当前位置:文档之家› 含有参数的函数最值问题导学案(1218)

含有参数的函数最值问题导学案(1218)

含有参数的函数最值问题导学案(1218)
含有参数的函数最值问题导学案(1218)

五环学习法高中数学学科导学稿

编写人:许鲔潮 审稿人:郭沂 编写时间:2015-12-11

课题:含有参数的函数最值问题

(人教A 版数学新课标教材必修1水平考试综合题复习)

学习目标

1.理解含参数的函数最值问题特征;

2.通过含参数的函数最值问题的求解探究解题策略;

3.培养学生分析解决水平考试综合问题的能力。

4.培养学生利用分类讨论、化归、数形结合、分离变量等数学思想与方法进行解题的意 识。

一.回忆旧知(本节课学习你可能要用到下面的知识)

(1)函数零点概念:对于函数))((D x x f y ∈=,把使得_________成立的实数x 叫做函数))((D x x f y ∈=的零点。

(2)函数零点的意义:函数)(x f y =的零点就是方程 的________,亦即函数)(x f y =的图象与x 轴交点的______。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。

(3)二次函数)0(2

≠++=a c bx ax y 的零点:

1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有___个交点,二次函数有______个零点;

2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有______个零点;

3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴有______交点,二次函数有______零点。

(4)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有________,那么函数)(x f y =在区间),(b a 内有零点。即存在),(b a c ∈,使得______,这个c 也就是方程的根。

二.自主学习(自学复习下面内容,并完成下列问题) 1.复习《高中数学必修课程综合测评2015》,P4知识点23: 二次方程()()2

00f x ax bx c a =++=>实根分布及条件;

2.复习《高中数学必修课程综合测评2015》,P7 ,练习15. 编号

Sxbx1

0)(=x f

三.合作探究

新课标下的高考越来越注重对学生的综合素质的考察,函数特别是含有参数的函数最值问题便是一个考察学生综合素质的很好途径,它主要涉及到函数性质、图象,渗透着分类讨论、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。近五年的数学水平考试中的最后一题都是含有参数的函数问题(具体可见课后习题1-5),大多是已知一个变量的取值范围,求另一个变量的取值范围的形式出现。其形式逐渐多样化,都和上述的知识与思想密不可分。

下面我们将上面自主学习第2题改编的得到如下题目,小组合作加以研究,找出尽量多的解法:

例:己知函数()2

3,f x x ax a a R =++-∈.

()1若()0f x ≥在x R ∈上恒成立,求a 的取值范围; ()2若()0f x ≥在[]1,2x ∈上恒成立,求a 的取值范围;

小结一:

几种常用的处理方法。 一、分离参数

在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。

例1、已知函数()lg 2a f x x x ??

=+- ???

,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。

解:根据题意得:21a

x x

+

->在[)2,x ∈+∞上恒成立, 即:2

3a x x >-+在[)2,x ∈+∞上恒成立,

设()2

3f x x x =-+,则()2

3924f x x ??=--+ ??

?

当2x =时,()max 2f x = 所以2a >

在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不

等式的两边,即:若()()f a g x ≥恒成立,只须求出()max g x ,则()()max f a g x ≥,然后解不等式求出参数a 的取值范围;若()()f a g x ≤恒成立,只须求出()min g x ,则

()()min f a g x ≤,然后解不等式求出参数a 的取值范围,问题还是转化为函数求最值。

例2、已知(],1x ∈-∞时,不等式()

21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x

t =,

(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:221

t a a t

+-<

, 要使上式在(]0,2t ∈上恒成立,只须求出()21

t f t t

+=

在(]0,2t ∈上的最小值即可。 ()22

211111124t f t t t t t +????==+=+- ? ?????

11,2t ??

∈+∞????

()()min 324f t f ∴==

2

34a a ∴-< 1322

a ∴-<< 二、分类讨论

在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。

例3、若[]2,2x ∈-时,不等式2

3x ax a ++≥恒成立,求a 的取值范围。

解:设()2

3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。

(1) 当22a -

<-即:4a >时,()()min 2730f x f a =-=-≥ 7

3

a ∴≤又4a >所以a 不存在;

(2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ??

=-=--≥ ???

62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤

(3) 当22

a

-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又

4a <-74a ∴-≤<- 综上所得:72a -≤≤

三、确定主元

在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元(未知数),而把另一个变量a 看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。

例4、若不等式(

)

2

211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。 解:设()()

()2

121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,

()()()()()()2221210202021210

x x f f x x ?----<-

∴∴??<---

四、利用集合与集合间的关系

在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ?????,则()f a m ≤且()g a n ≥,不等式的解即为实数

a 的取值范围。

例5、当1

,33x ??∈ ???

时,log 1a x <恒成立,求实数a 的取值范围。 解:

1log 1a x -<<

(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ????

? ? ????? 3

113a a ≥??∴?≤??

3a ∴≥

(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ????? ? ?????13

13

a a

?

??∴??≥??103a ∴<≤

综上所得:1

03

a <≤

或3a ≥ 五、数形结合

数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。

例6、若不等式2

3log 0a x x -<在10,3x ??∈ ???

内恒成立,求实数a 的取值范围。

解:由题意知:2

3log a x x <在10,3x ??∈ ???

内恒成立,

在同一坐标系内,分别作出函数

23y x =和log a y x =

观察两函数图象,当10,3x ??∈ ???

时,若

1a >函数log a y x =的图象显然在函

数2

3y x =图象的下方,所以不成立;

当01a <<时,由图可知,log a y x =的图象必须过点11,33?? ???

或在这个点的上方,则,

11log 33a

≥ 1

27

a ∴≥

1127a ∴>≥ 综上得:1

127a >≥

上面介绍了含参不等式中恒成立问题几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。

四.展示评议

五.反思拓展

如果改为有解或有零点会有什么不同 六. 小结

七.课后巩固

1.(10-20)

已知函数()2

13f x ax x a =+-+()a ∈R 在区间[]1,1-上有零点,求实数a 的取值范

围.

2.(11-20) 已知

1

13

a ≤≤, 若函数()22f x ax x =-在[]1,3上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-.

(1)求()g a 的表达式;

(2)若关于a 的方程()0g a t -=有解, 求实数t 的取值范围. 3.(12-20)

已知函数()f x 是定义在R 上的奇函数,当0x >时,()2

.f x x x =-

记下你的疑惑,写在下面:

(1)求函数()f x 的解析式;(2)求函数()f x 在区间[],1a a +上的最大值。

4.(13-20)

已知函数()f x 是定义在R 上的奇函数,当0x >时,()2.f x x x =- (1)求函数()f x 的解析式;

(2)求函数()f x 在区间[],1a a +上的最大值。

5.(14-20)

已知a ∈R ,函数f (x )=x|x ﹣a|.

(1)当a=2时,求函数y=f (x )的单调递增区间; (2)求函数g (x )=f (x )﹣1的零点个数.

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

九年级下数学锐角三角函数导学案 (1)

C B A C B A C B A B 课题:28.1锐角三角函数(1) 【导学过程】 一、自学提纲: 1、如图在Rt △ABC 中,∠C=90°,∠A=30°,BC=10m ,?求AB 2、如图在Rt △ABC 中,∠C=90°,∠A=30°,AB=20m ,?求BC 二、合作交流: 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,?在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ; 结论:直角三角形中,30°角的对边与斜边的比值 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边 的比值是一个定值吗??如果是,是多少? 结论:直角三角形中,45°角的对边与斜边的比值 三、教师点拨: 从上面这两个问题的结论中可知,?在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于 1 2 ,是一个固定值;?当∠A=45°时,∠A 的对边与斜边的比都等于22,也是 一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,?它的对边与斜边 的比是否也是一个固定值? 探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°, ∠A=∠A ′=a ,那么 '' '' BC B C AB A B 与有什么关系. 结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形

19.1.1变量与函数导学案(第一课时)

18.1变量与函数学案 Ⅰ、教学目标 1、知识与技能目标: 运用丰富的实例,使学生从具体的问题情境中了解常量与变量的含义,能分清实例中的常量与变量,领悟函数的概念,了解自变量与函数的意义。 2、过程与方法目标: 通过动手实践与探索,让学生参与变量的发现与函数的形成过程,感受获取知识的成功体验,提高学生分析问题和解决问题的能力。 3、情感态度价值观目标: 在引导学生探索实际问题的数量关系中,培养学生学习数学的兴趣并积极参与数学活动的热情,在解决问题的过程中体会数学的应用价值。 Ⅱ、教学重点 了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。Ⅲ、教学难点 函数概念的理解;函数关系式的确定 Ⅳ、教学过程 一、自主探究 (一)提出问题,创设情景 问题一:汽车以 60 千米/时的速度匀速行驶,行驶路程为 s 千米,行驶时间为 t 小时。 问题二:电影票的售价为10元∕张。第一场售出150张票,第二场场售出205张票,第三场场售出310张票,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y元.?怎样用含x的式子表示y ? 问题三:你见过水中涟漪吗?圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为 10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的变化而变化吗? 问题四:用100 cm长的绳子围一个矩形,当矩形的一边长x 分别为 30 cm,35 cm,40 cm,45 cm 时,它的邻边长y 分别为多少?y的值随x的变化而变化吗? 小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。 (二)归纳总结: 1、在一个变化过程中,我们称数值发生变化的量为________; 2、在一个变化过程中,我们称数值始终不变的量为________; (三)快速抢答: 练习1 指出下列问题中的变量和常量: (1)某市的自来水价为 4 元/t。现要抽取若干户居民调查水费支出情况,记某户月用水量为 x t,月应交水费为 y 元。 (2)某地手机通话费为 0.2 元/min ,李明在手机话费卡中存入30元,记此后他的手机通话时间为 t min ,话费卡中的余额为 w 元。 二、合作探究 (一)合作交流: 1、在研究的每个问题中,都出现了两个变量,它们之间是相互影响,相互制约的. 2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.) 归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。 (二)归纳概念: 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x?的每一个确定的值,y?都有唯一确定的值与其对应,?那么我们就说x?是______,y是x的_______. 如果当x=a时y=b,那么b?叫做当自变量的值为a时的_________. 用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式. (三)巩固练习 练习2下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式。 (1)改变正方形的边长x,正方形的面积S 随之变化; (2)每分向一水池注水0.1 m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化;

三角函数的定义导学案

5,则 b的值。 3的终边上,且|OP|=2,则点P的坐标? 2 ,-3),,则定义:叫做角α的余弦,记作cosα,即cosα=; α=- 5 2,则sin α,tanα的值分别为(另外,角α的正割:secα= 1 cosαx 角α的余割:cscα= 1 sinαy 角α的余切:cotα= 1 2C- 3 A 1 高一数学学案 必修四第一章第3节三角函数的定义(1) 制作人:适用范围:高一使用日期:4.17 【教学目标】 1、三角函数定义; 2、利用定义求角的六个三角函数; 3、特殊角的三角函数值。 4、通过角定义的学习,进一步体会数形结合的思想方法 【教学重难点】 1、用定义求三角函数值; 2、特殊角三角函数值。 【教学内容】 1.任意角三角函数的定义 任意角三角函数的定义 如图所示,以任意角α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直 角坐标系.设P(x,y)是任意角α终边上不同于坐标原点的任意一点. 变式训练2:若角α的终边经过点P(-b,4)且cosα=- 3 例2、求下列各角的六个三角函数值: (1)0;(2)π;(3) 3π 2 变式训练3:若点P在角 π 【课堂练习】 1、(1)已知角α终边经过点p( 1 cosα=______,sinα=______,tanα=______, cotα=______,secα=______,cscα=______。 其中,r=OP=x2+y2>0. x x r r y y r叫做角α的正弦,记作sinα,即sinα=r; 2、设π A、-1;不存在 B、1;不存在 C、-1;0 D、1;0 )。 y y x叫做角α的正切,记作tanα,即tanα=x. r =; r =; x tanα=y. 例1、已知角α终边过点P(2,-3),求角α的六个三角函数值。 3、如果角α的终边过点(2sin30°,-2cos30°),则sinα的值等于() 13 2 B- 2 D 2 4、若角α的终边经过点M(0,m)(m≠0),则下列式子无意义的是() A、sinα B、cosα C、tanα D、cotα 15.已知角 α的终边上一点的坐标为( 3 ,- 1 ),则角α的最小正值为( 22)变式训练1:设角α的终边经过点P(3x,-4x)(x<0),则sinα-cosα的值?

最新《变量与函数》导学案汇编

14.1《变量与函数》导学案 一、问题引入,联系实际 问题1:汽车以每小时60千米的速度匀速行驶,行驶路程为s千米,行驶时间为t小时,先填写下面的表,再试着用含t的式子表示。 t(小时)1234 S(千米) 问题2:已知每张电影票的售价为10元,如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入为y元,怎样用含x的式子表示y? 问题3:要画一个面积为10平方厘米的圆,圆的半径应取多少?画面积为20平方厘米的圆呢?怎样用含圆面积s的式子表示半径r? 二、动手实验,加深体验(分组进行试验活动,然后各组选派代表汇报。) 问题4:在一根弹簧的下端悬挂重物,原长10cm,每1千克的重物是弹簧伸长0.5cm,设重物质量为m千克,受力后的弹簧长度为lcm,怎样用含m的式子表示l? 问题5:用10cm的绳子围成长方形,设长方形的长为xcm,面积为s平方厘米,怎样用含x的式子表示s? 三、探究新知,水到渠成 问题6:承接上面几例,说出变量和常量的概念。 这些问题反映了不同事物的变化过程,其中有些量是按照某种规律变化的,如() 在一个变化过程中,我们称数值发生变化的量为(),有些量的数值是始终不变的,我们称为()。

问题7:说出上面问题中的变量和常量, 并举一些实例,指出其中的变量和常量。 问题8:甲乙两地相距y千米,一自行车以每小时10千米的速度从甲地到乙地,行驶t小时,这时,自行车离乙地还有m千米怎样表示? 问题9:在前面的每个问题中,各有几个变量? 同一问题中的变量之间当其中一个变量取定一个值时,另一个变量就有()值。 问题10:分组讨论教科书中第96页的两个思考。 一般地。在()中,如果有()个()量x和y,并且对于x 的()的值,y都有()的值与其对应,那么我们说x是(),y是x的(),如果x=a,时,y=b,那么,b叫做当自变量的值为a时的()。 四、巩固新知,能力提升 回答前面几个问题中的自变量和函数 问题11:简单介绍函数的三种表示方法:1、()2、()3、()。

高中数学必修四1.2.1任意角的三角函数导学案

1.2.1任意角的三角函数(A层学案) 学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义; 2.记住诱导公式一并会应用。 学习重点:任意角三角函数的定义及诱导公式一的应用。 学习难点:任意角的三角函数的定义。 一、课前预习案 1.任意角三角函数 (1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: ①y叫做α的________,记作______,即sinα=y; ②x叫做α的________,记作______,即cosα=x; ③y x 叫做α的________,记作______,即tanα= y x (x≠0). (2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),它到原点的距离r(r>0),r=,那么任意角α的三角函数的定义为: sinα= cosα= tanα= 2.正弦、余弦、正切函数值在各象限的符号 记忆口诀:。 3.诱导公式一 终边相同的角的同一三角函数的值________,即: sin(α+k·2π)=________,cos(α+k·2π)=________, tan(α+k·2π)=________,其中k∈Z. 角α0π 6 π 4 π 3 π 2 2 3 π 3 4 π 5 6 ππ 3 2 π2π sin αcos αtan α

二、课内探究案 知识点一利用定义求角的三角函数值 例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1: (1)已知角α的终边过点 0(3,4) P--,求角α的正弦、余弦和正切值. (2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值. 知识点二:三角函数值的符号问题 例2. (1)α是第四象限角,则下列数值中一定是正值的是( ) A.sin α B.cos α C.tan α D.cos α或tan α (2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”). (3)函数的值域是_______. 变式训练2:判断下列各式的符号. (1)sin 370°+cos 370°.

模式1中考数学第一轮复习导学案-锐角三导学案-锐角三角函数100

锐角三角函数 ◆ 课前热身 1.sin30°的值为( ) A . 32 B . 22 C . 12 D . 33 2.在等腰直角三角形ABC 中,∠C =90o,则sin A 等于( ) A . 12 B . 22 C .32 D .1 3.在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 . 4.如图,△ABC 中,∠C=90°,AB=8,cosA= 4 3 ,则AC 的长是 5.计算:tan 60°=________. 【参考答案】 ** 2.B 3. 4.6 5. ◆考点聚焦 知识点 锐角三角函数、锐角三角函数值的符号、锐角三角函数值的变化规律、特殊角三角函数值 大纲要求 1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系,?这也是本节的重点和难点. 2.准确记忆30°、45°、60°的三角函数值. 3.会用计算器求出已知锐角的三角函数值. 4.已知三角函数值会求出相应锐角. 5.掌握三角函数与直角三角形的相关应用,这是本节的热点. 考查重点与常见题型 1.求三角函数值,常以填空题或选择题形式出现; 2.考查互余或同角三角函数间关系,常以填空题或选择题形式出现; 3.求特殊角三角函数值的混合运算,常以中档解答题或填空题出现.

◆备考兵法 充分利用数形结合的思想,对本节知识加以理解记忆. ◆考点链接 1.sin α,cos α,tan α定义 sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值 ◆典例精析 例1(内蒙古包头)已知在Rt ABC △中,3 90sin 5 C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54 D . 34 【解析】本题考查三角函数的定义和勾股定理,在RTΔABC 中,∠C=90°,则sin a A c =, tan b B a =和222a b c +=; 由3 sin 5 A =知,如果设3a x =,则5c x =,结合222a b c +=得4b x =;∴44 tan 33 b x B a x ===,所以选A . 【答案】A 例2(湖北荆门)104cos30sin 60(2)(20092008)-??+---=______. 【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算, 104cos30sin 60(2)(20092008)-??+---=3313412222 ??? ?+--= ???,故填3 2. 【答案】 3 2 例3(黑龙江哈尔滨)先化简.再求代数式的值.22 ()211 1a a a a a ++÷+-- 其中a =tan60° -2sin30°. 30° 45° 60° sin α cos α tan α α a b c

19.1.1.1变量与函数第一课时导学案

19.1.1《变量与函数》(第1课时) 导学案 班级 姓名 学号 【学习目标】1.通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义。 2.学会用含一个变量的代数式表示另一个变量; 【学习重点】了解常量与变量的意义;【学习难点】较复杂问题中常量与变量的识别。 【【学习过程】】【】 【知识准备】人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 ;同时用“数”来表明“量”的大小。 【活动一:自学交流】 问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时. 1.请同学们根据题意填写下表: 2.在以上这个过程中,变化的量是_____.不变化的量是______。 3.试用含t 的式子表示s ,则s=_________. 4.这个问题反映了匀速行驶的汽车所行驶的路程_____随行驶时间_____的变化过程。 问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出206张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元。 1.请同学们根据题意填写下表: 售出票数(张) 早场150 午场205 晚场310 x 收入y (元) 2.在以上这个过程中,变化的量是______.不变化的量是______. 3.试用含x 的式子表示y ,则 y=______ 4.这个问题反映了票房收入____随售票张数____的变化过程。 问题三:圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10 cm ,20 cm ,30 cm 时,圆的面积S 分别为多少?在这个过程中,哪些量是变化的? 1.请同学们根据题意填写下表:(用含 的式子表示) 半径r(cm) 10 20 30 r 面积s(cm 2) 2.在以上这个过程中,变化的量是________.不变化的量是________。 3.试用含r 的式子表示s 。s =__________。 4.这个问题反映了 随 的变化过程。 问题四:用10m 长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm ,面积为Sm 2 。1.请同学们根据题意填写下表: 长x(m) 3 3.5 4 4. 5 x 另一边长(m) 面积s(m 2) 2.在以上这个过程中,变化的量是________.不变化的量是_________。 3.试用含x 的式子表示s . S=_____________ 4.这个问题反映了矩形的 随 的变化过程. 【活动二:形成概念】 问题1:请给活动一(一)~(四)中发生了变化的量和始终不变的量起一个恰当的名称。 变化的量: ; 始终不变的量: 。 问题2:在一个变化过程中,理解变量、常量的关键词是什么? t/时 1 2 3 4 5 t s/千米

三角函数的定义学案

学习目标:理解任意角的三角函数的定义,了解终边相同的角的同一三角函数值相等,掌握三角函数(正弦、余弦、正切)的定义域,会运用任意角三角函数的定义求相关角的三角函数值。 课前预习 阅读课本P14—P17,填充下列空格 1.三角函数的定义(如图所示) 设α是一个任意大小的角,α的终边上任意一点P 的坐标是()y x ,,它与原点的距离是r (=r ),如上图所示,那么 ①比值 叫做α的正弦,记作 ,即 ; ②比值 叫做α的余弦,记作 ,即 ; ③比值 叫做α的正切,记作 ,即 ; ④比值 叫做α的余切,记作 ,即 ; ⑤比值 叫做α的正割,记作 ,即 ; ⑥比值 叫做α的余割,记作 ,即 。 2.三角函数的定义域 3.三角函数在各象限的符号 合作探究展示 角的终边 x y 0 αsin x y 0 αcos x y α tan

探究一 .已知角α的终边经过点P(4,-3),求sin α、cos α、tan α的值; 变式一 已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值; 探究二 求下列各角的六个三角函数值:⑴0; ⑵π; ⑶2 3π。 求 43π和56 π角的正弦、余弦和正切值. 引申 填表:

探究三 确定下 列各三角函数值的符号: ⑴516cos π; ⑵?? ? ??-34sin π; ⑶21556tan ' 已知点p (tan tan ,cos αα )在第四象限,则角α 在第 象限 当堂练习 (一)选择题 1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .- 55 B .- 5 C .552 D .2 5 2、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α= 4 2 x ,则sin α的值为 ( ) A . 410 B .46 C .4 2 D .-410 3.若0sin <α且0tan >α,则α是( ) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 4.设角θ终边上一点()()06,8<-a a a P ,则ααcos sin 2+的值为( ) A. 52 B.52或52- C.52 - D.与a 无关 二.填空题

《锐角三角函数》第一课时导学案

28.1《锐角三角函数》第一课时——正弦 【学习目标】 1:经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2:能根据正弦概念正确进行计算 【学习重点】 理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实. 【学习难点】 当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。 B 【导学过程】 一、自学提纲:A C 1、如图在△ R t ABC中,∠C=90°,∠A=30°,BC=10m,?求AB 2、如图在△ R t ABC中,∠C=90°,∠A=30°,AB=20m,?求BC A B C 二、合作交流: 问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,?在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管? 思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为a m,那么需要准备多长的水管?; 结论:直角三角形中,30°角的对边与斜边的比值 思考2:在△ R t ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗??如果是,是多少?B A C 结论:直角三角形中,45°角的对边与斜边的比值

BC B ' C ' 三、教师点拨: 从上面这两个问题的结论中可知,?在一个 △R t ABC 中,∠C=90°,当∠A=30° 时,∠A 的对边与斜边的比都等于 1 2 ,是一个固定值;?当∠A=45°时,∠A 的 对边与斜边的比都等于 2 2 ,也是一个固定值.这就引发我们产生这样一个疑问: 当∠A 取其他一定度数的锐角时,?它的对边与斜边的比是否也是一个固定值? 探究:任意画 Rt△ABC 和 Rt △A ′B′C′,使得∠C=∠C′=90°, ∠A=∠A′=a,那么 与 AB A ' B ' 有什么关系.你能解释一下吗? 结论:这就是说,在直角三角形中,当锐角 A 的度数一定时,不管三角形的大 小如何,?∠A 的对边与斜边的比 正弦函数概念: 规定:在 Rt △B C 中,∠C=90, ∠A 的对边记作 a ,∠B 的对边记作 b ,∠C 的对边记作 A 斜边c b B 对边a C c . 在 △R t BC 中,∠C=90°,我们把锐角 A 的对边与斜边的比叫做∠A 的正弦, 记作 sinA ,即 sinA= = a c . sinA = ∠ A 的对边 a = ∠ A 的斜边 c 例如,当∠A=30°时,我们有 sinA=sin30°= ; 当∠A=45°时,我们有 sinA=sin45°= . 四、学生展示: 例 1 如图,在 Rt△ABC 中,∠C=90°,求 sinA 和 sinB 的值. B 3 B 3 5 13 A 4 C C A (1) (2)

2020年八年级数学下册 19.1.1 变量与函数(第1课时)导学案2 新人教版.doc

2020年八年级数学下册 19.1.1 变量与函数(第1课时)导学案2 新人教版 【预习反馈】 1、汽车以60 km/h 的速度匀速行驶,行驶时间为t h,行驶路程为s km。 是变化,不变的。 2、每张电影票的售价为10 元,设某场电影售出x张票,票房收入为y 元。 是变化,不变的。 3、圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?在这个过程中,哪些量是变化的 是变化,不变的。 4、用10 m长的绳子围一个矩形,当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分别为多少? 是变化,不变的。 【问题引导】 阐述教学目标: 学习目标: 1.了解变量与常量的意义; 2.体会运动变化过程中的数量变化. 学习重点: 了解变量与常量的意义,充分体会运动变化过程中,量的变化. 二、问题设置: 1、汽车以60 km/h 的速度匀速行驶,行驶时间为t h,行驶路程为s km。 那些量是变化的?那些量是不变的?。 2、每张电影票的售价为10 元,设某场电影售出x张票,票房收入为y 元。 那些量是变化的?那些量是不变的? 3、圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?在这个过程中,哪些量是变化的 那些量是变化的?那些量是不变的? 4、用10 m长的绳子围一个矩形,当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分别为多少? 那些量是变化的?那些量是不变的? 5、什么是变量?什么是常量? 【自主学习】【合作探究】 问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时. 1 2 3.试用含t的式子表示s: s=________,t的取值范围是 _________ . 这个问题反映了匀速行驶的汽车所行驶的路程__随行驶时间__的变化过程. 深入探究,得出结论 (一)问题探究: 问题二:每张电影票的售价为10元,如果第一场售出票150张,第二场售出205张,第三场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.?

苏教版必修四3.2《二倍角的三角函数》word学案

一、学习目标 1、让学生自己由和角公式而导出倍角公式,了解它们的内在联系; 2、会利用倍角公式进行求值运算,培养运算和逻辑推理能力; 3、领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。 二、学习重点 倍角公式的形成,及公式的变形形式的运用。 三、学习难点 倍角公式的形成,及公式的变形形式的运用。 四、学习过程 问题1:两角和与差的正弦、余弦、正切公式是什么? 问题2:若β=α,结果会如何,你能得出什么结论? α2S : α2C : α2T : 问题3:你能利用同角三角函数公式对α2C 进行变形吗? 总结:公式α2S 、α2C 、α2T 叫做 ,简称 。 注意:(1)这里的“倍角”,实际上专指“二倍角”,遇到“三倍角”等名称时,“三”字等不能省去。 (2)倍角公式是和角公式的特例。 (3)倍角公式中的“倍角”的意义是相对的,如:4α是8α 的二倍角。 (4)倍角公式的公式特征:“倍角”与“二次”的关系。 试一试:不查表,求值: (1)sin 2230cos 2230''?= ; (2)=-π18cos 22 ; (3)=π-π8 cos 8sin 22 ;(4)= 40cos 20cos 10sin 。 例1:已知)0,2 (135cos παα-∈=且,求sin 2α,cos 2α,tan 2α的值。

例2:化简απ απ α222sin )3(cos )3(cos -++-。 例3:证明下列恒等式 (1)θθθθθtan 2cos 2sin 12cos 2sin 1=++-+; (2)1)10tan 3(40sin =- 。 例4:求函数2sin (sin cos )y x x x =+的最小正周期,以及最值。 例5:在半圆形钢板上截取一块矩形材料,怎样截取使这个矩形面积最大? 五、巩固练习 1、化简(1; (2; (3; (4。

《用锐角三角函数解决问题(3)》导学案

7.6 用锐角三角函数解决问题(3)学案 学习目标: 进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力. 学习过程: 课前准备 仰角、俯角的定义:如右图,从下往上看,视线与 水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角.右图中的∠1就是仰角,∠2就是俯角. 探究新知 例题1、为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m ,此时观测气球,测得仰角为40°。若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢? 例2、在学习实践科学发展观的活动中,某单位在如图所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公 x m h m A D B 27 50m 40

楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58) 知识运用 1.如图,小明欲利用测角仪测量树的高度。已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB。 (参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65) 2、为了改善楼梯的安全性能,准备将楼梯的倾斜角由65度调整为40度,已知原来的楼梯的长为4米,调整后的楼梯要占多长的一段楼梯地面. 当堂反馈 1、如图,热气球的探测器显示,从热气球看一栋高楼顶部的 仰角为? 60,看这栋高楼底部的俯角为? 30,热气球与高 楼的水平距离为66 m,这栋高楼有多高?(结果精确到 C A B

新人教版高中数学《函数的概念》导学案

第6课时函数的概念 1.理解函数的概念,了解构成函数的三要素. 2.能正确使用区间表示数集. 3.会求一些简单函数的定义域、函数值. 我国著名数学家华罗庚说过这样一句话:从具体到抽象是数学发展的一条重要大道.我们来看三个现象:①清晨,太阳从东方冉冉升起;②随着二氧化碳的大量排放,地球正在逐渐变暖;③中国的国内生产总值在逐年增长. 问题1:在初中,我们学习过函数,函数是刻画和描述两个变量之间依赖关系的数学模型,上述三个事例,向我们阐述了一个事实,世界时刻都是变化的,那么变化的本质是什么呢? 从数学的角度看,我们发现在这些变化着的现象中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化.若当第一个变量确定时,另一个变量也随之确定,则它们之间具有. 问题2:设A、B是非空数集,如果按照某个确定的对应关系f,使对于集合A 中的数x,在集合B中都有的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作.其中x叫作,x的取值集合叫作函数的;与x的值相对应的y值叫作,函数值的集合叫作函数的. 问题3:在研究函数时常会用到区间的概念,区间的表示如何规定?

注:实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“+∞”读作“正无穷大”,“-∞”读作“负无穷大”. 问题4:(1)函数f:A→B应该满足什么样的对应关系?一个函数的构成要素有几部分? (2)两个函数的定义域和对应关系分别相同,值域相同吗?由此你对函数的三要素有什么新的认识? (1)应满足:①集合A、B都是;②对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有的元素y与之对应. 一个函数的构成要素:、和,简称为函数的三要素. (2)如果两个函数的和分别相同,那么它们的值域一定相同.由此可以认识到:只要两个函数的和分别相同,那么这两个函数就相等. 1.下列四个函数:(1)y=x+1;(2)y=x3;(3)y=x2-1;(4)y=. 其中定义域相同的函数有(). A.(1)(2)(3) B.(1)(2) C.(2)(3) D.(2)(3)(4)

1.2.2同角的三角函数的基本关系 学案

1.2.2同角的三角函数的基本关系 课前预习学案 预习目标: 通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好铺垫。 预习内容: 复习回顾三角函数定义和单位圆中的三角函数线: 提出疑惑: 与初中学习锐角三角函数一样,我们能不能研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化呢? 课内探究学案 学习目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 学习过程: 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构 成直角三角形,而且1OP =.由勾股定理由221MP OM +=, 因此221x y +=,即 . 根据三角函数的定义,当()2a k k Z π π≠+∈时,有 . 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 例2 已知α ααααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 例3求证:α αααcos sin 1sin 1cos +=- 例4已知方程0)13(22=++-m x x 的两根分别是θθcos sin , ,

《锐角三角函数》学案

1.1锐角三角函数(1)学案 学习目标: 1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系. 2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 学习重点: 1.从现实情境中探索直角三角形的边角关系. 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 学习难点: 理解正切的意义,并用它来表示两边的比. 学习方法: 引导—探索法. 学习过程: 一、生活中的数学问题: 1.千年古寺青檀寺中有一座报国塔,小明很想知道 古塔的高度,但小明没有足够长的尺子,怎么办呢?于 是聪明的小明想了这样的办法:小明在塔前的A 处仰望 塔顶,测得仰角∠1的大小,再往塔的方向前进50米到 B 处又测得仰角的大小,根据这些他就求出了塔的高 度.你知道他是怎么做的吗? 通过本章的学习,我们就会揭开小明这样做的谜 底.从今天这节课开始,我们就来学习九年级(下)第一章的内容:直角三角形的边角关系. 2.你能比较两个梯子哪个更陡吗?你有哪些办法? 3⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的? ⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的? A B 1 2

二、呈现问题,探索新知 ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论? (5)概念的生成 由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随 之确定,因此我们有如下定义: 如图,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之 比便随之确定,这个比叫做∠A 的 (tangent),记作tanA ,即 tanA = . 三、巩固提高,应用新知 例1 如图是甲、乙两个自动扶梯,哪一个自动扶梯比较陡? 坡度 如图,正切也经常用来描述山坡的坡度.例如,有一山坡在水平方向 上每前进100m 就升高60m ,那么山坡的坡度i (即tan α)就是: 603tan 1005 i α===.

含参数二次函数分类讨论的办法总结

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性 的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到 分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区 间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、 远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称 轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ① ② ③ ④ t t +s 2s

《锐角三角函数》导学案

24. 3 锐角三角函数(1) 【学习目标】 经历当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边与邻边、的比值固定这一事实。能根据三角函数的概念进行计算 【学习重点】理解三角函数的概念 【学习难点】当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边与邻边、的比值固定这一事实。 【课标要求】掌握锐角三角函数 【知识回顾】 如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗? 图25.1.2 【自主学习】 探究1:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°, ∠A=∠A′,那么 '' '' BC B C AB A B 与有什么关系.你能解释一下吗? 结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,?∠A的对边与斜边的比∠A的邻边与斜边的比∠A的对边与邻边的比∠A的邻边与对边的比

概念:在Rt△BC中,∠C=90,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c. 在Rt△BC中,∠C=90°, 我们把叫做∠A的正弦,记作,即. 我们把叫做∠A的余弦,记作,即. 我们把叫做∠A的正切,记作,即. 【例题学习】 例1 如图,在Rt△ABC中,∠C=90°,求△ABC 中∠B的三个三角函数值. 你有什么发现? 【巩固训练】 1.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=() A.3 5 B. 4 5 C. 3 4 D. 4 3 2.在△ABC中,∠C=90°,BC=2,sinA=2 3 ,则边AC的长是( ) A.13 B.3 C.4 3 D. 5 3在中,∠C=90°,a,b,c分别是∠A、∠B、∠C 的对边,则有() A . ... C B A

二次函数求最值参数分类讨论的方法(可编辑修改word版)

t t + s 2 s ① ② ③ ④ 二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数 y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏, 可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数 f (x ) = x 2 - 2ax + 3 在 x ∈[0, 4] 上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解: f (x ) = x 2 - 2ax + 3 = (x - a )2 + 3 - a 2 ∴此函数图像开口向上,对称轴 x=a ①、当 a <0 时,0 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=0 时, y min =3,x=4 时, y max =19-8a ②、当 0≤a<2 时,a 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=4 时, y max =19-8a ③、当 2≤a<4 时,a 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=0 时, y max =3 ④、当 4≤a 时,4 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=4 时, y min =19-8a ,x=0 时, y max =3 例 2、已知函数 f (x ) = ax 2 + (2a -1)x - 3 在区间[- 3 , 2] 上最大值为 1,求实数 a 的值 2 分析:取 a=0,a≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分

相关主题
文本预览
相关文档 最新文档