当前位置:文档之家› 泵与风机课后习题答案答案(1-4章)汇总

泵与风机课后习题答案答案(1-4章)汇总

泵与风机课后习题答案答案(1-4章)汇总
泵与风机课后习题答案答案(1-4章)汇总

扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。

全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。

轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。

如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。

泵与风机(课后习题答案)

第一章

1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm,

2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。

解:由题知:流体径向流入叶轮 ∴1α=90° 则:

1u =

1n

60

D π=

3178101450

60

π-???=13.51 (m/s )

1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s )

∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V =

122V

q D b π=0.0860.3810.019

π??=3.78 (m/s ) 2u =2D 60n π=3381101450

60π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

T H ∞=

22u u V g

∞=28.9118.52

9.8?=54.63 (m )

1-2有一离心式水泵,其叶轮外径2D =220mm,转速n=2980r/min ,叶片出口安装角2a β=45°,出口处的轴面速度2m v =3.6m/s 。设流体径向流入叶轮,试按比例画出出口速度三角形,并计算无限多叶片叶轮的理论扬程T H ∞,又若环流系数K=0.8,流动效率h η=0.9时,泵的实际扬程H 是多少? 解:2u =

2D 60

n π=0.222980

60

π??=34.3 (m/s )

∵2m V =3.6 m/s 2a β=45°∴2w =

22sin m

a

v β=5.09 (m/s ) 画出出口速度三角形 2u V ∞=2u -2m V ctg 2a β=34.31-3.6?ctg45°=30.71 (m/s ) ∵1α=90°T H ∞=

22u u V g

∞=34.3130.71

9.8?=107.5 (m)

实际扬程H=K T H =K h ηT H ∞=0.8?0.9?107.5=77.41 (m)

1-3有一离心式水泵,叶轮外径2D =360mm ,出口过流断面面积2A =0.0232m ,叶片出口安装角2a β=30°,流体径向流入叶轮,求转速n=1480r/min ,流量

,V T q =86.8L/s 时的理论扬程T H 。设环流系数K=0.82。 解:流体径向流入叶轮 1α=90°

2u =

2D 60

n π=0.361480

60

π??=27.88 (m/s )

2m v =,V T

q A =383.8100.023

-?=3.64 (m/s ) 2u v ∞=2u -2m v 2a ctg β=27.88-3.64

? (m/s ) T H ∞=

22u u V g

∞=27.8821.58

9.8?=61.39 (m )

T H =K T H ∞=0.82?61.39=50.34 (m )

1-4有一叶轮外径为300mm 的离心式风机,当转速为2890r/min 时。无限多叶片叶轮的理论全压T p ∞是多少?设叶轮入口气体沿径向流入,叶轮出口的相对速度,设为半径方向。空气密度ρ=1.2kg/3m 。 解:气体沿径向流入1α=90°

又叶轮出口相对速度沿半径方向2a β=90°

2u =

2D 60

n π=0.32980

60

π??=46.79(m/s )

由图知2u =2u V ∞=46.79m/s

∴T p ∞=22u u V ρ∞=1.2?46.79?46.79=2626.7(Pa )

1-5有一离心式风机,转速n=1500r/min ,叶轮外径2D =600mm ,内径1D =480mm ,叶片进、出口处空气的相对速度为1w =25m/s 及2w =22m/s ,它们与相应的圆周速度的夹角分别为1β=60°,2β=120°,空气密度ρ=1.2kg/3m 。绘制进口及出口速度三角形,并求无限多叶片叶轮所产生的理论全压T p ∞。

解:1u =

1n 60D π=0.481500

60π??=37.68(m/s )

2u =2D 60n π=0.61500

60

π??=47.1(m/s )

1m v =11sin a w β=25?sin 60?=21.65(m/s ) 2m v =22sin a w β=22?sin120?=19.05(m/s ) 知u 、m v 、β可得速度三角形

18.2560cos 2568.37cos 2111=?-=-=∞ a u w u v β(m/s ) 2u v ∞=2u -2w 2cos a β=47.1-22?cos120?=58.1(m/s )

()()27.214518.2568.371.581.472.11122=?-??=-=∞∞∞u u T v u v u p ρ(Pa) 1-6有一离心式水泵,在转速n=1480r/min 时,流量V q =89L/s ,扬程H=23m ,水以径向流入叶轮,叶轮内的轴面速度1m v =3.6m/s 。内、外径比1D /2D =0.5,叶轮出口宽度2b =0.122D ,若不计叶轮内的损失和叶片厚度的影响,并设叶轮进口叶

片的宽度1b =200mm ,求叶轮外径2D 、出口宽度2b 及叶片进、出口安装角1a β和

2a β。

解:由V q =π

1D 1b 1m V 得1D =

11V m q b v π=3

89100.2 3.6

π-??=0.039(m)=39mm 由1D /2D =0.5得 2D =21D =2?390=78(mm) 2b =0.122D =9.36mm

1u =

1n 60

D π=0.0391480

60

π??=3.02(m/s )

tg 1a β=

11m v u =3.63.02

=1.192 得1a β=50° 2u =

2D 60

n π=0.0781480

60

π??=6.04(m/s )

2m v =

22

V q D b π=389100.0780.009π-???=38.8(m/s ) 由T H ∞=

22u u V g

=23 得2u V ∞=37.31(m/s ) ()()806.08.38/31.3704.6/2222-=-=-=∞m u a v v u ctg β

85.1282=a β(数据有问题,离心泵出口安装角应是锐角,即后弯式叶片)

1-7 有一离心式风机,叶轮外径2D =600mm ,叶轮出口宽度2b =150mm ,叶片出口安装角2a β=30°,转速n=1450r/min 。设空气在叶轮进口处无预旋,空气密度

ρ=1.2kg/3m ,试求:

(1)当理论流量,V T q =100003m /h 时,叶轮出口的相对速度2w 和绝对速度2v ; (2)叶片无限多时的理论全压T p ∞; (3)叶片无限多时的反作用度τ;

(4)环流系数K 和有限叶片理论全压T p (设叶片数z=12) 解:(1)2u =

2D 60

n π=0.61450

60

π??=45.53(m/s )

由,V T q =π2D 2b 2m V 得2m V =

,22

V T

q D b π=

10000

36000.60.15

π???=9.83(m/s )

2w =

22sin m

a

V β=9.83sin 30?=19.66(m/s ) 2V

=30.15(m/s )

(2)∵2u =45.53m/s 2m V =9.83m/s

∴2u V ∞=2u -2m V ctg 2a β=45.53-9.83?ctg30°=28.5(m/s )

T p ∞=ρ2u 2u V ∞=1.2?45.53?28.5=1557.3(Pa ) (3)τ=1-

22

2u V u ∞

=1-28.5245.53?=0.687

⑷由风机的斯托道拉公式:K =1-

22,2222sin ()

a

V T

a

u q z u D b tg πβπβ-

K =1-

45.53sin 3010000

12(45.53)

360000.60.1530tg ππ??

-?????

=0.79

∴T p =K T p ∞=0.79?1557.3=1230.3(Pa )

1-8有一轴流式风机,在叶轮半径380mm 处。空气以1v =33.5m/s 的速度沿轴向流入叶轮,当转速n=1450r/min 时,其全压p =692.8Pa ,空气密度ρ=1.2kg/3m ,求该半径处的平均相对速度w ∞的大小和方向。 解:u =

60Dn π=

67.5760

1450

238.014.3=???(m/s ) a w v =1=33.5(m/s )

2u v =

p

u ρ=

01.1067

.572.18.692=?(m/s ) 由题知轴向进入01=u v ,所以u w u =1。66.4701.1067.5722=-=-=u u v u w (m/s)

42.62266.4767.575.3322

22

2121=???

??++=??

? ??++=∞u u w w v w m/s

34.3266.4767.5735.3322211

=??? ??+?=???

?

??

+=∞arctg w w v arctg u u β 1-9有一单级轴流式水泵,转速n=580r/min ,在叶轮直径700mm 处,水以1v =5.8m/s 的速度沿轴向流入叶轮,又以圆周分速2u v =2.3m/s 从叶轮流出,试求y c b

t

为多少?设λ=1°。

解:u =60Dn π=

25.2160580

7.014.3=??(m/s ) 8.51===a a v w v (m/s )

由题知轴向进入01=u v ,所以u w u =1。95.183.225.2122=-=-=u u v u w (m/s)

09.1695.1825.218.522211

=??? ??+?=???

?

??

+=∞arctg w w v arctg u u β ()()207.009

.16/1109.16sin 8.503.22/1sin 212=+?-?=+-=∞∞

tg tg tg tg v v v t b c a u u y βλβ 1-10有一后置导叶型轴流式风机,在外径2D =0.47m 处,空气从轴向流入,

a v =30m/s ,在转速n=2000r/min 时,圆周分速2u v =5.9m/s ,求y b

c t

。设λ=1°。 解:u =

60Dn π=

19.4960

2000

47.014.3=??(m/s ) 301===a a v w v (m/s )

由题知轴向进入01=u v ,所以u w u =1。29.439.519.4922=-=-=u u v u w (m/s)

97.3229.4319.493022211

=??? ??+?=???

?

??

+=∞arctg w w v arctg u u β ()()208.097

.32/1197.32sin 3009.52/1sin 212=+?-?=+-=∞∞

tg tg tg tg v v v t b c a u u y βλβ 1-11有一单级轴流式水泵,转速为375r/min ,在直径为980mm 处,水以速度

1v =4.01m/s 轴向流入叶轮,在出口以2v =4.48m/s 的速度流出。试求叶轮进出口相对速度的角度变化值(2β-1β)。 解: u =

60Dn π=0.98375

60

π??=19.23(m/s ) 水轴向流入 1u v =0

2u v

201.448.422=-(m/s ) 由速度三角形可知:1tg β=a v u =1v u

= 4.01

19.23=0.2085 得1β= 78.11

由2tg β=

2a u v u v -=1

2u v u v -=

2327.02

23.1901.4=- 得2β= 10.13 2β-1β==- 78.1110.13 1.32°

1-12有一单级轴流式风机,转速n=1450r/min ,在半径为250mm 处,空气沿轴向以24m/s 的速度流入叶轮,并在叶轮入口和出口相对速度之间偏转20°,求此时的理论全压T p 。空气密度ρ=1.2kg/3m 。 解:u =

60Dn π=

94.3760

1450

225.014.3=???(m/s ) 6326.094

.372411===

u v tg β 32.321=β 32.522012=+=ββ ()()43.88332.5232.322494.372.121=-???=-= ctg ctg ctg ctg uv p a T ββρPa 第二章

2-1有一叶轮外径为460mm 的离心式风机,在转速为1450r/min 时,其流量为5.13m /s ,试求风机的全压与有效功率。设空气径向流入叶轮,在叶轮出口处的相对速度方向为半径方向,设其p /T p ∞=0.85,ρ=1.2kg/3m 。 解:2u =

260D n π=0.461450

60

π??=34.9(m/s )

∵叶轮出口处的相对速度为半径方向

∴2β=90°2u V ∞=2u

T p ∞=ρ2u 2u V ∞=1.2?34.9?34.9=1462.14(Pa )

p =0.85T p ∞=0.85?1462.1=1242.82(Pa )

e P =

1000v q P =5.11242.81000

?=6.34(kW ) 2-2有一单级轴流式水泵,转速为375r/min ,入口直径为980mm ,水以1v =4.01m/s 的速度沿轴向流入叶轮,以2v =4.48m/s 的速度由叶轮流出,总扬程为H=3.7m ,求该水泵的流动效率h η。

解:u =60Dn π=398010375

60π-???=19.23(m/s )

∵水沿轴向流入 ∴01=u V 1V =1a V =2a V =4.01m/s

2u v ∞

T H =

()()9.30998.18

.923.1912=-?=-u u V V g u

m h η=

T H H =3.73.9

=0.949=94.9% 2-3有一离心式水泵,转速为480r/min ,总扬程为136m 时,流量V q =5.73m /s ,轴功率为P =9860KW ,其容积效率与机械效率均为92%,求流动效率。设输入的水温度及密度为:t=20℃,ρ=1000kg/3m 。 解:η=

e P P =1000V gq H P ρ=1000 5.713610009860

g ????=0.77 又∵η=h ηV ηm η ∴h η=

V m η

ηη=0.770.920.92

?=0.91=91% 2-4用一台水泵从吸水池液面向50m 高的水池输送V q =0.33m /s 的常温清水(t=20℃,ρ=1000kg/3m ),设水管的内径为d =300mm ,管道长度L =300m ,管道阻力系数λ=0.028,求泵所需的有效功率。

解:根据伯努利方程 1z +1p g ρ+212v g +H =2z +2p g ρ+2

2

2v g +w

h

由题知:1z -2z =50; 1p =2p =0; 1v =2v 1v =2v =

2

4

V

q d π=

2

0.3

0.34

π

?=4.246(m/s )

w h =λl d 22v g =76.258

.92246.43.0300028.02

=???

m 代入方程得H =75.76(m)

e P =

1000

V gq H

ρ=

7.2221000

76

.753.08.91000=???(kW )

2-5设一台水泵流量V q =25L /s ,出口压力表读数为323730Pa ,入口真空表读数为39240Pa ,两表位差为0.8m ,(压力表高,真空表低),吸水管和排水管直径为1000mm 和750mm ,电动机功率表读数为12.5kW ,电动机效率g η=0.95,求轴功率、有效功率、泵的总功率(泵与电动机用联轴器直接连接)。 解:由题知:2e P =323730Pa ,1v P =39240Pa ,1e P =-1v P =-39240Pa 12z z -=0.8m ,1d =1000mm=1m ,2d =750mm=0.75m 'g P =12.5kW , g η=0.95, tm η=0.98

032.01

14.3100025

442

211=???==

d q v v πm/s 057.075.014.3100025

442

2

22=???==

d q v v πm/s 1z +

1p g ρ+212v g +H =2z +2p g ρ+22

2v g

得: H =12z z -+21p p g

ρ-+2

2

212v v g -=0.8+323730(39240)10009.8--?8.92032.0057.022?-+=37.84m

e P =

1000V gq H

ρ=310009.8251037.84

1000

-????=9.27(KW ) P ='g P tm ηg η=12.5?0.98?0.95=11.64(KW )

η=

e P P

?100%=9.311.64?100%=79.6%

2-6有一送风机,其全压是1962Pa 时,产生V q =403m /min 的风量,其全压效率为50%,试求其轴功率。 解:P =

1000V q p η=

62.25

.010********

40=???(kW ) 2-7要选择一台多级锅炉给水泵,初选该泵转速n=1441r/min ,叶轮外径

=2D 300mm ,流动效率h η=0.92,流体出口绝对速度的圆周分速为出口圆周速度的55%,泵的总效率为90%,输送流体密度ρ=9613/kg m ,要求满足扬程

H =176m ,流量V q =81.63m /h ,试确定该泵所需要的级数和轴功率各为多少(设

流体径向流入,并不考虑轴向涡流的影响)?

解:2u =260D n π=0.31441

60π??=22.62(m/s )

由题知:2u v =0.552u =0.55?22.62=12.44(m/s ) T H =

22u u v g

=22.6212.44

9.8?=28.7(m )

42.2692.07.281=?==h T H H η(m) 766.642

.26176

1≈===

H H i (级) 7.419

.036001000176

6.818.996110001000=?????===

ηρηH gq P P V e kW 2-8一台G4-73型离心式风机,在工况1(流量V q =703003m /h ,全压p =1441.6Pa ,轴功率P =33.6k W )及工况2(流量V q =378003m /h ,全压p =2038.4Pa ,轴功率

P =25.4k W )下运行,问该风机在哪种工况下运行较为经济?

解:工况1:1η=e P P =1000V q p P = 6.33360010006

.144170300??? ?100%=83.78%

工况2:2η=e P P =1000V q p P =4

.25360010004

.203837800????100%=84.26%

∵2η?1η ∴在工况2下运行更经济。 第三章 相似理论

3-1有一离心式送风机,转速n=1450r/min ,流量V q =1.53m /min ,全压p =1200Pa ,输送空气的密度为ρ=1.23/kg m 。今用该风机输送密度ρ=0.93/kg m 的烟气,要求全压与输送空气时相同,问此时转速应变为多少?流量又为多少? 解:由题知:

p m

D D =1 ;各效率相等,p p =m p

根据全压相似关系 p

m p p =p m ρρ2()p m D D 2()p m n n =p m ρρ2

()p m

n n =1

得m n =p

n

?

流量与密度无关,根据相似关系

Vp Vm

q q =

p m

n n 得

Vm q =m Vp

p

n q n =1674.321.51450?=1.73(3m /min)

3-2有一泵转速n=2900r/min ,扬程H=100m ,流量V q =0.173m /s ,若用和该泵相似但叶轮外径2D 为其2倍的泵,当转速n=1450r/min 时,流量为多少? 解:由题知:2m D =22p D ,由于两泵相似 根据流量相似关系Vp Vm

q q =23

2(

)

p m

D D p

m

n n =31()2?29001450=1

4 得:Vm q =

81450

0.172900

??=0.68(3m /s ) 3-3有一泵转速n=2900r/min ,其扬程H=100m ,流量V q =0.173m /s ,轴功率

P =183.8KW 。现用一出口直径为该泵2倍的泵,当转速n=1450r/min 时,保持运动状态相似,问其轴功率应是多少?

解:由于两泵相似 且2m D =22p D

根据功率相似关系:

p m

P P = 252(

)p m

D D 3(

)p

m

n n =51()232900(

)1450=1

4 得:m P =4p P =4?183.8=735.2(KW )

3-4 G4-73型离心风机在转速n=1450r/min 和2D =1200mm 时,全压p =4609Pa ,流量V q =711003m /h ,轴功率P =99.8KW ,若转速变到n=730r/min 时,叶轮直径和气体密度不变,试计算转速变化后的全压、流量和轴功率。 解:由题可知:

22p m

D D =1;

p

m

ρρ=1 根据比例定律:

p m p p =2(

)p

m

n n =21450()730=3.945 得 m p =4609

3.945=1168.3(Pa )

Vp Vm q q =p

m n n =1450730

=1.9863 得Vm q =1.986Vp q =9863.171100

=35795.2(3/m h )

p m

P P =3(

)p

m

n n =31450(

)730=7.837 得m P =99.8

7.837=12.73(KW )

3-5 G4-73型离心风机在转速n=1450r/min 和2D =1200mm 时,全压p =4609Pa ,流量V q =711003/m h ,轴功率P =99.8KW ,空气密度ρ=1.23/kg m ,若转速和直径不变,但改为输送锅炉烟气,烟气温度t=200℃,当地大气压amb p =0.1MPa ,试计算密度变化后的全压、流量和轴功率。 解:由题知

22p m

D D =1

p m

n n =1

由于流量与密度无关 所以流量V q 不变,71100=Vm q m 3/h

763.0101325

101.020*********.11013252732736

0=??+?=+=p t m ρρkg/m 3

全压m p =

m p

ρρp p =56.293046092.1763

.0=?Pa 轴功率m P =

m p

ρρp P =46.638.992.1763

.0=?kW 3-6叶轮外径2D =600mm 的风机,当叶轮出口处的圆周速度为60m/s ,风量

V q =3003/min m 。有一与它相似的风机2D =1200mm ,以相同的圆周速度运转,求其风量为多少?

解:由题知:圆周速度相同 可得 u =

260

p p

D n π=

260

m m

D n π=60

p m

n n =

22m p D D =1200

600

=2 根据相似流量关系

Vp Vm

q q =23

2(

)

p m

D D p

m n n =3600(

)1200

?2=1

4 所以得Vm q =4?Vp q =4?300=1200(3/min m )

3-7有一风机,其流量V q =203/m s ,全压p =460Pa ,用电动机由皮带拖动,因皮带滑动,测得转速n=1420r/min ,此时所需轴功率为13KW 。如改善传动情况后,

转速提高到n=1450r/min ,问风机的流量、全压、轴功率将是多少? 解:由于是同一风机,所以满足相似

由题知:

p m

D D =1

p

m

ρρ=1

根据比例定律

Vp Vm

q q =

p m

n n 得 Vm q =Vp

q m p

n n =20?14501420=20.42(3/m s )

p m p p =2(

)p m

n n 得m p =p p 2(

)m p

n n =460?2

1450(

)1420=479.58(Pa ) p m

P P =3(

)p m

n n 得m P =p P 3(

)m p

n n =13?3

1450(

)1420=13.84(KW ) 3-8已知某锅炉给水泵,最佳工况点参数为:V q =2703/m h ,H =1490m ,

n =2980r/min ,i =10级。求其比转数s n 。

解:s n

34()i

34

()10

3-9某单级双吸泵的最佳工况点参数为V q =180003/m h ,H =20m ,n =375r/min 。求其比转数s n 。 解:由于是单级双吸泵

s n

3-10 G4-73-11No18型锅炉送风机,当转速n =960r/min 时的运行参数为:送风量V q =190003/m h ,

全压p =4276Pa ;同一系列的No8型风机,当转速n =1450r/min 时的送风量V q =252003/m h ,全压p =1992Pa ,它们的比转数是否相等?为什么? 解:两台风机的比转数分别为

y n

=

4

3

4276360019000

960?=4.17

y n

比转数不相等,因为一台风机在不同工况下有不同的比转数,一般用最高效率点的比转数,作为相似准则的比转数。所以题中的两台风机(同一系列)在最高效率点的比转数是相同的,但题中给出的工况不同,所以比转数不同。

第四章 泵的汽蚀 4-1除氧器内液面压力为117.6?310Pa ,水温为该压力下的饱和温度104℃,用一

台六级离心式给水泵,该泵的允许汽蚀余量[?h]=5m ,吸水管路流动损失水头约为1.5m ,求该水泵应装在除氧器内液面下多少米? 解:[g H ]=

e v

P P g

ρ--[h ?]-w h e P =v P 倒灌高度

∴[g H ]=-[h ?]-w h =―5―1.5=-6.5(m )

4-2有一台单级离心泵,在转速n=1450r/min 时,流量为2.63/min m ,该泵的汽蚀比转数c=700。现将这台泵安装在地面上进行抽水,求吸水面在地面下多少米时发生汽蚀。设:水面压力为98066.5Pa ,水温为80℃(80℃时水的密度

ρ=971.43/kg m ),吸水管内流动损失水头为1m 。

解:c

得r h ?=43

)

=43=3.255(m )

(其中的5.62是第107页公式中4-28得来的)

由于发生汽蚀条件为a h ?=r h ?=c h ? (△h 其实是NPSH 的一种表达习惯) ∴a h ?=r h ?=3.255(m )

根据 t =80℃,ρ=971.43/kg m 查表4-2知V H =4.97m

g H =

e P g

ρ―V H ―a h ?―w h =98066.5971.49.8?―4.97―3.255―1=1.076(m )

(Hv 其实是Pv/pg 的表达)

4-3有一吸入口径为600mm 的双吸单级泵,输送20℃的清水时,V q =0.33/m s ,

n =970r/min ,H =47m ,汽蚀比转数c =900。试求:

⑴在吸水池液面压力为大气压力时,泵的允许吸上真空高度[s H ]为多少? ⑵该泵如用于在海拔1500m 的地方抽送t =40℃的清水,泵的允许吸上真空高度[s H ]又为多少?(公式4-17)

解:⑴由题知:单级双吸泵 c

=900 得r h ?=3.12(m )

c h ?=r h ?=3.12 [h ?]=c h ?+K =3.12+0.3=3.42(m ) 由V q =s Av 得 s v =

V q A

2

0.3

0.64

π

?=1.06 (m/s )

查表4-1及4-2得amb H =10.3(m )V H =0.238(m )结合p104页的公式4-17

[s H ]=e v P P g ρ-+22s v g

-[h ?]=10.3-0.238+0.057-3.42=6.7(m )

(Hs 是我国过去采用的,现在多采用NPSH 了) ⑵海拔1500m 查表4-1 amb H =8.6 t =40℃ 查表4-2 V H =0.752

'[]s H =[s H ]-10.33+amb H +0.24-V H

=6.7-10.33+8.6+0.24-0.752=4.46(m )

4-4在泵吸水的情况下,当泵的几何安装高度g H 与吸入管路的阻力损失之和大于6?410Pa 时,发现泵刚开始汽化。吸入液面的压力为101.3?310Pa ,水温为20℃,试求水泵装置的有效汽蚀余量为多少?(公式4-18)

解:a h ?=c h ?=

e v

P P g

ρ--(g H +w h )

976.38

.91000106238.08.91000103.10143=??--??=(m ) 4-5有一离心式水泵:V q =4000/L s ,n =495r/min ,倒灌高度为2m ,吸入管路阻力损失为6000Pa ,吸水液面压力为101.3?310Pa ,水温为35℃,试求水泵的汽蚀比转数c 。 解: r h ?=a h ?=

e v

P P g

ρ-+g H -w h =

25.118

.974.9886000

258.08.974.988103.1013=?-+-??m

c

4

325

.1110004000

49562.5??=905 4-6有一台吸入口径为600mm 的双吸单级泵,输送常温水,其工作参数为:

V q =880/L s ,允许吸上真空高度为3.2m ,吸水管路阻力损失为0.4m ,试问该泵装在离吸水池液面高2.8m 处时,是否能正常工作。 解: 11.36.014.31000880

442

2=???==

D q V V s πm/s [][]m m h g V Hs Hg w s 8.23.24.08

.9211.32.322

2<=-?-=--=

所以不能正常工作。

4-7有一台疏水泵,疏水器液面压力等于水的饱和蒸汽压力,已知该泵的[?h ]=0.7m ,吸水管水力损失为0.2m ,问该泵可安装在疏水器液面下多少米? 解:由题知:e v P P =

所以[g H ]=-[h ?]-w h =―0.7―0.2=-0.9(m )

泵与风机部分思考题与习题答案.(何川_郭立君.第四版)

泵与风机(思考题答案) 绪论 3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数?答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。 密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。 轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的 间隙泄漏到泵外。 离心风机 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能 蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。 集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。 进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。 9.试简述活塞泵、齿轮泵及真空泵、喷射泵的作用原理? 答:活塞泵:利用工作容积周期性的改变来输送液体,并提高其压力。 齿轮泵:利用一对或几个特殊形状的回转体如齿轮、螺杆或其他形状的转子。在壳体内作旋转运动来输送流体并提高其压力。 喷射泵:利用高速射流的抽吸作用来输送流体。 真空泵:利用叶轮旋转产生的真空来输送流体。 第一章 1.试简述离心式与轴流式泵与风机的工作原理。 答:离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。流体沿轴向流入叶轮并沿径向流出。 轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。 流体沿轴向流入叶轮并沿轴向流出。 2.流体在旋转的叶轮内是如何运动的?各用什么速度表示?其速度矢量可组成怎样的图形? 答:当叶轮旋转时,叶轮中某一流体质点将随叶轮一起做旋转运动。同时该质点在离心力的作用下,又沿叶轮流道向外缘流出。因此,流体在叶轮中的运动是一种复合运动。 叶轮带动流体的旋转运动,称牵连运动,其速度用圆周速度u表示;

泵与风机课后习题参考答案(完整版)

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)?已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。 【解】根据Hc=10+8000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 Hc (m ) 10 10.8 13.2 17.2 22.8 30 管路特性曲线与泵并联前性能曲线交于M 点(46L/s ,27m ) 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2(q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 根据Hc=20+2000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) 60 q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 0.06 Hc (m ) 20 20.2 20.8 21.8 23.2 25 27.2 管路特性曲线与泵并联前性能曲线交于C 点(33L/s ,32m ) 管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ). 5-3为了增加管路中的送风量,将No.2风机和No.1风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以p a 计),No.1 及No.2风机的性能曲线绘于图5-50中,问管路中的风量增加了多少? 【解】根据p =4 q v 2取点如下表所示,绘制管路特性曲线: q v (103m 3/h) 0 5 10 15 20 25 q v (m 3/s) 0 1.4 2.8 4.2 5.6 7 p (p a ) 0 7.84 31.36 70.56 125.44 196 管路特性曲线与No.2风机和No.1风机并联工作后性能曲线交于点M (33×103m 3/h ,700p a ) 于单独使用No.1风机相比增加了33×103-25×103=8 m 3/h 5-4 某锅炉引风机,叶轮外径为1.6m ,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =1.4×104m 3/h ,p =2452.5p a )工作,若采用加长叶片的方法达到此目的,问叶片应加长多少? 【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: B p 36005.2452?min /r 114246145030m m p m p =?==v v v q n n q q ,

材基课后习题答案

1.解释以下基本概念 肖脱基空位 弗兰克耳空位 刃型位错 螺型位错 混合位错 柏氏矢量 位错密度 位错的滑移 位错的攀移 弗兰克—瑞德源 派—纳力 单位位错 不全位错 堆垛层错 位错反应 扩展位错。 位错密度:ρv =L/V(cm/cm3);) ρa =1/S (1/cm2) 2.纯铁的空位形成能为105kJ/mol. 将纯铁加热到850℃后激冷至室温(20℃),假设高温下 的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。 ? 解答:利用空位浓度公式计算 ? 850 ℃ (1123K) :Cv1= ? 后激冷至室温可以认为全部空位保留下来 ? 20℃(293K) :Cv2= ? Cv1 /Cv2= 3.计算银晶体接近熔点时多少个结点上会出现一个空位(已知:银的熔点为960℃,银的 空位形成能为1.10eV ,1ev =)?若已知Ag 的原子直径为0.289nm ,问空位在晶体中的平均 间距。 1eV =1.602*10-19J 解答:得到Cv =e10.35 Ag 为fcc ,点阵常数为a=0.40857nm , 设单位体积内点阵数目为N ,则N =4/a3,=? 单位体积内空位数Nv =N Cv 若空位均匀分布,间距为L ,则有 =? 4.割阶或扭折对原位错线运动有何影响? 解答:取决于位错线与相互作用的另外的位错的柏氏矢量关系,位错交截后产生“扭折” 或“割阶” ? “扭折”可以是刃型、亦可是“螺型”,可随位错线一道运动,几乎不产生阻力,且它 可因位错线张力而消失 ? “割阶”都是刃型位错,有滑移割阶和攀移割阶,割阶不会因位错线张力而消失,两 个相互垂直螺型位错的交截造成的割节会阻碍位错运动 5.如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。 ? 分析该位错环各段位错的结构类型。 ? 求各段位错线所受的力的大小及方向。 31V N L

泵与风机课后习题答案(标准版)

扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试 画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

泵与风机课后思考题答案

泵与风机课后思考题答案 Final approval draft on November 22, 2020

思考题答案 绪论 思考题 1.在火力发电厂中有那些主要的泵与风机其各自的作用是什么 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类发电厂主要采用哪种型式的泵与风机为什么 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。 3.泵与风机有哪些主要的性能参数铭牌上标出的是指哪个工况下的参数 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件各有何作用 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

材科基课后习题集规范标准答案

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。

2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。 答::面心:原子数4,配位数6,堆积密度 六方:原子数6,配位数6,堆积密度 2-10根据最紧密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有34.01%),为什么它也很稳定? 答:最紧密堆积原理是建立在质点的电子云分布呈球形对称以及无方向性的基础上的,故只适用于典型的离子晶体和金属晶体,而不能用最密堆积原理来衡量原子晶体的稳定性。另外,

泵与风机课后习题参考答案

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v2(q v单位以m3/s计算)?已知管路特性曲线方程Hc=10+8000q v2(q v单位以m3/s计算)。 2 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v2(q v单位以m3/s计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 2 管路特性曲线与泵并联后性能曲线交于M点(56L/s,25m). 5-3为了增加管路中的送风量,将风机和风机并联工作,管路特性曲线方程为 p=4 q v 2(q v 单位以m3/s计,p以p a计),及风机的性能曲线绘于图5-50中,问 管路中的风量增加了多少? 2 p a )于单独使用风机相比增加了33×103-25×103=8 m3/h 5-4 某锅炉引风机,叶轮外径为,q v-p性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B点(q v=×104m3/h,p=)工作,若采用加长叶片的方法达到此目的,问叶片应加长多少?

【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: a A 点与B 点为对应工况点,则由切割定律得 m 8.1)11 14(D D )(22222==' '=',D D q q v v 则应加长 略 5-6 8BA-18型水泵的叶轮直径为268mm ,车削后的8BA-18a 型水泵的叶轮直径为250mm ,设效率不变,按切割定律计算qv 、H 、P 。如果把8BA-18a 型水泵的转速减至1200r/min ,假设效率不变,其qv 、H 、P 各为多少?8BA-18型水泵额定工况点的参数为:n=1450r/min ,q v =s ,H=18m ,P=,η=84%。 【解】根据公式得: 可知该泵为低比转速,可用如下切割定律求出切割后的qv 、H 、P ,其值如下: 对8BA-18a 型水泵只改变转速,可根据相似定律计算泵的qv 、H 、P ,其值如下:

泵与风机课后习题答案(完整版)

新浪微博:@孟得明 扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试 画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

无机材料科学基础课后习题答案(6)

6-1 说明熔体中聚合物形成过程? 答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。 可分为三个阶段初期:石英的分化; 中期:缩聚并伴随变形; 后期:在一定时间和一定温度下,聚合和解聚达到平衡。6-2 简述影响熔体粘度的因素? 答:影响熔体粘度的主要因素:温度和熔体的组成。 碱性氧化物含量增加,剧烈降低粘度。 随温度降低,熔体粘度按指数关系递增。 6-3 名词解释(并比较其异同) ⑴晶子学说和无规则网络学说 ⑵单键强 ⑶分化和缩聚 ⑷网络形成剂和网络变性剂

答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶格变形的有序区域。它们分散在无定形介中质,晶子向无 定形部分过渡是逐渐完成时,二者没有明显界限。 无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子 多面体(三角体或四面体)构筑起来的。晶体结构网 是由多面体无数次有规律重复构成,而玻璃中结构多 面体的重复没有规律性。 ⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。 ⑶分化过程:架状[SiO4]断裂称为熔融石英的分化过程。 缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。 ⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻 璃。即凡氧化物的单键能/熔点﹥0.74kJ/mol.k 者称为网 络形成剂。 网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变,即单键强/熔点﹤0.125kJ/mol.k者称 为网络变形剂。

6-4 试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。它们的结构有什么不同? 答:利用X—射线检测。 晶体SiO2—质点在三维空间做有规律的排列,各向异性。 SiO2熔体—内部结构为架状,近程有序,远程无序。 SiO2玻璃—各向同性。 硅胶—疏松多孔。 6-5 玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数? 解: Na2O CaO SiO2 wt% 13 13 74 mol 0.21 0.23 1.23 mol% 12.6 13.8 73.6 R=(12.6+13.8+73.6 ×2)/ 73.6=2.39 ∵Z=4 ∴X=2R﹣Z=2.39×2﹣4=0.72 Y=Z﹣X= 4﹣0.72=3.28 氧桥%=3.28/(3.28×0.5+0.72) =69.5%

泵与风机杨诗成第四版习题集及标准答案

4-1 输送20℃清水的离心泵,在转速为1450r/min 时,总扬程为25.8m, q v =170m 3/h, P=15.7kW, ηv =0.92, ηm =0.90,求泵的流动效率ηh 。 4-1 解: 76.07 .151000/8.253600/17081.91000=???=== P H gq P P v e ρη h v m ηηηη??= ∴92.092 .090.076 .0=?= ?= v m h ηηηη 4-2 离心风机叶轮外径D 2=460mm,转速n=1450r/min,流量q v =5.1m 3/s,υ1u ∞=0,υ2u ∞ =u 2,(1+P)=1.176,流动效率ηh =0.90,气体密度ρ=1.2kg/ m 3。试求风机的全压及有效功率。 4-2,解: p T ∞=ρ(u 2v 2u ∞-u 1 v 1u ∞) ∵v 1u ∞=0 ∴p T ∞=ρu 2v 2u ∞=1.2×6046.014506046.01450?????ππ=1462.1(Pa ) 根据斯托道拉公式:P K +=11,∴855.017 .11==K ∴p= K·ηh ·p T ∞=0.855×0.90×1462.1=1124.7(Pa ) P e =pq v /1000=1124.7×5.1/1000=5.74 (kw) 4-3 离心风机n=2900r/min ,流量q v =12800 m 3/h ,全压p=2630Pa ,全压效率η=0.86,求风机轴功率P 为多少。 4-3 P=η P e =0.86×pq v /1000=0.86×2630×12800/3600/1000=8.04 (kw) 4-4 离心泵转速为480r/min ,扬程为136m ,流量q v =5.7m 3/s,轴功率P=9860kW 。设容积效率、机械效率均为92%,ρ=1000kg/m 3,求流动效率。 4-4解: 77.09860 1000/1367.581.91000=???=== P H gq P P v e ρη 91.092 .092.077 .0=?= ?= v m h ηηηη 4-5 若水泵流量q v =25L/s,泵出口出压力表读数为320kPa ,入口处真空表读数为40kPa ,吸入管路直径d=100cm,出水管直径为75cm ,电动机功率表读数为12.6kW ,电动机效率为0.90,传动效率为0.97。试求泵的轴功率、有效功率及泵的总效率。 ∵P e =ρg·q v ·H ∵()w Z g v v g p p H h Z 2122 12212+-+-+-=ρ

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

泵与风机考试试题,习题及答案

泵与风机考试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365 kPa,密度ρ=995.6 kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。

南师大泵与风机试题及答案

南京师范大学《泵与风机》试题 一、填空题(每空1分,共10分) 1.泵与风机的输出功率称为_______。 2.绝对速度和圆周速度之间的夹角称为_______。 3.离心式泵与风机的叶片型式有_______、_______和_______三种。 4.为保证流体的流动相似,必须满足_______、_______和_______三个条件。 5.节流调节有_______节流调节和_______节流调节两种。 二、单项选择题(在每小题的四个备选答案中,选出一 个正确答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1.风机的全压是指( )通过风机后获得的能量。 A.单位重量的气体 B.单位质量的

气体 C.单位时间内流入风机的气体 D.单位体积的气体 2.低压轴流通风机的全压为( ) A. 1~3kPa B. 0.5kPa以下 C. 3~15kPa D. 15~340kPa 3.单位重量的液体从泵的吸入口到叶片入口压力最低处的总压降称为( ) A.流动损失 B.必需汽蚀余量 C.有效汽蚀余量 D.摩擦损失 4.关于冲击损失,下列说法中正确的是( ) A.当流量小于设计流量时,无冲击损失 B.当流量大于设计流量时,冲击发生在工作面上 C.当流量小于设计流量时,冲击发生在非工作面上

D.当流量小于设计流量时,冲击发生在工作面上 5.下列哪个参数与泵的有效汽蚀余量无关?( ) A.泵的几何安装高度 B.流体温度 C.流体压力 D.泵的转速 6.关于离心泵轴向推力的大小,下列说法中不正确的是( ) A.与叶轮前后盖板的面积有关 B.与泵的级数无关 C.与叶轮前后盖板外侧的压力分布有关 D.与流量大小有关 7.两台泵并联运行时,为提高并联后增加流量的效果,下列说法中正确的是( ) A.管路特性曲线应平坦一些,泵的性能曲线应陡一些 B.管路特性曲线应平坦一些,泵的性能曲线应平坦

泵与风机课后习题参考答案(完整版)

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。 2同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2 (q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少若再并联一台性能相同的水泵工作时,供水量如何变化 【解】绘出泵联后性能曲线 2管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ). 5-3为了增加管路中的送风量,将风机和风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以 p a 计), 及风机的性能曲线绘于图5-50中,问管路中的风量增加了多少 2min /r 114246145030m m p m p =?==v v v q n n q q ,

管路特性曲线与风机和风机并联工作后性能曲线交于点M (33×103m 3/h ,700p a ) 于单独使用风机相比增加了33×103-25×103=8 m 3/h 5-4 某锅炉引风机,叶轮外径为,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =×104m 3/h ,p =)工作,若采用加长叶片的方法达到此目的,问叶片应加长多少 【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: a A 点与B 点为对应工况点,则由切割定律得 m 8.1)11 14(D D )(22222==' '=',D D q q v v 则应加长 略 5-6 8BA-18型水泵的叶轮直径为268mm ,车削后的8BA-18a 型水泵的叶轮直径为250mm ,设效率不变,按切割定律计算qv 、H 、P 。如果把8BA-18a 型水泵的转速减至1200r/min ,假设效率不变,其qv 、H 、P 各为多少8BA-18型水泵额定工况点的参数为:n=1450r/min ,q v =s ,H=18m ,P=,η=84%。 【解】根据公式得: 可知该泵为低比转速,可用如下切割定律求出切割后的qv 、H 、P ,其值如下: 64.2218109.71450H n 4 /33 4/3s =?==-v q n kW 35.156.16)260250()(64.1681)260250()(L/s 3.77.9)260250()(442 22 2222222 =?=''='=?='' ='=?=''='P D D P P m H D D H H q D D q q v v v ,,,v vB B q p q p 06.6306 .63140003600 5.2452K ==?==

泵与风机课后思考题答案

思考题答案 绪论 思考题 1.在火力发电厂中有那些主要的泵与风机?其各自的作用是什么? 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类?发电厂主要采用哪种型式的泵与风机?为什么? 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数? 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系? 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。

无机材料科学基础课后习题答案(6)

6-1 说明熔体中聚合物形成过程?答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。 可分为三个阶段初期:石英的分化; 中期:缩聚并伴随变形; 后期:在一定时间和一定温度下,聚合和解聚达到平衡。 6-2 简述影响熔体粘度的因素? 答:影响熔体粘度的主要因素:温度和熔体的组成。 碱性氧化物含量增加,剧烈降低粘度。 随温度降低,熔体粘度按指数关系递增。 6-3 名词解释(并比较其异同) ⑴ 晶子学说和无规则网络学说 ⑵ 单键强 ⑶ 分化和缩聚 ⑷ 网络形成剂和网络变性剂答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶

格变形的有序区域。它们分散在无定形介中质,晶子向无定形部 分过渡是逐渐完成时,二者没有明显界限。 无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由 一个三度空间网络所构成。这种网络是由离子多面体(三 角体或四面体)构筑起来的。晶体结构网是由多面体无数次 有规律重复构成,而玻璃中结构多面体的重复没有规律 性。 ⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。 ⑶分化过程:架状[SQ4]断裂称为熔融石英的分化过程。 缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较 高的聚合物,次过程为缩聚过程。 ⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻 璃。即凡氧化物的单键能/熔点〉0.74kJ/molk者称为网 络形成剂。 网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而 使玻璃性质改变,即单键强/熔点< 0.125kJ/molk者称 为网络变形剂。 6-4试用实验方法鉴别晶体 Si。?、SQ2玻璃、硅胶和SiO2熔体。它们的 结构有什么不同?

材料科学基础(武汉理工大学_张联盟版)课后习题及答案 第六章

第六章答案 6-1略。 6-2什么是吉布斯相律?它有什么实际意义? 解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。一般形式的数学表达式为F=C-P+2。其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。应用相率可以很方便地确定平衡体系的自由度数。 6-3固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题? 解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0,则P=3,硫系统只能是三相平衡系统。 图6-1 图6-2 6-4如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态? 解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。 (2)三斜与六方晶型的转变是可逆的。因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。 (3)正交晶型是介稳态。 6-5图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。KE是晶型I 的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变?

相关主题
文本预览
相关文档 最新文档