当前位置:文档之家› 高中数学 第一章 数列课件2 北师大版必修5(1)

高中数学 第一章 数列课件2 北师大版必修5(1)

高中数学 第一章 数列课件2 北师大版必修5(1)

高中数学 第一章 数列课件2 北师大版必修5(1)

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

人教版高中数学必修5数列教案

m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --=--=--=-+=-+==-+1 ; )1()()1(1 111变式:推广:通项公式:递推关系:必修5 数列 二、等差数列 知识要点 1.数列的通项n a 与前n 项和n S 的关系 ∑==++++=n i i n n a a a a a S 1321 ?? ?≥-==-2 111n S S n S a n n n 2.递推关系与通项公式 ()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数 (),,n a kn b k b =+为常数?数列{}n a 成等差数列. 3.等差中项: 若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2c a b += ;c b a ,,是等差数列?c a b +=2. 4.前n 项和公式:2)(1n a a S n n += ; 2 )1(1d n n na S n -+= 221(),()22 n n d d S n a n S f n An Bn =+-==+特征:即 2,(,)n S An Bn A B =+为常数?数列{}n a 成等差数列. 5.等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2; ⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N *+-=∈常数 ?{}n a 是等差数列

高中数学必修5数列题目精选精编

金太阳教育网 高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312 n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312 n n n a ---+=++++= , 所以证得 312 n n a -= . 例题2. 数列{} n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ } n a 的通项公式; (Ⅱ)等差数列{} n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{} n b 的各项为正,∴0d > ∴2d = ∴2 (1) 3222 n n n T n n n -=+ ?=+ 例题3. 已知数列{ } n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 1 2 8n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ } n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322 (2) 8n n a a a a n -++++=左边相当于是数列{} 1 2 n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学必修5数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为 1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670

人教版高中数学必修五数列知识点及习题详解

人教版数学高中必修5数列习题及知识点 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2005,则序号n 等于(). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则(). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于(). A .1 B .43 C .21 D .8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为(). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是(). A .4005 B .4006 C .4007 D .4008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=(). A .-4 B .-6 C .-8 D .-10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =(). A .1 B .-1C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是(). A .21B .-21C .-21或2 1D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =(). A .38 B .20 C .10 D .9 二、填空题

人教版高中数学必修5数列单元测试题

盘县第五中学高一数学 (数列)检测 盘县五中数学组:晏波(命题) 一.选择题(每小题5分,共60分) 1. 已知数列{n a }的通项公式)(43*2N n n n a n ∈--=,则4a 等于 ( ). A 、1 B 、 2 C 、 0 D 、 3 2. 在等比数列{n a }中,已知9 1 1= a ,95=a ,则=3a ( ) A .1 B .3 C . 1± D .±3 3. 等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为 ( ) A . 81 B .120 C .168 D .192 4. 数列1,3,6,10,…的一个通项公式是 ( ) A .n a =n 2-(n-1) B .n a =n 2-1 C.n a =2)1(+n n D.n a =2) 1(-n n 5. 已知等差数列{}n a 中,288a a +=,则该数列前9项和9S 等于 ( ) A.18 B.27 C.36 D.45 6. 设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = ( ) A .8 B .7 C .6 D .5 7. 已知数列3,3,15,…,)12(3-n ,那么9是数列的 ( ) A .第12项 B .第13项 C .第14项 D .第15项 8. 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是 ( ) A.130 B.170 C.210 D.260 9. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A.12 B.24 C.36 D.48

高中数学必修5用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

高中数学必修5数列测试题含答案

数列单元测试题 一、选择题 1.等差数列前10项和为100,前100项和为10。则前110项的和为 A .-90 B .90 C .-110 D .10 2已知数列{}n a 的前n 项和为1-=a s n n (a 是不为零的实数),那么{}n a A .一定是等差数列 B.一定是等比数列 C.或是等差数列或是等比数列 D.既不是等差数列,也不是等比数列. 3.若数列{}n a 中,n a =43-3n ,则n S 最大值n = A .13 B .14 C .15 D .14或15 4.在a 和b 两数之间插入n 个数,使它们与a,b 组成等差数列,则该数列的公差为 A . b a n - B.1b a n -+ C.1a b n -+ D.2 b a n -+ 5.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是 A .130 B .170 C .210 D .260 6.已知函数()ax f x x a =+,若数列{}n x 中,110,()(2)n n a f n x x x -=≠=≥那么1n x ????????? ?是 A .等差数列 B 。等比数列 C 。摆动数列 D 。常数列 7.等差数列{}n a 中,已知公差1 2 d = ,且1399 60,a a a ++=L 则123100 a a a a +++L 等于 A.170 B.150 C.145 D.120 8.等比数列{}n a 中,9696==a a ,,则3a 等于 A .3 B . 23 C .9 16 D .4 9.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么d 等于 A .3 B .2 C .-2 D .2± 10.设由正数组成的等比数列,公比q =2,且303021 2=a a a ……·,则30963a a a a ……··等于 A .102 B .202 C .162 D .152 二、填空题 1.等差数列{}n a 中5S =25,45S =405。则50S =______________。 2.等差数列5,8,11,……与等差数列3,8,13,……都有100项,那么这两个数列相同的项共有______________项。 3.观察下面的数阵,容易看出,第n 行最右边的数是2 n ,那么第20行最右边的数是 第20行所有数的和 4. 数列1,(3+5),(7+9+11),(13+15+17+19)…的前n 项和n s =

(完整)高中数学必修5数列习题及答案.doc

第二章 数列 一、选择题 1.设 S n 是等差数列 { a n } 的前 n 项和,若 S 3 =1 ,则 S 6 = ( ) . S 6 3 S 12 3 1 1 1 A . 10 B .3 C . 8 D . 9 2.数列 { a } 是各项均为正数的等比数列, { b } 是等差数列,且 a = b ,则有 ( ) . n n 6 7 A . a 3+ a 9< b 4+ b 10 B .a 3+ a 9≥ b 4+ b 10 C . a + a ≠ b + b D . a + a 与 b +b 10 的大小不确定 3 9 4 10 3 9 4 3.在等差数列 { a n } 中,若 a 1 003+ a 1 004+ a 1 005+ a 1 006= 18,则该数列的前 2 008 项的和 为 ( ) . A . 18 072 B . 3 012 C .9 036 D . 12 048 4.△ ABC 中, a , b , c 分别为∠ A ,∠ B ,∠ C 的对边,如果 a , b , c 成等差数列, ∠ B = 30°,△ ABC 的面积为 3 ,那么 b =( ) . 2 A . 1 3 B . 1+ 3 C . 23 D . 2+ 3 2 2 5.过圆 x 2+ y 2= 10x 内一点 ( 5,3) 有 k 条弦的长度组成等差数列,且最小弦长为数列 的首项 a 1,最大弦长为数列的末项 k d ∈ 1 1 ,则 k 的取值不可能是 ( ) . a ,若公差 3 , 2 A . 4 B . 5 C .6 D . 7 6.已知等差数列 { a } 中, a +a =16, a = 1,则 a 12 的值是 ( ) . n 7 9 4 A . 15 B . 30 C .31 D . 64 7.在等差数列 { a } 中, 3( a + a ) + 2( a + a 10 + a ) = 24,则此数列前 13 项之和为 n 2 6 5 15 ( ) . A . 26 B . 13 C .52 D . 156 8.等差数列 { a } 中, a + a + a =- 24, a + a + a = 78,则此数列前 20 项和等于 n 1 2 3 18 19 20 ( ) . A . 160 B . 180 C .200 D . 220

高中数学必修5-数列

高中数学必修5知识点 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接 圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222 cos 2a c b ac +-B =,222cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若2 2 2 a b c +=,则90C =o ; ②若2 2 2 a b c +>,则90C o . 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2 a c b += ,则称b 为a 与c 的等差中项.

高中数学必修5知识点总结

高中数学必修5知识点总结 第一章 解三角形 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3、三角形面积公式:111 sin sin sin 222C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > . 第二章 数列 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.

高中数学必修5数列知识点总结

高中数学必修5数列知识点总结 ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。 ②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。 ③函数不一定有解析式,同样数列也并非都有通项公式。 1.等差数列通项公式 an=a1+(n-1)d n=1时a1=S1 n≥2时an=Sn-Sn-1 an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 2.等差中项 由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。 有关系:A=(a+b)÷2 3.前n项和 倒序相加法推导前n项和公式: Sn=a1+a2+a3+·····+an =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1 =an+(an-d)+(an-2d)+······+[an-(n-1)d]② 由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an) ∴Sn=n(a1+an)÷2 等差数列的前n项和等于首末两项的和与项数乘积的一半: Sn=n(a1+an)÷2=na1+n(n-1)d÷2 Sn=dn2÷2+n(a1-d÷2) 亦可得 a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n an=2sn÷n-a1 有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1 4.等差数列性质 一、任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 二、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N* 三、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 四、对任意的k∈N*,有 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。 1.等比中项

高中数学必修5数列知识点总结教学提纲

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2. {}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故 7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=?

例. {}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________ 解析:由0n a >,242411a a a q ==,231117S a a q a q =++=,解得 1114,,22a q ==-(舍去)。所以5314 S = 3. 求数列的通项 ? 利用1n n n a S S -=-,注意n=1时的情况。 ? 形如1()(2)n n a a f n n -=+≥时,用累加法求解。 ? 形如1 ()(2)n n a f n n a -=≥时,用累乘法求解。 ? 形如1(2)n n a a m n -=+≥时,构造等差数列求解 ? 形如1(2)n n a xa y n -=+≥时,构造等比数列求解。 例.根据下列条件,求{}n a 的通项公式。 (1)数列{}n a 满足:132n n a a n +=++,且12a =。(转化后利用累加法) (2)11a =,11(2)n n n a a n n --=≥。(利用累乘法) (3)11a =,132n n a a +=+。(构造等比数列) 解析:(1)因为1323(1)1n n a a n n +-=+=+-,所以131n n a a n --=-所以 112211(31)()()()2n n n n n n n a a a a a a a a ---+=-+-++-+= K 当1n =时,12a =符合n a 通项公式。 (2)因为11(2)n n n a a n n --= ≥,所以122121,12 n n n a a a a n ---==-K 。 11121123n a n a a n n n -=????==K ,1a 符合通项公式。 (3)因为132n n a a +=+,所以113(1)n n a a ++=+,由11a =可知10n a +≠ 所以1131 n n a a ++=+,{}1n a +为等比数列,公比3q =, 11112,123231n n n n a a a --+=+=?∴=?-

人教版高中数学必修5《数列》练习题(有答案)

必修5 数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前 项的和最大. 解:0912129=-=S S S S ,Θ10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 . 解:∵ΛΛ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, ,Λ中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S +=+=36(27)0a d =+> ②12671377666()013000 S a a S a a a S =+>=<∴<>∴Q , 最大。 1. 已知等差数列{}n a 中,124971 16a a a a ,则,===+等于( ) A .15 B .30 C .31 D .64 794121215a a a a a +=+∴=Q A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== . 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

高中数学必修五 数列通项公式常见求法

求数列通项公式的方法 1. 叠加法 )(1n f a a n n +=+,且)()2()1(n f f f +++ 比较好求. 【例题】数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a = . ★练习 已知数列{}n a 满足11211,2n n a a a n n += =++,求数列{}n a 的通项公式. 2. 叠乘法 n n a n f a )(1=+,且)()2()1(n f f f ??? 比较好求. 【例题】在数列{n a }中,1a =1, (n +1)·1+n a =n ·n a ,则{}n a 的通项公式为 . ★练习 在数列{n a }中,1a =1, 1+n a =2n ·n a ,则{}n a 的通项公式为 . 3. 待定系数法 (1)a n =qa n -1 +p (q 、p 为常数,q ≠1且p ≠0),可化为a n +λ=q (a n -1 +λ).构造出一个以q 为公比的等比数列{a n +λ},然后化简用待定系数法求λ,从而求出n a . (2)对于1()(n n a qa f n q +=+其中为常数)这种形式,一般我们讨论两种情况: ①当f (n )为多项式时,可化为()()11+n n a g n q a g n +++=????的形式来求通项,其中g (n )是f (n )的齐次式. 【例题】设数列{}n a 中,111,321n n a a a n +==++,求{}n a 的通项公式. ★练习 设数列{}n a 中,2111,2n n a a a n n +==++,求{}n a 的通项公式. ②当f (n )为指数幂即递推公式为1(n n n a qa r p q r p +=+?、、为常数),可两边同时除以1n p +化为11n n n n a a q r p p p p ++=?+的形式,可以求出数列n n a p ?????? 的通项公式,从而求出n a . 【例题】设数列{}n a 中,111,42n n n a a a +==+,求{}n a 的通项公式. ★练习 设数列{}n a 中,111,323n n n a a a +==+?,求{}n a 的通项公式.

相关主题
文本预览
相关文档 最新文档