当前位置:文档之家› 煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响

煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响

煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响
煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响

Advances in Analytical Chemistry 分析化学进展, 2018, 8(4), 198-203

Published Online November 2018 in Hans. https://www.doczj.com/doc/5c10860398.html,/journal/aac

https://https://www.doczj.com/doc/5c10860398.html,/10.12677/aac.2018.84024

Effects of Calcination Temperature on

Electrochemical Properties of 523-Type

Lithium Nickel-Cobalt-Manganese Oxide

as Positive Electrode Materials

Beiping Wang*, Zhongli Zou, An Huang, Qing Wang

School of Materials Science and Engineering, North Minzu University, Yinchuan Ningxia

Received: Oct. 24th, 2018; accepted: Nov. 5th, 2018; published: Nov. 16th, 2018

Abstract

The effect of calcination temperature on the phase and electrochemical properties of lithium nickel-cobalt-manganese oxide was studied. The target product was prepared by liquid phase co-

precipitation and solid phase calcination, and the phase and electrochemical properties of the

material were characterized by XRD, constant current charge-discharge technique and AC imped-ance technique. The results show that the product obtained by calcination at 900?C has a

well-developed layered structure, high crystallinity and low ionic mixing. The initial discharge

capacity is up to 166.3 mAh?g?1. The charge transfer impedance of the product is small, which im-proves the diffusion rate of lithium ion and improves charge/discharge rate.

Keywords

Lithium Ion Battery, Transition Metal Oxides, Calcination Temperature, Electrochemical Property

煅烧温度对523型镍钴锰酸锂正极材料电化学

性能的影响

王北平*,邹忠利,黄安,汪青

北方民族大学材料科学与工程学院,宁夏银川

收稿日期:2018年10月24日;录用日期:2018年11月5日;发布日期:2018年11月16日

*通讯作者。

王北平 等

摘 要

研究了煅烧温度对镍钴锰酸锂的物相和电化学性能的影响。利用液相共沉淀法 + 固相煅烧工艺制备了目标产物,并综合利用XRD 、恒电流充放电技术及交流阻抗技术对材料物相和电化学性能进行了表征。结果表明,900℃下煅烧获得的产物层状结构发育完全,结晶度高,离子混排度低,首次放电比容量达到166.3 mAh ?g ?1,2C 下放电比容量为73.2 mAh ?g ?1。900℃产物的电荷转移阻抗较小,提高了锂离子的扩散速度,有利于倍率充放电性能的改善。

关键词

锂离子电池,过渡金属氧化物,煅烧温度,电化学性能

Copyright ? 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/5c10860398.html,/licenses/by/4.0/

1. 引言

锂离子电池具有高的工作电压和能量密度、长循环寿命等优点,广泛应用于电子产品、电动工具和电动汽车等领域,并逐渐扩展应用到电站储能领域。其正极材料是提高电池性能的重要因素。近年来,三元过渡金属氧化物LiNi 1?x ?y Co x Mn y O 2 (0 < x < 1,0 < y < 1)受到了越来越多的关注和研究[1] [2] [3]。与LiCoO 2比较,三元过渡金属氧化物降低了材料成本,向商业化应用领域逐步拓展。但该类材料的高倍率充放电性能不如LiCoO 2,限制了其在某些领域的应用。为提高此类材料的结构稳定性和电化学性能,研究人员从多方面进行了改进:1) 采用金属元素进行掺杂,如Zn 、Nd 和Nb 等[4] [5] [6];2) 采用包覆材料进行表面改性,如La 2O 3、Mn 3(PO 4)2和PEDOT 等[7] [8] [9];3) 构筑浓度梯度结构[10];4) 形成固溶体[11];5) 其他制备技术与工艺优化[12] [13];6) 形貌控制[14] [15]。这些努力在提高材料结构稳定性和电化学性能方面取得了一定的成功。

本论文研究了镍钴锰酸锂LiNi 0.5Co 0.2Mn 0.3O 2制备过程中煅烧温度对物相和电化学性能的影响,综合利用XRD 、恒电流充放电等测试技术对产物性能进行了表征。

2. 实验

采用硫酸镍、硫酸钴和硫酸锰按照摩尔比为0.5:0.2:0.3的比例,将上述试剂溶解于通有氮气的100 mL 去离子水中,配置成2 mol/L 的混合溶液。在60℃水浴条件下,逐滴加入氨水控制溶液PH 值为11,再逐滴加入NaOH ,快速搅拌反应6 h ,再陈化反应8 h ,洗涤至中性。在80℃真空烘箱中干燥10 h ,得到氢氧化物前驱体。将该前驱体与碳酸锂充分混合后在马弗炉中于800℃、900℃煅烧10 h ,得到目标产物。

粉末XRD 测试在X Pert-Pro 仪器上进行,2θ = 10?~80?,步速2?/min 。将产物、导电炭黑和聚偏氟乙烯(PVDF)按照质量比为85:10:5的比例混合均匀,加入适量的N-甲基吡咯烷酮(NMP),充分搅拌后得到均匀浆料,将其涂敷在铝箔后于80℃在真空烘箱中烘干10 h 。之后切片,在充满氩气的手套箱中将电极片、Celgard 2400隔膜、金属锂片(对电极)组装成扣式电池,电解液为1M LiPF6的碳酸乙烯酯/碳酸二甲酯(体积比为1:1)的溶液。恒流充放电测试电压范围为2.5~4.3 V ,在武汉蓝电电池测试仪进行。交流阻抗在电化学工作站(上海辰华CHI660E)上进行测试,其中电压扰幅5 mV ,频率范围0.01~10 kHz 。

Open Access

王北平 等

3. 结果与讨论

3.1. 物相分析

图1是800℃和900℃下制备所得产物XRD 谱图。800℃产物的(006)/(102)、(110)/(108)两对特征峰中未见明显分峰,表明产物的层状结构发育尚不完全。900℃的(006)/(102)、(110)/(108)两对特征峰分峰明显,形成了良好的层状结构。I (003)/I (104)强度比是离子混排度的一个重要指标,值越大,离子混排程度越低。经计算,800℃产物和900℃产物I (003)/I (104)强度比分别为0.9625和1.3112,这表明800℃产物存在较为严重的离子混排,而900℃产物的离子混排得到了有效控制。同时,900℃产物的峰型更加尖锐,结晶度更高。

Figure 1. XRD patterns of t he products obtained at 800/900?C

图1. 800℃和900℃煅烧所得产物的XRD 谱图

3.2. 电化学性能

图2是800℃和900℃煅烧所得产物的首次充放电曲线。900℃产物首次充电比容量为160.5 mAh ?g ?1,首次放电比容量为166.3 mAh ?g ?1,库伦效率为103.6%,800℃产物的首次放电比容量为121.5 mAh ?g ?1,库伦效率为97.1%。相对于800℃,900℃产物的首次放电比容量增加了27.0%。这主要由于900℃产物的离子混排度较低,为锂离子在晶格中占位提供了更多的活性位点。

Figure 2. The first charge/discharge curves of the products

obtained at 800/900?C

图2. 800℃和900℃煅烧所得产物的首次充放电曲线

王北平 等

图3是800℃和900℃煅烧所得产物的高倍率性能曲线。900℃产物在2C 电流密度下放电比容量为73.2 mAh ?g ?1,800℃产物在2C 电流密度下放电比容量为60.2 mAh ?g ?1。900℃下产物的高倍率充放电性能得到提高,这主要是由于900℃下产物的层状结构发育完全,结晶度高,离子混排度低,为锂离子在晶体内部的扩散提供了空间和通道,有利于高倍率充放电性能的改善。

Figure 3. High rate performance of the products obtained at 800/900?C

图3. 800℃和900℃煅烧所得产物的倍率性能

图4是800℃和900℃煅烧所得产物的交流阻抗谱图。为进一步讨论煅烧温度对产物动力学性能的影响,对800℃和900℃的产物进行了交流阻抗测试。利用等效电路原理,模拟计算相应阻抗。其中R s 为溶液电阻,高频区半圆代表表面膜阻抗R sf ,对应着锂离子通过阴极颗粒界面迁移阻抗;中频区半圆代表电荷转移阻抗R ct ,对应电极和电解液之间的电荷转移阻抗。低频区直线代表Warburg 阻抗Z w ,

对应着锂离子在晶体中的扩散速度。900℃产物的R sf 和R ct 为9.2 Ω和53.5 Ω,明显小于800℃产物的R sf (58.3 Ω)、R ct (129.4 Ω)。这表明900℃下所得产物的锂离子扩散速度更快,从而提高材料的高倍率充放电性能。

Figure 4. EIS spectra of the products obtained at 800/900?C 图4. 800℃和900℃煅烧所得产物的交流阻抗谱图

王北平等

4. 结论

本文采用液相共沉淀+ 固相煅烧方法制备了523型镍钴锰酸锂,考察了煅烧温度对材料物相和电化学性能的影响。结果表明,900℃下煅烧获得的产物层状结构发育完全,结晶度高,离子混排度低,首次放电比容量达到166.3 mAh?g?1,5C下放电比容量为73.2 mAh?g?1。900℃产物的电荷转移阻抗较小,提高了锂离子的扩散速度,有利于倍率充放电性能的改善。

基金项目

中科院“西部之光”人才培养计划一般项目,宁夏自然科学基金项目(NZ17096)。

参考文献

[1]Sun, G., Yin, X.C., Yang, W., et al.(2018) Synergistic Effects of Ion Doping and Surface-Modifying for Lithium

Transition-Metal Oxide: Synthesis and Characterization of La2O3-Modified LiNi1/3Co1/3Mn1/3O2. Electrochimica Acta,

272, 11-21.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.electacta.2018.03.175

[2]Zhou, Y.H., Wang, Y., Li, S.M., et al. (2017) Irregular Micro-Sized Li1.2Mn0.54Ni0.13Co0.13O2 Particles as Cathode Ma-

terial with a High Volumetric Capacity for Li-Ion Batteries. Journal of Alloys and Compounds, 695, 2951-2958.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.jallcom.2016.11.375

[3]Zeng, Y., Qiu, K.H., Yang, Z.Q., et al. (2016) Influence of Europium Doping on the Electrochemical Performance of

LiNi 0.5Co 0.2Mn 0.3O 2 Cathode Materials for Lithium Ion Batteries. Ceramics International, 42, 10433-10438.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.ceramint.2016.03.189

[4]Du, H., Zheng, Y.Y., Dou, Z.J., et al. (2015) Zn-Doped LiNi1/3Co1/3Mn1/3O2 Composite as Cathode Material for Li-

thium Ion Battery: Preparation, Characterization, and Electrochemical Properties. Journal of Nanomaterials, 2015, 5.

https://https://www.doczj.com/doc/5c10860398.html,/10.1155/2015/867618

[5]Jia, X.B., Yan, M., Zhou, Z.Y., et al. (2017) Nd-Doped LiNi0.5Co0.2Mn0.3O2 as a Cathode Material for Better Rate Ca-

pability in High Voltage Cycling of Li-Ion Batteries. Electrochimica Acta, 254, 50-58.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.electacta.2017.09.118

[6]Yang, Z.G., Xiang, W., Wu, Z.G., et al. (2017) Effect of Niobium Doping on the Structure and Electrochemical Per-

formance of LiN i0.5Co0.2Mn0.3O2 Cathode Materials for Lithium Ion Batteries. Ceramics International, 43, 3866-3872.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.ceramint.2016.12.048

[7]Zhou, L., Tian, M.J., Deng, Y.L., et al. (2016) La2O3-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with En-

hanced Specific Capacity and Cycling Stability for Lithium-Ion Batteries. Ceramics International, 42, 15623-15633.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.ceramint.2016.07.016

[8]Cho, W., Kim, S.-M., Lee, K.-W., et al. (2016) Investigation of New Manganese Orthophosphate M n3(PO4)2 Coating

for Nickel-Rich LiNi0.6Co0.2Mn0.2O2 Cathode and Improvement of Its Thermal Properties. Electrochimica Acta, 198,

77-83.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.electacta.2016.03.079

[9]Liu, X.Z., Li, H.Q., Li, D., et al. (2013) PEDOT Modified LiNi1/3Co1/3Mn1/3O2 with Enhanced Electrochemical Per-

formance for Lithium Ion Batteries.Journal of Power Sources, 243, 374-380.

https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.jpowsour.2013.06.037

[10]Hou, P.Y., Wang, X.Q., Wang, D.G., et al. (2014) A Novel Core-Concentration Gradient-Shelled LiNi0.5Co0.2Mn0.3O2

as High-Performance Cathode for Lithium-Ion Batteries. RSC Advances, 4, 15923-15929.

https://https://www.doczj.com/doc/5c10860398.html,/10.1039/C3RA47930G

[11]Fujii, Y., Miura, H., Suzuki, N., et al.(2007) Structural and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2-

LiMg1/3Co1/3Mn1/3 O 2 Solid Solutions. Solid State Ionics, 178, 849-857.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.ssi.2007.03.002

[12]Fumihiro, N., Liu, Y.B., Tanabe, T., et al. (2018) Optimization of Calcination Temperature in Preparation of A High

Capacity Li-Rich Solid-Solution Li[Li0.2Ni0.18Co0.03Mn0.58]O2Material and Its Cathode Performance in Lithium Ion

Battery. Electrochimica Acta, 269, 321-330.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.electacta.2018.03.027

[13]Kim, N.Y., Yim, T., Song, J.H., et al.(2016) Microstructural Study on Degradation Mechanism of Layered Li-

Ni0.6Co0.2Mn0.2O2 Cathode Materials by Analytical Transmission Electron Microscopy. Journal of Power Sources, 307:

641-648.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.jpowsour.2016.01.023

[14]Ma, D.T., Li, Y.L., Zhang, P.X., et al. (2016) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 Nanotubes for High-Performance

Cathodes in Li-Ion Batteries. Journal of Power Sources, 311, 35-41.https://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.jpowsour.2016.01.031

王北平等[15]Zheng, Z., Guo, X.-D., Chou, S.-L., et al. (2016) Uniform Ni-Rich LiNi0.6Co0.2Mn0.2O2 Porous Microspheres: Facile

Designed Synthesis and Their Improved Electrochemical Performance. Electrochimica Acta, 191, 401-410.

ps://https://www.doczj.com/doc/5c10860398.html,/10.1016/j.electacta.2016.01.092

1. 打开知网页面https://www.doczj.com/doc/5c10860398.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2163-1557,即可查询

2. 打开知网首页https://www.doczj.com/doc/5c10860398.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.doczj.com/doc/5c10860398.html,/Submission.aspx

期刊邮箱:aac@https://www.doczj.com/doc/5c10860398.html,

原材料标准-镍钴锰酸锂1

附页1: 金和镍钴锰酸锂S600检验标准 检测项目 规格 形貌XRD 比表面 (m2/g) 压实密度 (g/cm3) 克容量(mAh/g)粒径分布(um) 扣式 电池 成品电芯 D min D10D50D90D MAX 0.2C 1C 金和S600 图1.1图1.2 0.15~ 1.10 ≥3.40 ≥ 150.0 ≥ 151.0 ≥ 144.5 ≥ 3.500 7.000-13.000 ≤ 25.000 ≤ 40.000 图a 图b 图1.1金和镍钴锰酸锂SEM图,图a为×4000;图b为×1000 图1.2金和镍钴锰酸锂的XRD图 003 1 04 101 105 102 107 108 113 110 006

附页2: 天骄PLB-F5检验标准 检测项 目 规格 形 貌 XRD 比表面 (m2/g) 压实密 度 (g/cm3) 克容量(mAh/g)粒径分布(um) 扣式 电池 成品电芯 D min D10D50D90D MAX 0.2C 1C 天骄 PLB-F5 图 2.1 图 2.2 0.40~ 1.20 ≥3.00 ≥ 155.7 ≥ 145.0 ≥ 137.5 0.300-0.500 1.500-4.000 5.300-7.000 9.000~ 15.000 15.000~ 29.000 图a 图b 图2.1天骄镍钴锰酸锂(PLB-F5)SEM图,图a为×4000;图b为×1000 Position [°2Theta] 30405060708090 Counts 2000 4000 6000 8000 PLB 图2.2.天骄镍钴锰酸锂XRD图 003 1 04 101 105 102 107 108 113 110 006

三元镍钴锰正极材料的制备及改性

三元镍钴锰正极材料的制备及改性 摘要:三元镍钴锰正极材料作为锂电池正极材料,具有较高的可逆容量、结构 稳定性、热稳定性,它是当下电动汽车领域最具前景的锂离子电池正极材料之一。基于此,作者总结国内外与三元镍钴锰正极材料的制备及改性相关的知识,并结 合自己的理解,从材料制备方法和掺杂改性方面,介绍了三元镍钴锰正极材料制 备技术及改性技术的研究进展。 关键词:三元镍钴锰;正极材料;制备;改性 1三元镍钴锰正极材料的制备工艺 目前合成富镍三元材料的主流方法是首先采用共沉淀方法合成三元前驱体, 然后加入锂盐采用高温固相法合成最终产品。也有其他合成方法,如溶胶-凝胶、 共沉淀法等,但是不同的制备技术,最终所得材料的粒子尺寸和孔结构千差万别,对材料结晶程度、结构稳定性和锂离子传输过程产生巨大影响,进而影响材料电 化学性能。图1为 Li[Ni x Co y Mn z ]O 2晶体结构示意图。 图1 Li[Ni x Co y Mn z ]O 2晶体结构示意图 1.1高温固相法 高温固相法合成工艺简单,产量大,易于实现工业化,但产物粒径相对较大,粒径分布一致性差等缺陷,影响了其性能。Jiang[3]等在固相法制备三元111的过 程中发现,采用特殊的煅烧技术—等离子体辅助煅烧技术,不仅可以极大地降低 煅烧温度、缩减煅烧时间,同时也可以显著提升材料的电化学性能。与普通气体 不同,等离子体实质上是一种电离的气体,具有超高的电导率,且存在一定磁场 效应。在等离子体氛围煅烧过程中,由于等离子体的特殊物理特性,可以提高机 械混合后金属离子之间的化学反应活性,加快煅烧过程中元素的扩散速率,从而 实现三元镍钴锰正极材料的低温快速制备。他们以NiO、MnO2、Co3O4和 Li2CO3为原料经过机械混合后,置入配有等离子体发生装置煅烧炉中,在通入氧 气的条件下,经过600℃低温煅烧40min即可得到高性能Li(Ni1/3Co1/3Mn1/3)O2。与非等离子体氛围1100℃煅烧24h的三元正极材料相比,材料在0.1C(2.8~4.3V) 的初始容量从129.5mAh/g显著增加到218.9mAh/g,循环60圈后稳定性也从 71.89%提高至91.27%。Jiang等[3]的研究中,从提高煅烧过程中反应物活性的角 度入手,采用等离子体辅助煅烧技术,不仅极大地提高了材料的电化学性能,而 且弥补了固相法能耗过大的缺陷,为三元镍钴锰正极材料固相制备方法提供了新 方向。同时,在高温固相合成中,由于阳离子混排现象在高温时更加明显,所以 在煅烧结束时减慢降温的速率并且持续通氧气,控制氧分压,可以有效抑制阳离 子的混排。 1.2共沉淀法 化学共沉淀法一般是向原料中添加适当的沉淀剂与络合剂,使溶液中已经混 合均匀的各组分按化学计量比共同沉淀下来,再把它煅烧分解制备出目标产品。 通过改进传统的共沉淀方法,采用超声共沉淀技术制备LiNi0.6Co0.2Mn0.2O2,成 品有很好的层状结构和低的阳离子混排程度。采用改进的共沉淀法制备出浓度梯 度Li(Ni0.86Co0.10Mn0.04)O2正极材料,材料颗粒从核心到表层,Ni的含量逐渐 下降而Mn、Co的含量逐渐上升,该材料在3~4.4V电压平台下,首次放电比容量 达209mAh?g-1,在55℃、0.2C循环100次后容量保持率为86%,效果显著。 1.3溶胶-凝胶法

煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响

Advances in Analytical Chemistry 分析化学进展, 2018, 8(4), 198-203 Published Online November 2018 in Hans. https://www.doczj.com/doc/5c10860398.html,/journal/aac https://https://www.doczj.com/doc/5c10860398.html,/10.12677/aac.2018.84024 Effects of Calcination Temperature on Electrochemical Properties of 523-Type Lithium Nickel-Cobalt-Manganese Oxide as Positive Electrode Materials Beiping Wang*, Zhongli Zou, An Huang, Qing Wang School of Materials Science and Engineering, North Minzu University, Yinchuan Ningxia Received: Oct. 24th, 2018; accepted: Nov. 5th, 2018; published: Nov. 16th, 2018 Abstract The effect of calcination temperature on the phase and electrochemical properties of lithium nickel-cobalt-manganese oxide was studied. The target product was prepared by liquid phase co- precipitation and solid phase calcination, and the phase and electrochemical properties of the material were characterized by XRD, constant current charge-discharge technique and AC imped-ance technique. The results show that the product obtained by calcination at 900?C has a well-developed layered structure, high crystallinity and low ionic mixing. The initial discharge capacity is up to 166.3 mAh?g?1. The charge transfer impedance of the product is small, which im-proves the diffusion rate of lithium ion and improves charge/discharge rate. Keywords Lithium Ion Battery, Transition Metal Oxides, Calcination Temperature, Electrochemical Property 煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响 王北平*,邹忠利,黄安,汪青 北方民族大学材料科学与工程学院,宁夏银川 收稿日期:2018年10月24日;录用日期:2018年11月5日;发布日期:2018年11月16日 *通讯作者。

团体标准《NCM811型镍钴锰酸锂》-编制说明(预审稿).doc

NCM811型镍钴锰酸锂》 团体标准编制说明 (预审稿) 、工作简况 1.1任务来源与计划要求 根据《关于下达2018年第二批协会标准制修订计划的通知》(中色协科字[2018]75号)的文件精神,由北京当升材料科技股份有限公司负责起草《NCM811 型镍钴锰酸锂》协会标准,项目计划编号:T/CNIA 046-2018,计划完成年限2019 年。 1.2产品简介 新能源车用动力锂电池选用的正极材料主要有锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料,其中镍钴锰酸锂三元材料以其高容量、长寿命、高安全性等综合优势成为动力电池的首选。而三元材料又包括以LiNi 1/3Co1/3Mn1/3O2,LiNi 0.5Co0.2Mn 0.3O2,LiNi 0.6Co0.2Mn 0.2O2 及LiNi 0.8Co0.1Mn0.1O2 等为代表的不同镍、钴、锰含量组成的材料。 LiNi 0.8Co0.1Mn0.1O2(称为NCM811 型镍钴锰酸锂)即为镍钴锰酸锂三元材料的一种,其组成为镍钴锰摩尔含量约为79%~85%、5%~16%、5%~16%。 商品化的NCM811 型镍钴锰酸锂,从形貌上区分为团聚型和单晶型两种,团聚型为一次颗粒团聚成球形或类球形的二次颗粒,单晶型为颗粒之间无团聚的单晶颗粒,其SEM 图如图1 所示。 图 1 NCM811 型镍钴锰酸锂产品 SEM图(左为团聚型,右为单晶型) NCM811 型镍钴锰酸锂作为应用前景优良的正极材料,制作成的锂离子电池可被应用于电动汽车,3C 等领域。

1.3标准编写的目的和意义 作为国家战略新兴产业,新能源汽车是应对能源危机、大气污染和汽车产业转型升级的有效途径。新能源汽车的续航里程、寿命和安全性等是人们关注的重点,这主要取决于动力锂离子电池尤其是正极材料。目前国内外动力锂电正极材料技术路线主要有3 个材料 体系:磷酸铁锂体系、锰酸锂体系、三元体系(NCM ,NCA )。其中磷酸铁锂作为正极材料的电池充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,且生产成本较高,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第一代动力锂电的正极材料;而多元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。国内外主要电池供应商所选用的材料类型如表1 所示。 表1 国内外主要电池供应商所选用材料类型 国内外主要电池供应商主要选用镍钴锰酸锂三元材料。镍钴锰三元材料主要有 LiNi 1/3Co1/3Mn1/3O(2 简称NCM111 ),LiNi 0.5Co0.2Mn 0.3O(2 简称NCM523 ),LiNi 0.6 Co0.2Mn 0.2O2 (简称NCM622 ),LiNi 0.8Co0.1Mn0.1O2(简称NCM811 )等。在三元材料系列,技术相对成熟的为NCM111 ,已经在电动工具、电动自行车、充电宝等产品中得到应用,材料的比容量达到158mAh/g,循环寿命500 周。但由于该材料的

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由 6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

【CN109987650A】镍钴锰酸锂正极材料、其制备方法及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910342205.0 (22)申请日 2019.04.26 (71)申请人 清华大学深圳研究生院 地址 518055 广东省深圳市南山区西丽大 学城清华校区 (72)发明人 李宝华 黄彬华 刘玉秀 秦显营  刘冬青 钱坤 周楷 康飞宇  (74)专利代理机构 深圳市鼎言知识产权代理有 限公司 44311 代理人 曾昭毅 郑海威 (51)Int.Cl. C01G 53/00(2006.01) H01M 4/505(2010.01) H01M 4/525(2010.01) H01M 10/0525(2010.01) (54)发明名称 镍钴锰酸锂正极材料、其制备方法及应用 (57)摘要 一种镍钴锰酸锂正极材料的制备方法,包括 以下步骤:配制包括镍源、钴源和锰源的混合溶 液、强碱溶液以及含铵根离子无机盐溶液,将所 述混合溶液、所述强碱溶液以及所述含铵根离子 无机盐溶液同时混合进行快速共沉淀反应,控制 进行所述快速共沉淀反应的pH值为10-12,得到 第一悬浊液,分离所述第一悬浊液得到沉淀物; 将所述沉淀物配制成第二悬浊液,将所述第二悬 浊液进行球磨;将球磨后的第二悬浊液进行喷雾 干燥,得到前驱体粉末;将所述前驱体粉末与锂 源混合,得到混合物;以及将所述混合物煅烧,得 到所述镍钴锰酸锂正极材料。本发明还提供一种 镍钴锰酸锂正极材料、 正极片及锂离子电池。权利要求书2页 说明书8页 附图5页CN 109987650 A 2019.07.09 C N 109987650 A

镍钴锰三元技术资料

正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。 目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。 溶胶-凝胶法:先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大 化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产 水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料 评定三元材料好坏的方法因素(各种检测方法总结) 1、性能测试 循环性能测试:测试循环一定次数后容量保持率的大小;容量大小;容量衰减程度; 倍率性能测试:以一定倍率放电,看平均电压及容量保持率。平均电压越高越好。 高低温性能测试:在低温、常温、高温下电压降的多少,容量保持率多少无杂质峰;(006)/(102)及(108)/(110)峰明显分开说明层状结构明显;I(003)/I(104)比值越大,大于1.2,阳离子有序程度越高;R值(I(006)+I(102)/I(101))越小,晶体结构越有序; 2、SEM分析:产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是否均匀,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密, 3、成分分析:采用ICP-AES元素分析方法测定合成样品中各金属元素的 含量是否与理论值一致。 4、热重差热分析:即TG-DTA分析。在升温过程中测试样品晶型结构的转变、 材料自身熔融、吸附等物理变化;脱去结晶水、材料受热分解、在空气气氛中氧化还原等化

行业标准《镍钴锰酸锂化学分析方法 第1部分:镍钴锰总量的测定 EDTA滴定法》编制说明

《镍钴锰酸锂化学分析方法第1部分:镍钴锰总量的测定- EDTA滴定法》编制说明 一工作简况 1 任务来源 根据全国有色金属标准化技术委员会下发的《有色标委(2011)19号》文件的要求,由中信国安盟固利电源技术有限公司制定《镍钴锰酸锂化学分析方法第1部分:镍钴锰总量的测定- EDTA滴定法》行业标准,计划编号:2010-3591T-YS,项目完成时间2012年。 2 起草单位情况 中信国安盟固利电源技术有限公司是北京市科委认定的高新技术企业,主要从事锂离子动力电池及关键材料研究和生产。目前在中关村科技园区昌平园,已经建立了一个有关新型锂离子电池材料和电池技术的新材料技术研究院,拥有实验室(5000平方米),形成了以有突出成就的专家领衔、以年轻博士和硕士为骨干的强大的研究开发队伍,经国家人事部批准设立有博士后工作站。公司拥有等离子体发射光谱仪ICP-AES、等离子体质谱仪ICP-MS、X荧光光谱仪、质谱分析仪、气相色谱仪、激光粒度测试仪、微粒子比表面积测定仪等分析检测仪器和惰性气体手套箱、模拟电池制作设备、实际电池制作等设备、电池安全性能测试仪等先进的研究实验设备以及设施完备的中试车间。 中信国安盟固利电源技术有限公司主要从事锂离子电池正极材料的研发,生产和销售。目前已经达到年产2000吨钴酸锂、1000吨锰酸锂、1000吨镍钴锰酸锂的规模产能。生产的正极材料已经占有国内市场很大的份额。生产方法和生产工艺技术被北京市科委组织的专家鉴定会评定为属于世界领先水平,荣获国家科技进步二等奖、北京市科学技术一等奖。锰酸锂合成与生产技术通过北京市科委组织的专家鉴定,鉴定结论为国际先进水平,并荣获北京市科学技术一等奖。 中信国安盟固利电源技术有限公司在研究开发生产锂离子电池正极材料的同时,一直在致力于各种锂离子电池材料与技术方面的基础研究工作和分析评价方法的探索,在锂离子电池材料的物理性能、化学性能与电化学特性研究与测试方面积累了大量的经验和丰厚的技术储备。从2002年起,中信国安盟固利电源技术有限公司开始参与技术标准化工作。承担了钴酸锂产品国家标准的制订任务,并圆满完成,该标准已经正式颁布实施,同时承担了锰酸锂行业标准的制订任务,该标准已经制订完毕。并且参与了镍钴锰酸锂及钛酸锂的制定。 二编制过程(包括编制原则、工作分工、征求意见单位、各阶段工作过程等) 1标准编制原则 本标准严格按照GB/T1.1-2000《标准化工作导则第一部分:标准的结构编写规则》以及《有色金属冶炼产品国家标准、行业标准编写示例》的规定格式进行编写。 本标准主要针对相关单位对镍钴锰酸锂的质量要求为依据进行编写。 2工作分工 本标准由中信国安盟固利电源技术有限公司负责起草,佛山市邦普循环科技有限公 司、济宁无界科技有限公司,深圳天骄科技开发有限公司进行验证。 3征求意见单位 通过邮件共发送3份征求意见函,收到2份。编制组对回函意见进行整理,并对标

团体标准《NCM622型镍钴锰酸锂》--编制说明(预审稿).doc

《NCM622型镍钴锰酸锂》 团体标准编制说明 (预审稿) 一、工作简况 1.1 任务来源与计划要求 根据《关于下达2018年第二批协会标准制修订计划的通知》(中色协科字[2018]75号)的文件精神,由北京当升材料科技股份有限公司负责起草《NCM622型镍钴锰酸锂》协会标准,项目计划编号:T/CNIA 045-2018,计划完成年限2019年。 1.2 产品简介 新能源车用动力锂电池选用的正极材料主要有锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料,其中镍钴锰酸锂三元材料以其高容量、长寿命、高安全性等综合优势成为动力电池的首选。而三元材料又包括以LiNi1/3Co1/3Mn1/3O2,LiNi0.5Co0.2Mn0.3O2,LiNi0.6Co0.2Mn0.2O2及LiNi0.8Co0.1Mn0.1O2等为代表的不同镍、钴、锰含量组成的材料。LiNi0.6Co0.2Mn0.2O2(称为NCM622型镍钴锰酸锂)即为镍钴锰酸锂三元材料的一种,其组成为镍钴锰摩尔含量约为60%、20%、20%。 商品化的NCM622型镍钴锰酸锂,化学式可表示为LiNi0.6Co0.2Mn0.2O2,从形貌上区分为团聚型和单晶型两种,团聚型为一次颗粒团聚成球形或类球形的二次颗粒,单晶型为颗粒之间无团聚的单晶颗粒,其SEM图如图1所示。 图1 NCM622型镍钴锰酸锂产品SEM图(左为团聚型,右为单晶型)NCM622型镍钴锰酸锂作为正极材料制作成的锂离子电池被广泛应用于电动汽车、储能、电动工具、军工等领域。

1.3 标准编写的目的和意义 作为国家战略新兴产业,新能源汽车是应对能源危机、大气污染和汽车产业转型升级的有效途径。新能源汽车的续航里程、寿命和安全性等是人们关注的重点,这主要取决于动力锂离子电池尤其是正极材料。目前国内外动力锂电正极材料的技术路线主要有:锰酸锂、磷酸铁锂体系和三元材料体系。其中锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第一代动力锂电的正极材料;磷酸铁锂体系电池的充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;三元材料因具有优异的综合性能日益被行业所关注和认同,已成为主流的技术路线。国内外主要电池供应商所选用的材料类型如表1所示。 表1国内外主要电池供应商所选用材料类型 国内外主要电池供应商主要选用镍钴锰酸锂三元材料。三元材料主要有 LiNi1/3Co1/3Mn1/3O2(简称NCM111),LiNi0.5Co0.2Mn0.3O2(简称NCM523),LiNi0.6Co0.2Mn0.2O2(简称NCM622),LiNi0.8Co0.1Mn0.1O2(简称NCM811)等。在三元材料系列,技术相对成熟的为NCM111,已经在电动工具、电动自行车、充电宝等产品中得到应用,材料的比容量达到158 mAh/g,循环寿命500周。但由于该材料的Co含量占过渡金属(Ni-Co-Mn)总量的33%,Ni+Co总量占比达到67%,材料的成本相对较高,而且由于专利垄断进一步增加了专利使用成本,因此动力锂电企业为了降低成本和规避专利问题、同时为了寻求更

锂电池镍钴锰三元材料最新研究进展

锂电池镍钴锰三元材料最新研究进展 镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。 据披露,2014年中国锂离子电池正极材料产值达95.75亿元,其中三元材料为27.4 亿元,占有率为28.6%;在动力电池领域,三元材料正强势崛起,2014年上市的北汽EV200、奇瑞eQ、江淮iEV4、众泰云100等均采用三元动力电池。 2015年上海国际车展,在新能源汽车中,三元锂电池的占有率超过了磷酸铁锂电池成为一大亮点,包括吉利、奇瑞、长安、众泰、中华等大部分国内主流车企都纷纷推出采用三元动力电池的新能源车型。许多专家预言:三元材料凭借其优异的性能和合理的制造成本有望在不久的将来取代价格高昂的钴酸锂材料。 人们发现:镍钴锰三元正极材料中镍钴锰比例可在一定范围内调整,并且其性能随着镍钴锰的比例的不同而变化,因此,出于进一步降低钴镍等高成本过渡金属的含量,以及进一步提高正极材料的性能的目的;世界各国在具有不同镍钴锰组成的三元材料的研究和开发方面做了大量的工作,已经提出了多个具有不同镍钴锰比例组成的三元材料体系。包括333,523,811体系等。一些体系已经成功地实现了工业化生产和应用。 本文将较为系统地介绍近年来几种主要的镍钴锰三元材料的最新研究进展及其成果,以及人们为了改进这些材料的性能而开展的掺杂、包覆等方面的一些研究进展。 1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

高压镍钴锰三元正极材料研究进展及应用前景展望

龙源期刊网 https://www.doczj.com/doc/5c10860398.html, 高压镍钴锰三元正极材料研究进展及应用前景展望 作者:吴英强倪欢孟德超王莉何向明 来源:《新材料产业》2015年第09期 锂离子电池具有电压高、比能量高、质量轻、体积小、自放电小、寿命长等众多优点,是目前综合性能最好的电池体系之一,广泛应用于高能便携电子设备。在民用领域,锂离子电池正从3C领域(移动电子设备、智能手机、笔记本电脑等)迅速拓展到能源交通领域,包括电动汽车、电网调峰、太阳能、风能电站蓄电等。在国防军事方面,锂离子电池的应用则覆盖了陆(军用通信设备、单兵系统、陆军战车等)、海(潜艇、水下机器人)、空(无人侦察机)等诸多兵种。随着应用范围的迅速扩展,锂离子电池正朝着更高的能量密度(250~ 300Wh/kg)方向发展,同时对电池的安全性及循环寿命提出更高要求。基于当前的嵌入式电 极反应机制及锂离子电池的工艺技术,正极材料的性能是决定锂离子电池的能量密度、安全性及循环寿命等指标的关键因素。 目前研究和应用最多的正极材料主要有:①聚阴离子类型正极材料[1],如磷酸铁锂(LiFePO4)、 LiFe1-xMnxPO4、硅酸盐如硅酸亚铁锂(Li2FeSiO4)等;②尖晶石结构的正 极材料[2],如次锰酸锂(LiMn2O4)、LiMn1.5Ni0.5O4等;③六方层状结构材料LiNi1-x-yCoxMnyO2,如钴酸锂(LiCoO2)、LiNi0.5Mn0.5O2、LiNi1/3Co1/3Mn1/3O2等[3];④富锂层状材料xLi2MnO3·(1-x)LiMO2〔M=锰(Mn),镍(Ni),钴(Co)〕等[4]。其中,LiFePO4广泛应用于动力锂离子电池的正极材料,但受限于理论比容量及电压平台,LiFePO4电池能量密度的提升空间很小。LiMn2O4具有三维的锂离子扩散通道,电压平台高、倍率性 能优越,加上价格上优势,被认为是极具潜力的动力锂离子电池正极材料。然而,LiMn2O4 的理论比容量较低,且高温性能欠佳。通过改性(掺杂)能有效提高其高温性能,但受到理论比容量的限制,LiMn2O4单独使用作为正极在高比能电池领域的应用没有优势。与LiMn2O4处于同一家族的LiMn1.5Ni0.5O4尖晶石正极材料,由于锰离子全部处于正4价,不受Jahn- Teller效应的影响,其高温性能明显改善。在充放电过程中,镍离子为电化学活性过渡金属,其Ni4+/3+,Ni3+/2+氧化还原电位表现出4.7V左右的电压平台,其电池的能量密度比 LiMn2O4的高14.6%,因此受到研究人员的广泛关注及研究兴趣。然而高压(5.0V)电解液的短板限制了LiMn1.5Ni0.5O4材料的应用,虽然和钛酸锂负极搭配使用能取得很好的效果,但造成的能量密度下降将得不偿失。相比之下,富锂层状材料xLi2MnO3·(1-x)LiMO2无论在电压平台还是比容量上都表现出极大的优势。当充电截止电压(vs.Li)达到4.8V时,富锂层状材料可发挥出超过250mAh/g的可逆比容量,在目前所有的嵌入式正极材料中是最高的。正因为如此,富锂层状材料在学术界及工业界都引起极大的研究兴趣,被认为值下一代高比能电池的首选正极材料。然而这类正极材料的劣势也非常明显,例如循环过程的电压衰减[5]、充 放电过程中的电压滞后问题[6]、首次库伦效率低、倍率性能及循环稳定性差、电解液匹配问题、批量制备过程中的批次性问题,以上每一个问题都会严重影响富锂层状材料的产业化进

国家标准镍钴锰氢氧化物

国家标准《镍钴锰氢氧化物》 编制说明 (讨论稿) 《镍钴锰氢氧化物》编制组 编写单位:金川集团股份有限公司 2018年6月11日

国家标准《镍钴锰氢氧化物》编制说明 一、工作简况 1. 任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2. 标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的原材料,镍钴锰氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍钴锰氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍钴锰氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。 3. 产品简介 3.1 性质 镍钴锰氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。 3.2 用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。 镍钴锰氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。

团体标准《NCM811型镍钴锰酸锂》-编制说明(预审稿).doc

《NCM811型镍钴锰酸锂》 团体标准编制说明 (预审稿) 一、工作简况 1.1 任务来源与计划要求 根据《关于下达2018年第二批协会标准制修订计划的通知》(中色协科字[2018]75号)的文件精神,由北京当升材料科技股份有限公司负责起草《NCM811型镍钴锰酸锂》协会标准,项目计划编号:T/CNIA 046-2018,计划完成年限2019年。 1.2 产品简介 新能源车用动力锂电池选用的正极材料主要有锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料,其中镍钴锰酸锂三元材料以其高容量、长寿命、高安全性等综合优势成为动力电池的首选。而三元材料又包括以LiNi1/3Co1/3Mn1/3O2,LiNi0.5Co0.2Mn0.3O2,LiNi0.6Co0.2Mn0.2O2及LiNi0.8Co0.1Mn0.1O2等为代表的不同镍、钴、锰含量组成的材料。 LiNi0.8Co0.1Mn0.1O2(称为NCM811型镍钴锰酸锂)即为镍钴锰酸锂三元材料的一种,其组成为镍钴锰摩尔含量约为79%~85%、5%~16%、5%~16%。 商品化的NCM811型镍钴锰酸锂,从形貌上区分为团聚型和单晶型两种,团聚型为一次颗粒团聚成球形或类球形的二次颗粒,单晶型为颗粒之间无团聚的单晶颗粒,其SEM图如图1所示。 图1 NCM811型镍钴锰酸锂产品SEM图(左为团聚型,右为单晶型)NCM811型镍钴锰酸锂作为应用前景优良的正极材料,制作成的锂离子电池可被应用于电动汽车,3C等领域。

1.3 标准编写的目的和意义 作为国家战略新兴产业,新能源汽车是应对能源危机、大气污染和汽车产业转型升级的有效途径。新能源汽车的续航里程、寿命和安全性等是人们关注的重点,这主要取决于动力锂离子电池尤其是正极材料。目前国内外动力锂电正极材料技术路线主要有3个材料体系:磷酸铁锂体系、锰酸锂体系、三元体系(NCM,NCA)。其中磷酸铁锂作为正极材料的电池充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,且生产成本较高,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第一代动力锂电的正极材料;而多元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。国内外主要电池供应商所选用的材料类型如表1所示。 表1国内外主要电池供应商所选用材料类型 国内外主要电池供应商主要选用镍钴锰酸锂三元材料。镍钴锰三元材料主要有LiNi1/3Co1/3Mn1/3O2(简称NCM111),LiNi0.5Co0.2Mn0.3O2(简称NCM523),LiNi0.6Co0.2Mn0.2O2(简称NCM622),LiNi0.8Co0.1Mn0.1O2(简称NCM811)等。在三元材料系列,技术相对成熟的为NCM111,已经在电动工具、电动自行车、充电宝等产品中得到应用,材料的比容量达到158mAh/g,循环寿命500周。但由于该材料的Co含量占过渡金属(Ni-Co-Mn)总量的33%,Ni+Co总量占比达到67%,材料的成本相对较高,而且由于专利垄断进一步

锂离子电池正极材料镍钴锰酸锂的研究进展

锂离子电池正极材料镍钴锰酸锂的研究进展 杨杰10070134 摘要:对镍钴锰酸锂的制备方法(如高温固相合成法、溶胶一凝胶法、共沉淀法)进行了重点论述,并讨论了相应的电化学性能、结构特征和目前存在的问题。并对层状镍钴锰酸锂正极材料的发展进行了展望。关键词:锂离子电池;正极材料;理论容量;层状镍钴锰酸锂Progress in Research of Layered LiNi1/3 Co1/3 Mn1/3 O2 Cathode Material fjDr Lithium—ion Batteries Abstract:The preparation methods of layered LiNi1/3Co1/3Mn1/3 O2 calhode, such as high一tempemture solidrection method,sol-gel method,co—precipitation metllod and etc,was reviewed in this paper.The related electmchemical properties,stmcturecharacteristics and existing problems were discussed as well.The development of the layered“Ni1/3 Co1/3 Mn1/3 O2 cathode material was forecasted. Key words:lithium-ion battery;cathode material;theoretical capacity; layeredNi1/3 Co1/3 Mn1/3 O2 层状LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278 mAh/g。LiNi1/3Co1/3Mn1/3O2具有a-NaFeO2型层状结构,Ni为+2价,co为+3价,Mn为+4价,少量的Ni3+和Mn3+。充电时,Mn4+不变价,Ni2+变为Ni4+,C03+变为c04+。LiNi1/3Co1/3Mn1/3O2集中了LiCoO2,LiNiO2,LiMnO2三种材料各自的优点,成本比LiNi0.8Co0.2O2稍低,电性能比LiNi1/2Mn1/2O2好。 由于存在三元协同效应,其综合性能优于任何一单组合化合物。本文着重对最近层状LiNi1/3Co1/3Mn1/3O2的制备方法以及电化学性能进行了综述。

镍钴锰酸锂标准.doc

1.0 目的 规范电池有限公司镍钴锰酸锂的技术要求、检验方法。 2.0 适用范围 本标准仅针对电池有限公司范围内使用的镍钴锰酸锂。 3.0 定义 N.A. 4.0 检测技术要求及检测方法 4.1 环境要求 除非另有规定,本标准中各项实验应在如下条件下进行: 温度: 25℃ ±5℃;相对湿度: 45%~ 75%;大气压力:86KPa~ 106KPa。 4.2 检验内容 序 检验项目 号 1包装 2外观 △ 3形貌 4pH 值 * △ 5XRD ▲6粒径分布比 表面积△ 7 (m2·g-1 ) 杂质含量8 分析 检验标准 a.标识清楚,内容正确可识别; b.外包装无破损、受潮、未有严重撞击痕迹。 c.有符合 RoHS 环境有害物质标识。 固体粉末无结块 各厂家具体标准见附页 9~ 12 各厂家具体标准见附页 各厂家具体标准见附页 各厂家具体标准见附页 Fe 小于等于300PPM Cu 小于等于300PPM 检验方法 目检 目检 随机取 1g 样品做 SEM 测试 随机取1g 样品加入10ml 水搅拌30min 后,用pH 计测量 随机取 1.5g 样品做 XRD 测试 随机取样 2g 用激光粒度 分析仪测试。随机取样 5g 用比表面分析仪测 试。 随机取 10g 样品做 AAS 或ICP 测试 检验设备 - - JSM6380LV PSH-3C X’ PERT PRO PD MASTERSI ZER2000 NOVA1000e 361MC - AAS Varian710-E S-ICP 9使用特性 * 压实密度 10 -3 ) (g cm· 克容量 11 ( mAh·g-1)配好的浆料流动性好,可通过150 目筛;极片表 面细腻,无划痕色泽均匀,无明显颗粒和掉 料。各厂家具体标准见附页 扣式电池 * ,各厂家具体标准见附页 成品电芯 * ,各厂家具体标准见附页 按正常工艺配料,后进行观察。 具体方法见附页Ⅰ 随机抽取一定量的正极材料做成成品电 芯测试。扣式电池制作及测试方法见 附页Ⅱ。 注:加“ *号”的项目为选测项目,仅在试产阶段、原材料情况异常或客户有特殊要求时进行选测。 ▲△ 加“ ”号的项目为关键参数,加“”号的项目为抽测项目,在试产阶段必测,在正常进料阶段抽测。 5.0 参考文件 N.A. 6.0 记录文件 《进货检验报告》 7.0 附件 附页Ⅰ :

相关主题
文本预览
相关文档 最新文档