当前位置:文档之家› §4.5 力学量测量结果的几率 平均值

§4.5 力学量测量结果的几率 平均值

§4.5 力学量测量结果的几率 平均值
§4.5 力学量测量结果的几率 平均值

§4.5 力学量测量结果的几率平均值

重点:

在本征态和任意态中测量力学量的物理过程

(一)力学量测量结果的几率

的本征函数组成正交归一完全系,它所属的本征值

设算符

(4.5-2)

根据本征函数的守全性,可看作是各本征态的线性迭加:

(4.5-3)

根据态迭加原理,也是体系的可能状态,但它显然不是的本征态,因为

我们得不到关系式即在态中,将得不到确定的数值,由于态可看成是

各个本征态

的迭加,因此在测量的某一瞬刻、体系实际上是处于各本征态的

某一个中,故可能测量到数值将是本征值谱

中的某一个,所以我们称各次测

量到的数值为可能值。

出现的相对次数即相对几率分别为这些几率正好

设测得

分别是的展开式(4.5-3)中各项系数模的平方,即

(4.5-4)设已归一化的,即

(4.5-5)的正交归一性,就得到

注意到

我们看到具有几率的意义,它表明态中测量力学量F得到结果是的本的几率,故c n常称为几率振幅。

征值

可以证明,当的本征值组成连续谱时,也类似的结果,即

(4.5-8)

(4.5-9)

是在

态中,测得体系的力学量F的数值为的几率,其中右由(4.4-17)

式即

(4.5-10)

算出。

归纳上面的讨论,我们引进量子力学中关于力学量与算符关系的一个基本假定:

量子力学中表示力学量的算符都是厄密算符,它的本征函数组成完全系,

的属于本征值的本征态中,测量力学量F所得的数值,就是的

如果体系处在

;如果体系所处的状态不是的本征态,可以测到力学量F的各

本征值

的本征值谱之中,而且测得数值为的几率是。

种可能值,这些可能值都是在

这个假定的正确性,如同薛定谔方程一样,由理论与实验结果符合而得到验证。

(二)平均值

当体系所处状态不是的本征态时,测量力学量得到的可能值是以一定的几率出现,但是多次测量的平均值是确定的,按照由几率求平均值的法则,可以求得力学量F在态中的平均值是

(4.5-11)

这式子可改写为

(4.5-12)

的正交归一性(4.4-8)式来证明,即

这两个式子相等可以用(4.4-14)式及

对于没有归一化的波函数,乘进归一化因子后,(4.5-12)式改写为

(4.5-13)

力学基本物理量与测量

第二节 力学基本物理量及测量方法 物理学的发展离不开历史上很多伟大的物理实验,很多物理定律就是通过实验来验证或者是实验基础上的推理得到的,物理学的大厦中镶嵌着无数令人瞠目结舌的精妙实验。古人说九尺之台,起于垒土,我们对物理力学的学习,就从基本的力学物理量和简单的测量方法开始。 1.力学的基本物理量 在物理学中,我们用物理量来描述物体的固有的性质和运动的状态。物理量分为基本物理量和导出物理量。力学中通常选长度、质量、时间为基本物理量,这三个物理量可以导出所有力学的导出物理量,例如速度(如右图)。导出物理量是根据物理量的 定义由基本物理量组合而成的。 物理量要同时用数字和单位两部分来表示,否则不产生任何物理意义。 1.1.长度和长度单位 我们用长度这个物理量来表示物体的大小。在国际单位制中,长度的单位是米(m )。为了方便我们也经常使用千米(km )、分米(dm )、厘米(cm )、毫米(mm )、微米(m μ)和纳米(nm )等长度单位。 1m =10—3km =10dm =102cm =103mm =106m μ=109nm 。 例题:F 是电容的单位符号,A 是电流强度的单位符号,…… 20mF =__________F =__________F μ 100mA =__________A =__________A μ 500g =___________kg 除以上长度单位以外,在天文学中常用光年、天文单位来做长度单位。1光年是指光在真空中以 8103?米/秒的速度经过1年所走过的距离,约等于9460730472580800米。1天文单位(AU )是指地 球到太阳的平均距离,约为11 10496.1?米。 请思考:天文望远镜可以看到200亿光年以外的星星,那我们看到的光岂不是来自200亿年前?我们看到的星星的样子是200亿年前样子?我们仰望星空,看到的岂不是不同时间和空

北京体育大学 运动生物力学复习题

运动生物力学复习题

第一章绪论 运动生物力学是研究体育运动中人体机械运动规律的科学。 第二章人体运动实用力学基础 一、名词解释 1.稳定角:重心垂直投影线和重心至支撑面边缘相应点连线间的夹角。 2.支撑面:支撑面积是由各支撑部位的表面及它们之间所围的面积组成的。 3.转动惯量:物体转动时惯性大小的量度。 4.超重现象:动态支撑反作用力大于体重的现象。 5.失重现象:动态支撑反作用力小于体重的现象。 6.稳定系数:当倾倒力开始作用时,稳定力矩与倾倒力矩的比值。 7.上支撑平衡:支撑点在重心上方的平衡。 8.下支撑平衡:支撑点在重心下方的平衡。 9.人体运动的内力:人体内部各部分之间的相互作用力。 二、填空 1.运动是绝对的,但运动的描述是相对的。因此在描述一个点或物体的运动时,必须说明它相对于哪个物体才有明确的意义,且称此物体为参照物。 2.在运动学中有两个实物抽象化模型,即质点和刚体。 3.当加速度方向与速度方向相同时称为加速运动,反之称为减速运动。 4.运动员沿400米跑道运动一周,其位移是 0 ,所走过的路程是 400m 。 5.篮球运动中的投篮过程可看作是一个抛点低于落点的斜上抛运动,而投掷项目中,器械的运动可以看做是一个抛点高于落点的斜上抛运动。 6.人体蹬起时,动态支撑反作用力大于体重,称为超重现象,下蹲时,动态支撑反作用力小于体重,称为失重现象。 7.乒乓球弧旋球飞行的原因是运动员打球时使球旋转,由于空气流体力学的作用,产生了马格努斯效应的结果。 8.忽略空气的阻力,铅球从运动员手中抛出后只受到重力的作用,这种斜上抛运动可看作是由水平方向的匀速直线运动和竖直方向上的竖直上抛的合运动。 9.身体绕某转轴的转动惯量的大小,是随身体各环节相对转轴的距离的改变而改变的。 10.游泳时,运动员受到的阻力主要有三种,它们是摩擦阻力、形状阻力和兴波和碎波阻力。 三、判断题 1.人体在做平衡动作时,需由外力及肌肉、韧带等内力矩共同维持平衡。(√) 2.人在平衡时,仍需消耗一定的生理能。(√) 3.人在自然站立时,女子和男子的平均重心高度是一样的。(×) 4.在身体姿势的变化过程中,人体中心不可以移出体外。(×) 5.人体保持平衡动作的力学条件是合外力及和外力矩为零。(×) 6.用一维重心板测量人体重心的原理是力矩平衡原理。(√) 7.单杠悬垂动作是一个不稳定平衡的例子。(×)

基本测量仪器的使用

第19讲基本测量仪器的使用 单元复习目的 (一)知识和技能: 1.复习初中物理基本测量仪器的使用,使学生明白实验中一些基本的测量仪器的使用规则。 2.使学生通过复习明确测量仪器的不规则使用会造成的后果,并知道如何改正错误。 3. 熟悉中考在这部分的题型、热点考点的考查形式。 (二)过程和方法 1.通过复习和归纳,学会梳理知识的方法。 2.通过复习活动,进一步了解研究物理问题的方法。 (三)情感态度和价值观 通过教师和学生的双边活动,激发学生的学习的学习兴趣和对科学的求知欲望,使学生乐于探索生活中物理现象和物理原理。 重点、难点 重点:天平和量筒;弹簧测力计;温度计;电流表和电压表。 难点:刻度尺的估读。 复习内容 本专题重点梳理初中物理阶段基本测量仪器的使用,这部分内容在前面的章节复习中都复习过,在本专题中再重新作一个梳理,使学生对测量仪器的使用有一个整体的印象。 复习流程 一、复习引入 二、考点知识梳理

三、重点难点扫描 (一)热学——温度计 1.温度计的原理是。 2.温度计的使用: ⑴使用前,要观察温度计的量程和分度值; ⑵使用时:①温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底和容器壁;②温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;③读数时温度计的玻璃泡要继续留在液体中,视线要与温度计液柱的上表面相平。 (二)电学——验电器 1.验电器的原理是:同种电荷互相排斥 2.验电器的结构:金属球、金属杆、金属箔片。 3.验电器的用途:检验物体是否带电。 4.验电器的使用方法:用待检验的物体是接触验电器的金属球,观察金属箔片是否张开。 (三)电学——电流表和电压表 1.天平: ⑴天平的原理:天平的两臂长度相等,当两个盘中物体的相同时,天平就会平衡。 ⑵天平使用的注意事项: ①被测物体的质量不能超过; ②向盘中加减砝码时要用,不能用手接触砝码,不能把砝码弄湿弄脏; ③不能直接放到天平盘中。 ⑶天平的使用方法: ①“放”:把天平放在,把游码放在; ②“调”:调节天平两端的平衡螺母,使指针指在分度盘的中线处,这时天平平衡;

大学物理实验预习报告(力学基本测量)

大学物理实验预习报告

实验原理及仪器介绍: 圆柱体密度计算公式如式(1)所示。 H D m V m 2 4πρ== (1) 液体密度计算公式如式(2)所示。 水 水 待测液体待测液体水 水 待测液体 待测液体 m m m m ρρρρ?= ?= (2) 实验仪器: 1.游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺和一个套在主尺上并可以沿它滑动的副尺(游标)。游标卡尺的主尺为毫米分度尺,当下量爪的两个测量刀口相贴时,游标上的零刻度应和主尺上的零位对齐。 如果主尺的分度值为a ,游标的分度值为b ,设定游标上n 个分度值的总长与主尺上( n-1 )分度值的总长相等,则有 a n n b )1(-= (3) 图1 游标卡尺示意图

主尺与副尺每个分度值的差值即游标尺的分度值,也就是游标尺的精度(最小读数值): - =-a b a n a n a n =-)1( (4) 常用的三种游标尺有50,20,10=n ,即精度各为、、。 游标尺的读数方法是:先读出游标零线以左的那条线上毫米级以上的读数L 0,即为整数值;然后再仔细找到游标尺上与主尺刻线准确对齐的那一条刻线(该刻线的两边不对齐成对称状态),数出这条刻线是副尺上的第k 条,则待测物的长度(即为小数值)为 n a k L L ? +=0 (5) 图2是50=n 分度游标卡尺的刻度及读数举例。图上读数: 00.0215.00120.0515.60L L k mm =+?=+?= 图2 游标卡尺读数示意图 螺旋测微器 如图3所示,螺旋测微器是在一根测微螺杆上配一螺母套筒,上有分度的标尺。测微螺杆的后端连接一个有50个分度的微分套筒,螺距为50mm 。当微分套筒转过一个分度时,测微螺杆就会在螺母套筒内沿轴线方向改变。也就是说,螺旋测微器的精密度(分度值)是。由此可见,螺旋测微器是利用螺旋(测微螺杆的外螺纹和固定套筒的内螺纹精密配合)的旋转运动,将测微螺杆的角位移转变为直线位移的原理实现长度测量的量具。 图3 螺旋测微器示意图 在使用螺旋测微器时,应该检查零线的零位置,当螺杆的一端与测砧相接触时,往往会0

实验1基本测量仪器的使用

实验1 基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

运动生物力学复习带答案

运动生物力学复习资料(本科) 绪论 1名词解释: 运动生物力学的概念:研究体育运动中人体及器械机械运动规律及应用的科学。 2填空题: (1)人体运动可以描述为:在(神经系统)控制下,以(肌肉收缩)为动力,以关节为(支点)、以骨骼为(杠杆)的机械运动。 (2)运动生物力学的测量方法可以分为:(运动学测量)、(动力学测量)、(人体测量)、以及(肌电图测量)。 (3)运动学测量参数主要包括肢体的角(位移)、角(速度)、角(加速度)等;动力学测量参数主要界定在(力的测量)方面;人体测量是用来测量人体环节的(长度)、(围度)以及(惯性参数),如质量、转动惯量;肌电图测量实际上是测量(肌肉收缩)时的神经支配特性。 2 简答题: (1)运动生物力学研究任务主要有哪些? 答案要点:一方面,利用力学原理和各种科学方法,结合运动解剖学和运动生理学等原理对运动进行综合评定,得出人体运动的内在联系及基本规律,确定不同运动项目运动行为的不同特点。另一方面,研究体育运动对人体有关器系结构及机能的反作用。其主要目的是为提高竞技体育成绩和增强人类体质服务的,并从中丰富和完善自身的理论和体系。具体如下: 第一,研究人体身体结构和机能的生物力学特性。 第二,研究各项动作技术,揭示动作技术原理,建立合理的动作技术模式来指导教学和训练。 第三,进行动作技术诊断,制定最佳运动技术方案。 第四,为探索预防运动创伤和康复手段提供力学依据。 第五,为设计和改进运动器械提供依据(包括鞋和服装)。 第六,为设计和创新高难度动作提供生物力学依据。

第七,为全民健身服务(扁平足、糖尿病足、脊柱生物力学)。 第一章人体运动实用力学基础 1名词解释: 质点:忽略大小、形状和内部结构而被视为有质量而无尺寸的几何点。 刚体:相互间距离始终保持不变的质点系组成的连续体。 平衡:物体相对于某一惯性参考系(地面可近似地看成是惯性参考系)保持静止或作匀速直线运动的状态。 失重:动态支撑反作用力小于体重的现象。 超重:动态支撑反作用力大于体重, 参考系:描述物体运动时作为参考的物体或物体群。 惯性参考系(静系):相对于地球静止或作匀速直线运动的参考系。 坐标系:为了定量的描述物体的运动,需要在参考系上标定尺度,标定了尺度的参考系即为坐标系。常用的是直角坐标系,又分为一维、二维、三维坐标系。 稳定平衡:人体在外力作用下,偏离平衡位置后,当外力撤除时,人体自然回复到平衡位置,而不需要通过肌肉收缩恢复平衡。特点:平衡时重心最低。 不稳定平衡:物体稍偏离平衡位置后,当去掉破坏平衡的力时,不能再恢复到原来的平衡位置。其特点是当物体偏离平衡位置时,其重心降低。 随遇平衡:人体在外力作用下,偏离平衡位置,当外力撤除时,人体既不回到原来的平衡位置,也不继续偏离原位置,而是在新的位置上保持平衡。特点:重心高度不变。有限度的稳定平衡:在一定的范围内,是稳定平衡,但超出范围时,偏离平衡位置则会失去平衡,成为不稳定平衡的情况。 2填空题: (1)运动是绝对的,但运动的描述是(相对的),因此在描述一个或物体的运动时,必须说明它相对于哪个物体才有明确的意义,称此物体为(参照物)。 (2)运动员沿400米跑道运动一周,其位移是(0 )米,所走过的路程是(400 )米。 (3)人体蹬起时,动态支撑反作用力大于体重,称为(超重)现象,下蹲时,动态支撑反作用力小于体重,称为(失重)现象。 (4)忽略空气阻力时,铅球从运动员手中抛出后只受到(重力)作用,这种斜抛运动可看作是由水平方向向上的(匀速直线)运动和竖直方向上的(匀变速度)运动的合

力学计量简介

力学计量简介 力学计量简介 力学计量主要包括质量、力值、扭矩、硬度、压力、真空、震动、冲击、转速、恒加速度、流量、流速、容量等计量测试。 力学计量的理论基础是牛顿力学。 质量是一个基本的物理量,单位是kg。质量是物体所具有的一种属性,它表征物体的惯性和它在引力场中相互作用的能力,质量是标量。质量计量的准确性不仅取决于砝码,还取决于天平。 力是物体之间的相互作用。力的计量单位是N。测力的方法可以分为两类,即通过对质量和加速度的测量来求得力值;另一种方法是物体在受力后产生的变形量或与内部应力相应的参数的测量而求得力值。 扭矩是力与力臂的乘积,计量单位N·m。如果准确地测出力的大小及该力到力的作用点的力臂长度,便可准确地测得力矩值。 硬度是指物体软硬的程度。硬度本身不是一个确定的物理量,而是一个于物体的弹性形变、塑性形变和破坏有关的量。硬度计量的方法很多,一般分为静载压入法和动载压入法。静载压入法有布氏法、洛氏法、表面洛氏法、维氏法和显微硬度法等。动载压入法有肖氏法等。 压力是指垂直作用于单位面积上的力,单位是Pa。压力计量可分为静态和动态压力计量。按压力计量范围大体有微压、低压、中压、高压和超高压等。测量的具体压力又分为绝对压力、大气压力和表压力等。真空是在给定的空间内,低于标准大气压的气体状态,使用真空度来描述,单位是Pa。真空计量标准可以分为绝对标准和相对标准。绝对标准是真空计量的基础,实际应用是真空标准多为性能稳定的相对标准。 振动是用位移、速度、加速度和频率等物理量来描述。校准方法一般有绝对法和比较法。对于加速度计常要校准其灵敏度和灵敏度随频率的变化。校准装置采用高、中、低频振动标准校准装置等。冲击是激起系统瞬间扰动的力、位置、速度和加速度的突然变化,该变化的时间要小于系统的基本周期。冲击加速度的单位是m/s^2。冲击的校准方法一般分为三种,绝对法、间接法和比较法。 转速或角速度是单位时间的角位移。标准转速装置是校准和检定转速表的主要装置,由复现转速的装置和转速测量装置组成。转速的计量单位是r/min。恒加速度计量是利用标准装置校准线、角加速度计的特性。线加速度计量是利用静态(低频)加速度标准器校准加速度计的静态数学模型和低频动态特性。角加速度计量是利用角加速度标准器校准角加速度的静态数学模型和低频动态特性。 流量是在单位时间内通过有效截面流体的体积或质量。流量计量对流体的体积流量(单位为m^3/h)、质量流量(单位为kg/h)进行计量。流体流量的测量方法有容积法和称量法。气体流量的测量方法主要有钟罩法、活塞法和音速喷管等。 流速是单位时间流体流动的距离,最常用的计量单位是m/s。流速的测量一般有三种基本方法,压差法、热线(膜)法和激光法。

常用测量仪器的介绍

螺旋测微器 螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。 螺旋测微器简介 一种机械千分尺(螺旋测微器) 知名品牌:安一量具、哈量、成量、青量、上工、瑞士TESA、日本Mitutoyo等。 右图为一种常见的螺旋测微器。 螺旋测微器的分类 一种电子千分尺(螺旋测微器) 螺旋测微器分为机械式千分尺和电子千分尺两类。①机械式千分尺。简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。1848年,法国的J.L.帕尔默取得外径千分尺的专利。1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。千分尺的品种很多。改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量内径、螺纹中径、齿轮公法线或深度等的千分尺。②电子千分尺。也叫数显千分尺,测量系统中应用了光栅测长技术和集成电路等。电子千分尺是20世纪70年代中期出现的,用于外径测量。 螺旋测微器的组成

螺旋测微器组成部分图解 图上A为测杆,它的活动部分加工成螺距为0.5mm的螺杆,当它在固定套管B的螺套中转动一周时,螺杆将前进或后退0.5毫米,螺套周边有50个分格。大于0.5毫米的部分由主尺上直接读出,不足0.5毫米的部分由活动套管周边的刻线去测量。所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出主尺数(注意0.5毫米的短线是否露出)。(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。 螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。 不夹被测物而使测杆和小砧E相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。所以,在测量时要先看有无零误差,如果有,则须在最后的读数上去掉零误差的数值。 螺旋测微器原理和使用 螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有5 0个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。可见,可动刻度每一小分度表示0.01mm,所以以螺旋测微器可准确到0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺。

§3.8 力学量平均值随时间的变化 守恒定律.

§3.8 力学量平均值随时间的变化 守恒定律 在经典力学中,运动体系在每一时刻多个力学量都有确定的值,因为所研究 的是力学量的值随时间的变化(根据哈密顿理论:},{H F t F dt dF +??=,式中},{H F 为泊松括号,],[1},{H F i H F =,H 为哈密顿量,如果F 不显含时间,且},{H F =0,则F=C 是一个守恒量。找出一个守恒量,往往使研究物体的运动大大简化) 然而,在量子力学中,对任何体系,在每一时刻,不是所有力学量都具有确定的纸,一般说来,只有确定的平均值以及几率分布。因此,研究力学量的值随是的变化没有意义,仅讨论力学量的平均值及几率分布随时间的变化。 一、力学量平均值随时间的变化 在波函数),(t x ψ所描写的态中,力学量∧ F 的平均值为: ?=),(?*),(t x F t x d F ψτψ (1) 因为),(t x ψ是时间的函数,∧ F 也可能显含时间,所以F 通常是时间t 的函数。 dx t F dx F t dx t F dt F d ??+??+??=???ψψψψψψ?*?*?* (2) 由sch-eg :ψψ∧=??H i t 1 *)(1*ψψ∧-=??H i t 代入(2)式得 dx F H i dx H F i dx t F dt F d ψψψψψψ?*)(1?*1?*???∧∧-+??= (3) ∵ ∧H 是厄密算符。 ∴ dx F H dx F H ? ?∧ ∧=ψψψψ?*?*)( 代入(3)式得: dx F H H F i dx t F dt F d ψψψψ)??(*1?*∧∧-+??=??

北京体育大学 运动生物力学复习题讲课教案

北京体育大学运动生物力学复习题

运动生物力学复习题

第一章绪论 运动生物力学是研究体育运动中人体机械运动规律的科学。 第二章人体运动实用力学基础 一、名词解释 1.稳定角:重心垂直投影线和重心至支撑面边缘相应点连线间的夹角。 2.支撑面:支撑面积是由各支撑部位的表面及它们之间所围的面积组成的。 3.转动惯量:物体转动时惯性大小的量度。 4.超重现象:动态支撑反作用力大于体重的现象。 5.失重现象:动态支撑反作用力小于体重的现象。 6.稳定系数:当倾倒力开始作用时,稳定力矩与倾倒力矩的比值。 7.上支撑平衡:支撑点在重心上方的平衡。 8.下支撑平衡:支撑点在重心下方的平衡。 9.人体运动的内力:人体内部各部分之间的相互作用力。 二、填空 1.运动是绝对的,但运动的描述是相对的。因此在描述一个点或物体的运动时,必须说明它相对于哪个物体才有明确的意义,且称此物体为参照物。 2.在运动学中有两个实物抽象化模型,即质点和刚体。 3.当加速度方向与速度方向相同时称为加速运动,反之称为减速运动。 4.运动员沿400米跑道运动一周,其位移是 0 ,所走过的路程是 400m 。 5.篮球运动中的投篮过程可看作是一个抛点低于落点的斜上抛运动,而投掷项目中,器械的运动可以看做是一个抛点高于落点的斜上抛运动。 6.人体蹬起时,动态支撑反作用力大于体重,称为超重现象,下蹲时,动态支撑反作用力小于体重,称为失重现象。 7.乒乓球弧旋球飞行的原因是运动员打球时使球旋转,由于空气流体力学的作用,产生了马格努斯效应的结果。 8.忽略空气的阻力,铅球从运动员手中抛出后只受到重力的作用,这种斜上抛运动可看作是由水平方向的匀速直线运动和竖直方向上的竖直上抛的合运动。 9.身体绕某转轴的转动惯量的大小,是随身体各环节相对转轴的距离的改变而改变的。 10.游泳时,运动员受到的阻力主要有三种,它们是摩擦阻力、形状阻力和兴波和碎波阻力。 三、判断题 1.人体在做平衡动作时,需由外力及肌肉、韧带等内力矩共同维持平衡。(√) 2.人在平衡时,仍需消耗一定的生理能。(√) 3.人在自然站立时,女子和男子的平均重心高度是一样的。(×) 4.在身体姿势的变化过程中,人体中心不可以移出体外。(×) 5.人体保持平衡动作的力学条件是合外力及和外力矩为零。(×) 6.用一维重心板测量人体重心的原理是力矩平衡原理。(√)

#力学热学实验中的基本测量仪器

力学热学实验中的基本测量仪器 实验离不开测量,必然少不了使用测试类的仪器。按教学规律,知识的获取应该由浅入深,物理实验也应先简单后复杂。实验者最先于某一实验中遇到某种测量仪器,那他就应该认为这一实验就是对这一测量仪器的“专门训练”。但不可能把每一种测试仪器的知识在每一个相关实验里都编写出来,使实验者开始遇到时就能就近学习。因此我们只有把常用的部分测试仪器的知识从中抽出来归类单独编写在各大类实验的前面,而在具体实验中用到时用文字着重指出在何处查阅,以适应实验者随时的需要。当然还有些测量仪器虽然通用,但在本书只是个别实验用到,那么这类仪器就在相关实验里介绍。本节就力学和热学实验中通用的部分测量仪器的原理,使用方法、注意事项及仪器误差作简单介绍 一、常用长度测量仪器 长度是最基本的物理量,是组成空间的最基本要素之一。世界上任何物体都具有一定的几何尺寸,空间尺寸和物体几何量的测量对现代科学研究、工农业生产以及日常生活需求都有巨大的影响。 (一)米尺 米尺包括钢卷尺和钢直尺,米尺的最小刻度值为1mm,用米尺测量物体的长度时,可以估测到十分之一毫米,同时最后一位是估计的。测量过程中,一般不用米尺的端边作为测量的起点,以免因边缘磨损而引入误差,而可选择某一刻度线(例如10 cm刻线等)作为起点。由于米尺具有一定厚度,测量时就必须使米尺刻度面紧挨待测物体AB(如图2-1所示),否则会由于测量者视线方向的不同(即视差)而引入测量误差(图2-2 ) 附:钢直尺和钢卷尺的允许误差 钢直尺钢卷尺 尺寸范围 (mm) 允许误差 (mm) 准确度等级示值允许误差(mm) Ⅰ级±(0.1±0.1L) >1~300 ±0.10 Ⅱ级±(0.3±0.2L) >300~500 ±0.15 注:式中L是以米为单位的长度, 当长度不是米的整数倍数时, 取最接近的较大的整“米”数。 >500~1000 ±0.20 1000~1500 ±0.27 >1500~2000 ±0.35 (二)、游标卡尺 游标卡尺是比钢尺更精密的测量长度的工具,它的精度比钢尺高出一个数量级。游标卡尺的结构如图 4-3 所示。

生物力学复习题

填空 人体转动惯量与人体的_______、____________和_____________有关。 运动学参数包括____________、____________、和______________。 人体骨骼的受力形式可分为_______、_______、________、_________、________和复合载荷几种形式。 冯元祯提出建立的肌肉三元素模型是由__________、_____________和 _______________三个元素串、并联组成。 ________摆动肢体的转动惯量和____________,可以加大摆动的 _______________。 根据支点相对于人体重心的位置不同,将人体平衡分为____________、 _____________和_____________三种。 1、质量;质量分布;转轴位置。 2、时间参数;空间参数;时空参数。 3、拉伸;压缩;弯曲;剪切;扭转。 4、收缩元;串联弹性元;并联弹性元。 5、减小;增加肌力矩;角加速度。 6、上支撑平衡;下支撑平衡;混合支撑平衡。 由希尔方程可知,肌肉收缩张力越大,其收缩速度越大。 拔河比赛甲队获胜,则甲队作用于绳子上的力大于乙队作用于绳子上的力。 鞭打动作中,人体远端环节获得更大速度的原因除了来自近端环节动量矩的传递外,还有远端环节肌肉的主动收缩。 如作用在刚体上的力很大,那么它产生的力矩也一定很大。 根据动量守恒定律,跳远运动员腾空阶段水平方向的运动速度不变(忽略空气阻力)。 下蹲之后的有停顿的纵跳高度小于无停顿的纵跳高度。 肌肉收缩力可以改变人体的运动状态,是人体外力。 人体在单杠上做悬垂动作,属于不稳定平衡。 缓冲动作可减小冲击力,是因减小了地面对人体的冲量。 物体转动惯量越大,保持原有运动状态的能力也越大。 动量、 鞭打动作、 相向运动、 人体惯性参数、 支撑面 简述影响人体平衡的因素有哪些? 简述影响人体总重心的因素? 简述运动学和动力学参数特征。 简述投掷标枪超越器械的生物力学原理? 答:(1)有利于原动肌的充分拉长,使其处于最适初长度,可提高后续肌肉收缩的爆发式收缩力。

完整力学计量基础教程

力学计量基础教程 概述 力学是研究物体在力的作用下运动状态发生变化和产生变形的规律的科学,而力学计量是在力学研究的基础上加上计量学研究,研究的是各种力学量的计量与测试的理论与方法,以确定量值为目的,最终用一个数和一个合适的计量单位来表示出被测的力学量值。其主要包括质量、容量、密度、流量、力值、硬度、转速、压力等计量项目。 质量是物体所含物质多少的量度,是物体的基本属性,在国际单位制中用符号kg(千克或公斤)表示。质量是力学计量中最基本的计量项目之一。标准砝码、测量仪器和测量方法称为质量计量的三大要素。测量方法有交换法、替代法、连续替代法和直接衡量法。 容量也称容积,它是指容器内可容纳物质(气体、液体、固体颗粒)体积的量,亦即容器内部所含有的空间体积。它不仅具有重要的科学意义,而且是一项基础性的法制计量工作习惯上常用单位升(L)。容量计量有衡量法、容量比较法、几何尺寸测量计算法。 密度是指物体单位体积所含物质的质量值,或者说是物体质量与体积之比,国际单位制中密度的单位为千克/米3,符号为kg/m3,测量密度的方法有两大类,一类是直接测量法,即通过测量物质的质量和体积,经计算确定物质的密度;另一类是间接测量法,即是利用各种物理效应,使另一个物理量随物质密度的变化而改变,通过测量该物理量的大小确定物质的密度。 力是物体与物体之间的相互作用,即一个物体对另一个物体的作用,其在国际单位制中单位为牛顿,符号N。力是矢量,力的大小(力值)、力的方向及作用点是力的三要素。力的效应分为“动力效应(可用牛顿第二定律表征的)”和“静力效应(内部应力)”,上述也是测量力的两种方法。 硬度是材料或工件软硬程度的定量表示,它表征了材料抵抗弹性变形和破坏的能力。按试验力加速度的大小,将试验分为静态硬度试验(布氏硬度、洛氏硬度、维氏和显微硬度试验)和动态硬度试验(肖氏、里氏硬度试验)。 第一章质量计量 质量是物体所含[物质]多少的量度,是物体的基本属性,在国际单位制中用符号[kg(千克或公斤) ]表示。质量也是是描述物体的惯性及该物体吸引其它物体的引力性质的物理量,是惯性质量与引力质量和统称. 所有物质都具有两种性质:惯性和引力。惯性是每个物体所具有的保持其原有运动状态的性质,

运动生物力学试题题库(试题)

运动生物力学试题题库(试题) 一、选择题(共25题) 1、人体骨骼能承受的力比其在日常生活中所受到的力大倍。 a.10倍 b.12倍 c.6倍 d.20倍 2、成年人体骨组织中大约是水份。 a.25%~30% b.15%~20% c.20%~25% d.30%~25% 3、成年人体骨组织中大约有是无机物和有机物。 a.80%~85% b.75%~80% c.65%~70% d.70%~75% 4、胶原纤维在拉伸过程中,破坏变形的范围在之间。 a.6%~8% b.10%~12% c.4%~6% d.12%~15% 5、骨承受冲击能力的大小与骨的结构有密切关系,头颅骨耐冲击比长骨大约左右。 a.60% b.40% c.30% d.70% 6、人体股骨所能承受的最大压缩强度比拉伸强度大约左右。 a.36% b.50% c.120% d.80% 7、当外力的作用时间是左右时,关节液是同时具有流动性和弹性的“粘弹液”,是柔软的弹性体,起着橡皮垫的作用,能够缓冲骨与骨之间的碰撞。 a.1/500s b.1/100s c.1/200s d.1/500s 8、当外力的时间达到左右时,关节液不在表现为“液体”,而表现为更坚硬的“固体”了,对于冲撞的冲力不能起缓冲作用。 a.1/500s b.1/100s c.1/1000s d.1/200s 9、以中立位为足与小腿呈90o角,则踝关节背屈和蹠屈的活动度是。 a.25o,35o b.35o,45o c.20o,30o d.30o,40o 10、中立位为膝关节伸直,膝关节可屈曲和过伸的活动度为。 a.165o,15o b.155o,10o c.145o,15o d.145o,10o 11、中立位为髋关节伸直,膑骨向上,膝关节伸直,髋关节屈和伸的活动度为。 a.165o,55o b.145o,50o c.145o,40o d.150o,40o 12、挺身站立中立位时,躯干背伸和侧屈的活动度分别为。 a.30o,20o b.40o,30o c.35o,25o d.40o,20o 13、中立位为头颈部而向前,眼平视,下额内收,颈部前后屈伸的活动度为。 a.35o b.45o c.35o,45o d.45o,35o 14、中立位为头颈部向前,眼平视,下额内收,颈部左右侧屈的活动度为。 a.45o b.35o c.40o d.40o,45o 15、人体站立时,正面投影面积约占身体体表面积的。 a.30%-36% b.35%-40% c.24%-30% d.38%-42% 16、高速骑行时,运动员身体投影面积约占其体表面积的。 a.24% b.31% c.21% d.27% 17、在游速为zm/s时,运动员所受形状阻力(压差阻力)占总力的。 a.50% b.70% c.60% d.40% 18、项韧带和黄韧带的主要成份是弹性纤维,对二者施加低载拉伸负荷时,其伸长变形程度为原长度的。 a.2倍 b.1.5倍 c.0.5倍 d.1倍 19、风洞实验证明,决定铁饼远度的因素排列是。 a.出手速度、出手角度、自转速度、器械倾角 b.出手角度、出手速度、器械倾角、自转速度 c.出手速度、器械倾角、出手速度、自转角度

实验一基本力学量的测量

实验一 基本力学量的测量 长度是最基本的物理量。在各种各样的长度测量仪器中,?它们的外观虽然不同,但其标度大都是以一定的长度来划分的。对许多物理量的测量都可以归为对长度的测量,因此,长度的测量是实验测量的基础。在进行长度的测量中,我们不仅要求能够正确使用测量仪器,还要能够根据对长度测量的不同精度要求,合理选择仪器,以及根据测量对象和测量条件采用适当的测量手段。 ?? 密度是表征物体特征的重要物理量,因而密度的测量对物体性质的研究起着重要的作用。对于规则的物体,用物理天平测出其质量,用测量长度的方法测出其体积,即可测量出物质的密度。 练习一 长 度 的 测 量 实验目的: 1.分别用游标卡尺及螺旋测微计测量长方体、球体等试样的尺寸,并求长方体、球体 的体积; 2.多次等精度测量误差的运算,求绝对误差和相对误差。 实验仪器 游标卡尺,螺旋测微器,待测物体 实验原理 一、 游标卡尺 游标卡尺主要由主尺和游标两部分组成。游标是在主尺上附加一个能滑动的有刻度的小尺。读数时,主尺上直接读出主尺最小刻度以上的整数部分;游标上读出主尺最小刻度以下的数值。 游标上n个分格的总长度与主尺上(n-1)个分格的总长度相等,以x,y分别表示游标与主尺上的每一格的长度,因此y n nx )1(-=。如图1-1所示是游标上n=10的情形。

?? ?? ??图1-1 游标卡尺原理示意图 主尺与游标上每个分格之差为:?? σ =y-x= n 1y σ称为游标的精度(亦叫测量的准确度),是游标卡尺的最小读数值,它可以准确地读到主 尺最小分格值的n 1 。 ? 常用游标的分格值有 1/10 、1/20 、1/50几种,相应的分度值为0?.1mm 、0.05mm 、 0.02mm 。 测量时,根据游标“0”线所对主尺的位置,可在主尺上读出物体长度以毫米为单位的整数部分,毫米以下的长度部分由游标读出,用游标卡尺测量长度L 的一般表达式为: σn Ka L += 式中K 是游标的“0”线所在处主尺上的整毫米数,a 主尺的最小分度值,n 是游标的第n 条线与主尺的某一条线对齐(或最靠近)。σ是游标卡尺的准确度,第二项n σ就是从游标上读出的毫米以下的长度部分。如图1-2中游标卡尺:分度值为0.05mm ,游标的第9格与主尺的某一条线对齐,所以读数为4mm+0.05mm*9=4.45mm 。 图1-2 游标卡尺的读数 二、螺旋测微计(千分尺) 螺旋测微计是比游标卡尺更精密的长度测量仪器。?它的量程是25mm ,分度值是0.01mm 。螺旋测微计结构的主要部分是微动螺旋杆,相邻螺纹距是0.?5mm 。因此,当螺旋杆旋转一周时,它沿轴线方向只前进0.5mm 。螺旋杆是和螺旋柄相连的,在柄上附有沿圆周的刻度(微分筒)共有50个等分格。当螺旋柄上的刻度转过一个分格时,螺旋杆沿轴

大学物理实验预习报告(力学基本测量)

大学物理实验预习报告 计科120 姓名柳天一实验班号 实验号 1 4 实验名称力学基本测量 实验地点教三203 实验目得: 1、学习米尺、游标卡尺、螺旋测微器、天平得测量原理与使用方法。 2、掌握用浮力称衡法测量物体得密度。 3、掌握一般仪器得读数规则,巩固有效数字与误差得基本概念。 实验原理及仪器介绍: 圆柱体密度计算公式如式(1)所示。 (1) 液体密度计算公式如式(2)所示。 (2) 实验仪器: 1、游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺与一个套在主尺上并可以沿它滑动得副尺(游标)。游标卡尺得主尺为毫米分度尺,当下量爪得两个测量刀口相贴时,游标上得零刻度应与主尺上得零位对齐。 如果主尺得分度值为 a ,游标得分度值为b,设定游标上n个分度值得总长与主尺上( n-1 )分度值得总长相等,则有 (3) 图1 游标卡尺示意图

主尺与副尺每个分度值得差值即游标尺得分度值,也就就是游标尺得精度(最小读数值): (4) 常用得三种游标尺有,即精度各为0、1mm、0、05mm、0、02mm。 游标尺得读数方法就是:先读出游标零线以左得那条线上毫米级以上得读数L0,即为整数值;然后再仔细找到游标尺上与主尺刻线准确对齐得那一条刻线(该刻线得两边不对齐成对称状态),数出这条刻线就是副尺上得第条,则待测物得长度(即为小数值)为 (5) 图2就是分度游标卡尺得刻度及读数举例。图上读数: 图2 游标卡尺读数示意图 螺旋测微器 如图3所示,螺旋测微器就是在一根测微螺杆上配一螺母套筒,上有0、5mm分度得标尺。测微螺杆得后端连接一个有50个分度得微分套筒,螺距为50mm。当微分套筒转过一个分度时,测微螺杆就会在螺母套筒内沿轴线方向改变0、01mm。也就就是说,螺旋测微器得精密度(分度值)就是0、01mm。由此可见,螺旋测微器就是利用螺旋(测微螺杆得外螺纹与固定套筒得内螺纹精密配合)得旋转运动,将测微螺杆得角位移转变为直线位移得原理实现长度测量得量具。 图3 螺旋测微器示意图 在使用螺旋测微器时,应该检查零线得零位置,当螺杆得一端与测砧相接触时,往往会有系统误差(读数不就是零毫米),所以必须先记下螺旋测微器得初读数z0,根据不同情况z0有正负之分。测量时将物体放在测砧与螺杆端面之间,转动测力装置,至听到“咯咯”得响声为止,两端面已与待测物紧密接触。从毫米分度尺上读出大于0、5mm得部分,0、01mm 以上得部分从微分筒边缘刻度盘上对准基准线处读出,同时要估读出0、001mm级。则待测物得实际长度为。螺旋测微器读数例如图4所示。

力学量和算符

第三章力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现。 §3.1 力学量算符的引入 §3.2 算符的运算规则 §3.3 厄米算符的本征值和本征函数 §3.4 连续谱本征函数 §3.5 量子力学中力学量的测量 §3.6 不确定关系 §3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值

对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 * (,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()() *(,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ 计算动量平均值的方法。由(3.1.4)式得 利用公式 可以得到 记动量算符为 ?p i =-? 则 ()* ?(,)(,) 3.1.9p r t p r t dr ψ ψ∞ -∞ = ? 从而有 ()()()* ?(,)(,) 3.1.10f p r t f p r t dr ψψ∞ -∞ = ? 例如:动能的平均值是 角动量L 的平均值是

基本物理量与物化参数的测定

6.基本物理量与物化参数的测定?????????????????????????????? 实验88 化学反应焓变的测定 实验概述 化学反应通常是在等压条件下进行的,此时化学反应的热效应叫做等压热效应Q p。在化学热力学中,则是用反应体系焓H的变化量△H来表示的,简称为焓变。为了有一个比较的统一标准,通常规定100kPa为标准态压力,记为p 。把体系中各固体、液体物质处于p 下的纯物质,气体则在p 下表现出理想气体性质的纯气体状态称为热力学标准态。在标准状态下化学反应的焓变称为化学反应的标准焓变,用△r H 表示,下标“r”表示一般的化学反应,上标“ ”表示标准状态。在实际工作中,许多重要的数据都是在298.15 K下测定的,通常用298.15 K下的化学反应的焓变,记为△r H (298.15K)。 本实验是测定固体物质锌粉和硫酸铜溶液中的铜离子发生置换反应的化学反应焓变: Zn(s) + CuSO4(aq)═ZnSO4(aq)+ Cu(s) △r H m (298.15K)=- 217 kJ?mol-1 这个热化学方程式是表示:在标准状态、298.15 K时,发生了一个单位的反应,即1 mol的Zn与1 mol的CuSO4发生置换反应生成1 mol的ZnSO4和1 mol的Cu,此时的化学反应的焓变△r H m (298.15K)称为298.15 K时的标准摩尔焓变。其单位为kJ?mol-1。 测定化学反应热效应的仪器称为量热计。对于一般溶液反应的摩尔焓变。可用图8.1.1所示的“保温杯式”量热计来测定。 图8.8.1 简易量热计示意图 在实验中,若忽略量热计的热容,则可根据已知溶液的比热容、溶液的密度、浓度、实验中所取溶液的体积和反应过程中(反应前和反应后)溶液的温度变化,求得上述化学反应的摩尔

相关主题
文本预览
相关文档 最新文档