低浓度(<10-7摩尔)和精确地调整其浓度,以保持细胞内环境的稳定性。线粒体膜上的协同转运体(uniporter)实现对钙摄取,它由线粒体内外膜间的电化学梯度来驱动;2Na+/Ca2+交换系统(2Na+/Ca2+exchanger,NCE)和大分子通透性转移孔道(mitochondrial permeablizetransition pore,MPTP)将线粒体内累积的Ca2+释放到胞浆中去。此外,线粒体在一定条件下所释放出的Ca2+,除满足维持内环境稳定的需要外,还用以激发一些细胞机能,如细胞的胞吞、胞吐及收缩作用等。

3线位体遗传病

线粒体病(mitochondriopathy)是指因遗传缺损引起线粒体代谢酶的缺陷,导致ATP合成障碍、能量来源不足而出现的一组多系统疾病,也被称为线粒体细胞病(mitochondrla cytopathy) 。线粒体病主要由mtDNA的突变造成,包括点突变、缺失、重复及丢失等。迄今为止,共发现50余种病理性DNA点突变及数百种重排方式,同一种mtDNA突变对于不同患者可造成不同的临床表现,

3.1线粒体遗传病的特点

3.1.1半自主性mtDNA能够独立地复制、转录和翻译,但维持线粒体结构与功能的主要大分子复合物和大多数酶的亚单位由核DNA编码,故线粒体遗传表现为半自主性。

3.1.2母系遗传受精卵中大多胞质来自卵细胞所致。

3.1.3异质性分裂过程中线粒体不均等分配使得同一组织或个体中(如同卵双生子)可具有不同的细胞质基因型,从而具有不同的表现型。

3.1.4有阈值效应突变的mtDNA数量达到一定程度时才引起某种组织或器官的功能异常,各组织器官对能量的依赖性是不同的,脑、骨胳肌、心、肾、肝对能量的依赖性逐渐降低,所以,线粒体遗传病很多都属于脑部与肌肉的疾病。每一器官都有其能量阈值效应,故线粒体基因突变点也有相应的阈值效应。

3.2几种常见的线粒体遗传病

3.2.1 Leber遗传性视神经病

Leber遗传性视神经病(LHON)是一种罕见的眼部线粒体疾病,是人类母系遗传的典型病例,也是第一种在分子水平上研究请楚的母系遗传病,至今尚未发现有男性患者将此病传给后代。该病产生的病因是mtDNA的11778位点的G_+A突变,突变使NADH脱氢酶异常,影响了线粒体内能量的产生,此外还有其他位点的突变,它们的累加效应可不同程度地使电子传递功能受阻从而影响视觉功能,核基因异常也可引起LHON的发生。患者临床上先表现为急性眼球后神经炎,导致双侧视神经萎缩,开始视觉模糊,接着几个月内出现无痛性、完全或接近完全的失明,两眼同时失明或一眼失明后另一眼很快失明,伴随症状包括反射亢进、小脑失调、心律紊乱,男女患者比为4:1。

3.2.2线粒体肌病脑病伴乳酸中毒及中风样发作综合征

约80%的线粒体肌病脑病伴乳酸中毒及中风样发作综合征(MELAS)患者的mtDNA编码的tRNA基因3243位点存在A G点突变,也有其他位点突变,使得mtDNA转录活性降低并影响线粒体功能。主要是丙酮酸代谢受影响,大量丙酮酸生成乳酸积累在血,导致丙酮酸中毒。患者常在40岁以前出现如下异常:突发呕吐、复发性休克、肌肉组织病变等,少数患者伴痴呆、耳聋、偏头痛、肌无力等,MELAS患者在脑和骨肉的小动脉和毛细血管壁中有大量形态异常的线粒体聚集。

3.2.3糖尿病

随着对线粒体遗传病的认识不断深入,线粒体基因突变被认为是糖尿病的一种新的遗传缺陷。线粒体基因突变导致的糖尿病是一种新的类型,约占全球糖尿病人群中的1.5%。近年来发现有20余种线粒体基因突变与糖尿病有关,其中最常见的mtDNA的tRNA基因3243位点A G突变,可能导致胰岛B细胞缺陷不能正常分泌胰岛素,该位点突变引起的糖尿病占线粒体突变所致糖尿病的50%。

4线粒体基因组(mtDNA)

4.1线粒体DNA结构特点

线粒体DNA自发现以来,其形态结构,基因组成,复制,转录与翻译,与核基因组的关系,以及其遗传特点,进化特点和分子系统学方面研究都积累了大量的资料。线粒体是真核细胞内重要的细胞器,能量生成的场所,还参与脂肪酸的合成及某些蛋白质的合成。线粒体DNA是细胞内相对独立的基因组。线粒体DNA是细胞内较小而又较易纯化的复制转录单位,基因组结构比较简单,并具有很高的专一性,独特性,它的传递、重组、分离、复制、转录都可应用分子生物学的许多手段和方法进行分析。因此,线粒体DNA不仅是研究DNA 结构与DNA复制、转录的良好模型,也是研究真核细胞核酸与蛋白质合成等一般问题非常合适的模型系统。从Anderson等(1981)测定人线粒体基因组的全序列以来,已有70多种动物的线粒体基因组全序列被测定出来从已进行全序列测定的各动物线粒体基因组来看,其是共价闭合的双链DNA,分子量较小,一般长度在15.7~19.5kb,核酸序列和组成比较保守,以它作为模板制作的PCR反应引物的通用性比较强。根据碱性氯化铯密度梯度离心中双链密度不同分为重链(H链)和轻链(L链。哺乳动物mtDNA中除一个蛋白质基因(ND6)和8个tRNA基因由L链编码外,其余的大部分基因都由H链编码嘲。

4.2线粒体基因组的结构及基因成分

Anderson(1990)、D.O.Clary(1985)和J.S.Lee(1999)等先后对人、果蝇和家蚕的mtDNA 进行了完整的序列分析,人的mtDNA由16569个碱基组成,果蝇由16019个碱基组成,家蚕由15634个碱基组成。现已知线粒体的基因组至少含有13个蛋白质基因、22个tRNA基因和2个rRNA基因。

4.2.1蛋白质编码基因动物线粒体基因组含有的13个蛋白基因,包括细胞色素b基因(Cvtb)、细胞色素氧化酶3个亚基基因(COXI,COXII,COXm)、NADH氧化还原酶7个亚基基因(ND1,ND2,ND3,ND4,ND4L,ND5,ND6)和ATP酶2个亚基基因(ATPase6,ATPase8),这13个蛋白或亚基都是线粒体内膜呼吸链的组分。

4.2.2tRNA基因动物线粒体基因组含有22个tRNA基因,可以满足线粒体蛋白质翻译中所有密码子的需要。其中tRNA-G1u,A1a,Asn,Cvs,Tvr,Ser,Gin,Pro由L链编码,其余由H链编码。H链编码的tRNA基因散布于蛋白质基因和rRNA基因之间,相邻基因间隔1~30个碱基或紧密相连,甚至发生重叠。

4.2.3rRNA基因线粒体的12SrRNA和16SrRNA基因位于H.链的tRNA-Phe和

tRNA u(UUR)基因之间,以tRNA-Val基因为间隔,12SrRNA基因比16SrRNA基因更保守。rRNA基因的二级结构很保守,形成多个大小不一的茎环结构。环的核苷酸代替率高于茎,并且C-T转换是一种常见的形式。

4.2.4非编码区线粒体基因组中主要存在两段非编码区,一段为控制区(controlregion),又称D.环区(displacement.1oopregion),另一段是L.链复制起始区。D 环区位于tRNA.Por和tRNA-Phe基因之间,是整个线粒体基因组序列和长度变异最大的区域,但其中也包含有保守片段。L链复制起始区长约30~50bp,位于tRNA-Asn和tRNA-Cys 基因之间,该段折叠成茎环结构。从总体上看,一般其包含有H链复制起始区OH,保守序列节段(conservedsequenceblocks,CSBI,CSBII,CSBIII),L.链启动子(L-strandpromoter,ISP),H链启动子(H-strandpormoter,HSP)及终止结合序列(terminationassociatedsequences,TAS)。

4.2.5潜在的开放阅读框两栖类和哺乳类线粒体DNA中HSP的转录起始位点位于tRNA-Phe基因上游35nt处,这一段间隔区中存在一个潜在的开放阅读框(ORF),编码一个含26个氨基酸的多肽,相应的RNA长155nt,包含起始密码子ATG和一个线粒体通用的终止密码子。在人的Hela细胞线粒体中发现了相似的RNA(7SRNA),也含有一个线粒体通用的终止密码子及PolyA尾,是Hela细胞中含有PolyA尾最多的mtRNA,其间也有一个潜在的ORF,编码23或24个氨基酸的多肽。7SRNA的一部分被发现与线粒体核糖体有联系,但不知它是否被翻译。

5展望

随着科技的进步,不同学科在各自独立发展的同时又相互渗透;近年来,人们将线粒体与认知老化联系起来。起初,对线粒体的研究只是停留在纯生物学的角度上,科学家们利用线粒体作为分子钟来推测人类的起源,研究线粒体在产能、代谢、细胞凋亡中的作用及线粒体基因等;而忽视了其在认知老化方面的作用。由于许多与老化相关的线粒体病,例如:线粒体脑肌病、老年性痴呆、帕金森病、衰老、Ⅱ型糖尿病、癫痫等,其患者都表现出认知损害,并且越来越多的研究发现,线粒体与衰老有关,国内外的科学家开始关注线粒体与认知老化。特别是学习和记忆的分子机制揭示之后,人们以更大的热情来研究认知老化的产生机制,并企图从分子水平上揭示整个认知老化过程。当然,在这个研究过程中,线粒体将是一个很好的突破口。

另外,线粒体作为细胞整体功能结构不可缺少的重要组成部分;在对一些有行为和认知障碍的线粒体病患者进行治疗时,我们可以选择线粒体作为药物治疗的靶位点。已有报道,

对线粒体基因突变的病人进行基因疗法,以取得很好的疗效。

随着对线粒体基础研究的纵向深入及神经心理学家对该方面的关注,有关线粒体与认知老化的研究将会有突破性的进展。这样一来,不但对认知老化机制有了进一步的了解,而且也可为一些认知障碍性疾病的治疗提供新的线索和思路;此外还能减少和控制认知老化带来的危害,实现健康老龄化,提高老年人的生活质量。

参考文献

[1]卜翠萍等.线粒体与认知老化.心理科学进展, 2005,13(3):341~347.

[2] 潘兴丽等.线粒体DAN突变与线粒体遗传病研究进展.济宁医学院学报,2006,29(13):84~85.

[3] 任晨春等.人类线粒体遗传病.国外医学妇产科学分册,2006,33(3):171~173.

[4] 汪泰初等.线粒体基因组(mtDNA)的研究进展.安徽农业科学, 2006,34(10):2068~2071.

[5] 袁忠.线粒体遗传病.生物学教学,2005,30(12):71~72.

线粒体DNA的结构和功能特征

第一节 线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因 (16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome  Encoded by Encoded by  Mitochondrial nuclear

genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex Ⅳ Cytochrome c oxidase complex Ⅴ ATP synthase complex Components of protein synthesis apparatus tRNA components rRNA components Ribosomal proteins Other mitochondrial proteins 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits 2 subunits 24 22 tRNAs 2 rRNAs None None >80 subunits >41 subunits 4subunits 10 subunits 10 subunits 14 subunits ~80 None None ~80 All, e.g. mitochondrial enzymes and proteins 和7个呼吸链脱氢酶亚单位的基因)。位于D环区的HSP(heavy strand promoter)和LSP(light strand promoter)是线粒体基因组转录的两个主要启动子(图6-1)。 mtDNA是裸露的,不与组蛋白结合,存在于线粒体基质内或黏附于线粒体内膜。在一个线粒体内往往有一至数个mtDNA(图6-2)。mtDNA的自我复制也是以半保留复制方式进行。复制先从重链开始,形成一个约680个碱基的7sDNA,称D环。在对鼠细胞研究中发现,大多数的mtDNA均为D环的结构,只有一小部分mtDNA从D环开始合成完整的新生链。轻链的复制要晚于重链,等重链合成过OL之后才开始合成。研究发现mtDNA 的复制可以越过静止期或间期,甚至可以分布在细胞整个周期。mtDNA 的自我转录很似原核生物,即产生一个多顺反子,其中包括多个mRNA和散布于其中的tRNA,剪切位置往往发生在tRNA处,从而使不同的mRNA和tRNA被分离和释放。

线粒体的结构与功能.

线粒体的结构与功能 生命科学与食品工程系,050601030, 易永洁 摘要:线粒体是细胞质中重要的细胞器之一,普遍存在于真核细胞中。它是生物氧化和能量转换的主要场所,以氧化磷酸化(OXPHOS)方式将食物内蕴藏的能量转变为可被机体直接利用的ATP高能磷酸键。细胞生命活动所需能量的80%来源于线粒体,因此线粒体在细胞的生长代谢和人类的遗传中都有重要的作用。 关键词:线粒体;;结构;功能;遗传病;mtDNA 自1890年Altaman首次发现线粒体以来,生物学家就一直以极大的热情给予关注,到目前为止,其结构和功能方面的研究已经越来越深入明了。 1线粒体的结构 1.1外膜(out membrane) 含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。 1.2内膜(inner membrane) 含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。 线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。 内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状、②管状,但多呈板层状。 1.3膜间隙(intermembrane space) 是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。 1.4基质(matrix) 为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。

线粒体结构与功能

线粒体 (mitochondria) 线粒体的研究历史 1890: R.Altman(亚特曼)在动物细胞中首次发现线粒体,命名为生命小体(bioblast)。 1897: Von Benda 命名为线粒体(Mitochondrion) 1900:L.Michaelis(米凯利斯) 用詹姆斯绿B对线粒体进行活体染色,发现线粒体存在大量的细胞色素氧 化酶系。 1913:Engelhardt(恩格尔哈特)证明细胞内ATP磷酸化与细胞内氧消耗相偶联。 1943-1950:Kennedy等证明糖最终氧化场所在线粒体。1952-1953:Palade(帕拉登)等用电镜观察线粒体的形 态结构。 1976:Hatefi等纯化呼吸链四个独立的复合体。

1961-1980:Mitchell(米切尔)氧化磷酸化的化学渗透 假说。 1963年:Nass首次发现线粒体存在DNA。 Contents 线粒体的形态结构 线粒体的化学组成及酶的定位 线粒体的功能 线粒体的半自主性 线粒体的生物发生(自学) 第一节线粒体的形态结构 一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5~1.0μm,长1.5~3.0μm。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5μm; 胰腺外分泌细胞线粒体长10~20μm,人成纤维细胞线粒体长40μm。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量 依细胞类型而异,动物细胞一般数百到数千个。

利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 飞翔鸟类胸肌细胞:线粒体数目比不飞翔鸟多; 运动员肌细胞:线粒体数目比不常运动人的多。 (三)分布 分布: 不均,细胞代谢旺盛的需能部位比较集中。 肌细胞: 线粒体沿肌原纤维规则排列; 精子细胞: 线粒体集中在鞭毛中区; 分泌细胞:线粒体聚集在分泌物合成的区域; 肾细胞:线粒体靠近微血管,呈平行或栅状列。 线粒体的分布多集中在细胞的需能部位,有利 于细胞需能部位的能量供应。 二、线粒体的亚微结构 (一) 外膜Outer membrane 包围在线粒体外表面的一层单位膜,厚6-7nm,平整、光滑,封闭成囊。 外膜含运输蛋白(通道蛋白),形态上为排列 整齐的筒状小体,中央有孔,孔径1-3nm,允许分 子量1KD以内的物质自由通过,构成外膜的亲水通道。

线粒体教学设计

精品文档 线粒体、叶绿体的结构和功能 1.学生自学看书并思考讨论,然后进行交流。 2.学生交流后进行归纳。 问题1 :什么是线粒体?什么是叶绿体? 【活动步骤】 师生共同讨论复习归纳线粒体和叶绿体的形态、结构及功能的知识。 1、线粒体的概念、结构和功能 线粒体,有氧呼吸产生能量的主要场所。植物细胞的能量转换器是叶绿体和线粒体线粒体能将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用由于线粒体的作用,生物组织内有机物能在氧的参与下转变成无机物,如二氧化碳和水,并为生物组织和细胞提供进行生命活动所需的能量或 ATPo线粒体主要由蛋白质和脂类组成,其中蛋白质占线粒体干重的一半以 上。此外还有少量的DNA RNA辅酶等。线粒体含有许多种酶类,其中有的酶是线粒体某一结构特有的(标记酶), 比如线粒体外膜的标记酶为单胺氧化酶,内膜为细胞色素氧化酶,膜间隙为腺苷酸激酶,线粒体基质的为苹果酸脱氢酶。在大多数情况下,线粒体呈圆形、近似圆形、棒状或线状。 2、显微镜下面的线粒体 在电子显微镜下,线粒体为内外两层单位膜构成的封闭的囊状结构。可分为四个部分:外膜为一个单位膜,膜中蛋白质与脂类含量几乎均等。物质通透性较高。内膜也是一个单位膜,膜蛋白质含量高,占整个膜的80%左右。内膜对物质有高度地选择通透性。部分内膜向线粒体腔内突出形成嵴。同时内膜内表面排列着一些颗粒状的结构, 称为基粒。基粒包括三个部分:头部(F1因子,为水溶性蛋白质,具有ATP酶活性)、腹部(F?0因子,由疏水性 蛋白质组成)、柄部(位于F1与F0之间)。 3、叶绿体的概念、结构和功能 叶绿体主要在绿色植物的叶肉细胞中扁平的椭球形或球形双层膜、基粒、基质绿色植物进行光合作用的场所 然后分析:线粒体和叶绿体都有外膜、内膜、基质等,但名称虽相同,其组成或结构有差别。它们在组成、结构和功能上相同之处主要表现在:①都是有少量DNA和RNA②都有双层膜结构;③都与细胞内的能量转换有关。 不同之处主要表现在:①叶绿体含有多种色素,线粒体则没有;②增大膜面积的方式不同:线粒体通过内膜折叠 成嵴而增大膜面积,叶绿体通过片层结构重叠成的基粒来增大膜面积;③线粒体是细胞进行有氧呼吸的主要场所,

线粒体-1

线粒体 线粒体(mitochondrion)[1]是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为“power house”。其直径在0.5到10微米左右。 除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。 线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 大小 线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0μm,长1-2μm,在光学显微镜下,需用特殊的染色,才能加以辨别。在动物细胞中,线粒体大小受细胞代谢水平限制。不同组织在不同条件下可能产生体积异常膨大的线粒体,称为“巨线粒体”(megamitochondria):胰脏外分泌细胞中可长达10-20μm;神经元胞体中的线粒体尺寸差异很大,有的也可能长达10μm;人类成纤维细胞的线粒体则更长,可达40μm。有研究表明在低氧气分压的环境中,某些如烟草的植物的线粒体能可逆地变为巨线粒体,长度可达80μm,并形成网络。 形状 线粒体一般呈短棒状或圆球状,但因生物种类和生理状态而异,还可呈环状、线状、哑铃状、分杈状、扁盘状或其它形状。成型蛋白(shape-forming protein)介导线粒体以不同方式与周围的细胞骨架接触或在线粒体的两层膜间形成不同的连接可能是线粒体在不同细胞中呈现出不同形态的原因。 数量 不同生物的不同组织中线粒体数量的差异是巨大的。有许多细胞只拥有多达数千个的线粒体(如肝脏细胞中有1000-2000个线粒体),而一些细胞则只有一个线粒体(如酵母菌细胞的大型分支线粒体)。大多数哺乳动物的成熟红细胞不具有线粒体。一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。 分布

线粒体结构与功能

mitochondria) 1890: R.AItman 生命小体(bioblast) (Mitochondrion) 1897: Von Benda 1900 L.Michaelis ) 1913 Engelhardt ATP 1943-1950 Kennedy 1952-1953 Palade 1976:Hatefi 等纯化呼吸链四个独立的复1961-1980 Mitchell 1963年:Nass DNA Contents word

线粒体的形态结构线粒体的化学组成及酶的定位线粒体的功能 线粒体的半自主性线粒体的生物发生(自学) 第一节线粒体的形态结构一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5?1.0阿,长1.5?3.0口。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5眄胰腺外分泌细胞线粒体长10?20□,人成纤维细胞线粒体长40阿。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量依细胞类型而异,动物细胞一般数百到数千个。 利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 编辑版word

()Outer membra ne 6-7 nm 1-3 nm 1KD ()inner membra ne 4.5 nm 76% (例如:H+、ATP、丙酮酸等)物质透过必须借助膜上 的载体或通透酶。 word

线粒体的结构和功能

线粒体的结构和功能 线粒体是一种普遍存在于真核细胞中的细胞器,各种生命活动所需的能量大部分都是靠线粒体中合成的ATP提供的,因此有细胞的“动力工厂”之称。 线粒体主要由蛋白质和脂类组成,其中蛋白质占线粒体干重的一半以上。此外还有少量的DNA、RNA、辅酶等。线粒体含有许多种酶类,其中有的酶是线粒体某一结构特有的(标记酶),比如线粒体外膜的标记酶为单胺氧化酶,内膜为细胞色素氧化酶,膜间隙为腺苷酸激酶,线粒体基质的为苹果酸脱氢酶。 在大多数情况下,线粒体呈圆形、近似圆形、棒状或线状。 在电子显微镜下,线粒体为内外两层单位膜构成的封闭的囊状结构。可分为四个部分:外膜为一个单位膜,膜中蛋白质与脂类含量几乎均等。物质通透性较高。 内膜也是一个单位膜,膜蛋白质含量高,占整个膜的80%左右。内膜对物质有高度地选择通透性。部分内膜向线粒体腔内突出形成嵴。同时内膜内表面排列着一些颗粒状的结构,称为基粒。基粒包括三个部分:头部(F1因子,为水溶性蛋白质,具有ATP酶活性)、腹部(F0因子,由疏水性蛋白质组成)、柄部(位于F1与F0之间)。 膜间隙为内外膜之间围成的胜除。其内充满无定形物,主要是可溶性酶、反应底物以及辅助因子等。 基质由内膜封闭形成的空间,其中含有脂类、蛋白质、核糖体、RNA及DNA。 研究表明,内外膜的通透性差别很大。外膜容许电解物质、水、蔗糖和大至10 000道尔顿的分子自由透入。外膜上可能有20?~30 ? 的小孔,便于小分子的通过。内膜与外膜相反,离子各分子的通过要有特殊的载体帮助才能实现。 在线粒体内膜上存在的电子传递键,能将代谢脱下的电子最终传给氧并生成水,同时释放能量,这种电子传送链又称呼吸键。它的各组分多以分子复合物形式存在于线粒体内膜中。在线粒体内膜中,各组分按严格的排列顺序和方向(氧还电位由低到高),参与电子传递。 糖、脂肪、氨基酸的中间代谢产物在线粒体基质中经三羧酸循环进行最终氧化分解。在氧化分解过程中,产生NADH和FADH2两种高还原性的电子载体。在有氧条件下,经线粒体内膜上呼吸键的电子传递作用,将O2还原为H2O;同时利用电子传递过程中释放的能量将ADP合成ATP。 关于ATP形成,即氧化磷酸化作用的机制,目前,最为公认的是化学渗透假说。它认为,电子在线粒体内膜上传递过程中,释放的能量将质子从线粒体基质转移至膜间隙,在内膜两侧形成质子梯度。利用这一质子梯度,在ATP酶复合体参与下,驱动ADP磷酸化,合成ATP。催化NADH氧化的呼吸链中,每传递两个电子,可产生3个ATP分子;而催化琥珀酸氧化的呼吸链中,每传送两个电子,只产生两个ATP分子。 线粒体中的DNA分子通常与线粒体内膜结合存在,呈环状,和细菌DNA相似。已经证明,在线粒体中有DNA聚合酶,并且离体的线粒体在一定条件下有合成新DNA的能力。线粒体DNA也是按半保留方式进行复制的,其复制时间与核DNA不同,而与线粒体的分裂增殖有关。一般是在核DNA进行复制后,在核分裂前(G2)期,线粒体DNA进行复制,随后线粒体分裂。 在细胞进化过程中,最早的线粒体是如何形成的?这就是线粒体的起源问题。目前,有两种不同的假说,即内共生假说和分化假说。内共生假说认为线粒体是来源于细菌,是被原始的前真核生物吞噬的细菌。这种细菌与前真核生物共生,在长期的共生过程中通过演化变成了线粒体。另一种假说,即分化假说则认为线粒体在进化过程中的发生是由于质膜的内陷,再经过分化后形成的。

线粒体DNA的结构和功能特征

第一节线粒体DNA的结构和功能特征一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C 含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因(16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome Encoded byEncoded by nuclearMitochondrial genomegenome13 subunits Components of oxidative phosphorylation system >80 subunits7 subunits>41 subunitsNADH dehydrogenase Ⅰ.4subunits0 subunitsⅡSuccinate CoQ reductase 10 subunits1 subunitsCytochrome b-c1 complex Ⅲ 10 subunits3 subunitsⅣCytochrome c oxidase complex 14 subunits2 subunitsA TP synthase complex Ⅴ ~8024 Components of protein synthesis apparatus None22 tRNAs tRNA components None2 rRNAs rRNA components ~80Ribosomal proteins None All, e.g. mitochondrial Other mitochondrial proteins None and proteins enzymes

线粒体与细胞功能调节

?基础医学? [作者单位]南京军区南京总医院解放军肾脏病研究所 (南京,210002) 线粒体与细胞功能调节 郑敬民 综述 秦卫松 审校 关键词 线粒体 细胞周期调节 信号传导 长期以来,人们对线粒体功能的关注,主要集中 于线粒体在细胞代谢方面的作用。作为细胞的一个主要代谢场所,线粒体在细胞中的重要性是显而易见的:糖酵解产生的丙酮酸在这里彻底分解成二氧化碳和水;长链脂肪酸在这里进行β氧化,产生的乙酰辅酶A 也在这里最后彻底分解;此外,脂肪酸、胆固醇也在这里合成;尤为重要的是,也正是在这里,细胞完成氧化磷酸化,产生各种生命活动所必须的高能化合物———ATP 。因此,细胞的“动力工厂”就成为了线粒体的代名词。但近十多年的研究发现,线粒体的功能远不止这些。作为细胞的一个重要有机组成部分,线粒体还作为细胞功能的一个重要调节者,作为细胞内信号传导的一个重要平台,在细胞的生命活动中发挥重要作用。本文就这方面的研究作一介绍。线粒体的结构特点 在所有的细胞器中,线粒体的结构和功能非常特殊(图1)。它具有独特的双层膜结构,整个细胞器由两层生物膜(外膜和内膜)包裹着,内膜向内凹陷形成膜片层结构,称为嵴;内膜上分布有电子传递链(呼吸链),通过电子传递链,线粒体基质内产生的还原当量物被氧化,同时形成跨线粒体内膜的质子梯度,这种质子梯度是推动氧化磷酸化的动力。内、外膜之间是膜间隙,内膜内则是线粒体基质。线粒体基质是丙酮酸分解成乙酰辅酶A,进而进行三羧酸循环的场所,也是细胞利用乙酰辅酶A 合成脂肪酸和胆固醇的重要场所。在基质中还有原核型的核糖体(70S 的核糖体)和拷贝数不等的线粒体DNA 。因此,线粒体内还能进行蛋白质的合成和 DNA 的复制、转录等生命活动。此外,线粒体内、外 膜的组成成份也与质膜等其它生物膜不同,例如线粒体的内膜的膜脂成份中就含有较多的心磷脂和神经酰胺。正是线粒体组成结构上的特点构成了其特殊功能的物质基础。 图1 线粒体结构示意图 线粒体的形态变化和相关蛋白 在细胞中,线粒体不是一成不变的,其形态、结构、数量和位置都处于一种动态的变化之中。通过 这种变化,线粒体适应着细胞整体生命活动的需要。近年来,通过对线粒体形态变化的大量研究,人们对线粒体在细胞整体生命活动中的作用有了全新的认识。其中线粒体分裂(fissi on )和融合(fussi on )是线粒体形态变化的两个主要方面。据报道,至少有三种GTP 酶(GTPases )对线粒体的融合起着调节作用。它们分别是:M it ofusin 1(Mfn1)、M it ofusin 2(Mfn2)和Opa1。Opa1位于线粒体膜间隙,而Mfn1和Mfn2则是线粒体的外膜蛋白。它们都含有一个GTP 酶功能域(GTPase domain )和一个卷曲2卷曲功能域(coiled 2coil domain )。Mfn1和Mfn2卷曲2卷曲

线粒体结构与功能

. 线粒体 (mitochondria) 线粒体的研究历史 1890: R.Altman(亚特曼)在动物细胞中首次发现线粒体,命名为生命小体(bioblast)。 1897: Von Benda 命名为线粒体(Mitochondrion) 1900:L.Michaelis(米凯利斯) 用詹姆斯绿B对线粒体进 行活体染色,发现线粒体存在大量的细胞色素氧 化酶系。 1913:Engelhardt(恩格尔哈特)证明细胞内ATP磷酸化与 细胞内氧消耗相偶联。 1943-1950:Kennedy等证明糖最终氧化场所在线粒体。 1952-1953:Palade(帕拉登)等用电镜观察线粒体的形 态结构。 1976: Hatefi等纯化呼吸链四个独立的复合体。 1961-1980:Mitchell(米切尔)氧化磷酸化的化学渗透 假说。 1963年:Nass首次发现线粒体存在DNA。 Contents 线粒体的形态结构 线粒体的化学组成及酶的定位 线粒体的功能 线粒体的半自主性 线粒体的生物发生(自学) 第一节线粒体的形态结构 一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5~1.0μm,长1.5~3.0μm。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5μm; 胰腺外分泌细胞线粒体长10~20μm,人成纤维细胞线粒体长40μm。

线粒体形态、大小因细胞种类和生理状况不同而异。光镜下:线状、杆状、粒状 二)数量 依细胞类型而异,动物细胞一般数百到数千个。 ..

.利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 飞翔鸟类胸肌细胞:线粒体数目比不飞翔鸟多; 运动员肌细胞:线粒体数目比不常运动人的多。 (三)分布 分布: 不均,细胞代谢旺盛的需能部位比较集中。 肌细胞: 线粒体沿肌原纤维规则排列; 精子细胞: 线粒体集中在鞭毛中区; 分泌细胞:线粒体聚集在分泌物合成的区域; 肾细胞:线粒体靠近微血管,呈平行或栅状列。 线粒体的分布多集中在细胞的需能部位,有利 于细胞需能部位的能量供应。 二、线粒体的亚微结构 (一) 外膜 Outer membrane 包围在线粒体外表面的一层单位膜,厚6-7nm,平整、光滑,封闭成囊。 外膜含运输蛋白(通道蛋白),形态上为排列 整齐的筒状小体,中央有孔,孔径1-3nm,允许分 子量1KD以内的物质自由通过,构成外膜的亲水通道。 (二) 内膜 inner membrane 结构特征: 高度特化的单位膜,厚4.5nm,膜上蛋白质占膜总重量 76%; 通透性小,具通透屏蔽作用,许多物质不能自由透过; (例如:H+ 、ATP、丙酮酸等)物质透过必须借助膜上 的载体或通透酶。 向内褶叠形成嵴,嵴的存在增大线粒体内膜的表面积; 两种类型的嵴: 板层状: 高等动物细胞线粒体嵴。 管状: 原生动物和低等动物细胞线粒体嵴。 (三) 外室(outer chamber) 也称膜间腔,外膜与内膜之间的腔隙,与嵴内 腔相通,宽约20nm,含多种酶、底物及辅助因子。 (四) 内室(inner chamber)

线粒体DNA的结构和功能特征

第一节线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因(16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome Encoded by Encoded by Mitochondrial nuclear genome genome Components of oxidative phosphorylation system ⅠNADH dehydrogenase ⅡSuccinate CoQ reductase ⅢCytochrome b-c1 complex ⅣCytochrome c oxidase complex 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits >80 subunits >41 subunits 4subunits 10 subunits 10 subunits

线粒体DNA的结构和功能特征

第一节 线粒体DNA 的结构和功能特征 一、mtDNA 的结构特征 mtDNA 是惟一存在于人类细胞质中的DNA 分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA 由16 569bp 组成,双链闭合环状,其中外环DNA 单链由于含G 较多,C 较少,使整个外环DNA 分子量较大,称为重链(heavy chain )或H 链;而环DNA 单链则C 含量高,G 含量低,故分子量小,称为轻链(light chain )或L 链。mtDNA 的两条链都有编码功能,除与复制及转录有关的一小段D 环区(displacement loop )无编码基因外,基因间无含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA 的任何突变都会累及到基因组中的一个重要功能区域。mtDNA 含有37个基因,其中两个rRNA 基因(16SrRNA,12SrRNA ),22个tRNA 基因,13个蛋白质基因(包括1个细胞色素b 基因,2个ATP 酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome Encoded by Encoded by Mitochondrial nuclear genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits >80 subunits >41 subunits 4subunits 10 subunits 10 subunits

线粒体的结构特点和能量的代谢方式

线粒体的结构特点和能量代谢的基本方式 线粒体是一种普遍存在于真核细胞中的细胞器,各种生命活动所需的能量大部分都是靠线粒体中合成的ATP提供的,因此有细胞的“动力工厂”之称。 线粒体主要由蛋白质和脂类组成,其中蛋白质占线粒体干重的一半以上。此外还有少量的DNA、RNA、辅酶等。线粒体含有许多种酶类,其中有的酶是线粒体某一结构特有的(标记酶),比如线粒体外膜的标记酶为单胺氧化酶,内膜为细胞色素氧化酶,膜间隙为腺苷酸激酶,线粒体基质的为苹果酸脱氢酶。 线粒体的直径一般在0.5~1.0 μm,在长度上变化很大, 一般为1.5~3μm,长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体。在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。 在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外, 在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。 线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。 1、外膜含40%的脂类和60%的蛋白质,具有孔蛋白构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。 2、内膜含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。 3、膜间隙是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。它是内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。 4、基质为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸

相关主题
文本预览
相关文档 最新文档