当前位置:文档之家› 大型地面光伏电站设计建设

大型地面光伏电站设计建设

大型地面光伏电站设计建设
大型地面光伏电站设计建设

大型地面光伏电站设计建设和运维经验介绍

1、中利腾晖简介

2、项目概况

3、项目优化设计与经验总结

4、项目运维经验与优化

中利腾晖简介

中利腾晖是由中利科技(深交所上市公司,股票代码002309)投资的一家光伏太阳能企业。公司总投资额达8.5亿美元。引进德国、日本及意大利全自动太阳能电池片及组件设备生产线,建设21万平方米独立生产厂房,太阳能电池片组件产能可达到3吉瓦。中利腾晖已经日渐成为国内规模最大、科技含量最高的光伏制造型企业之一。

公司已经从国内外引入200多名行业内的研发、工艺及市场精英人才,组建形成了一家管理现代化的新兴光伏企业,目前公司员工接近4000人。

公司于2010年12月正式开始运作,截止2013年年底,公司产品生产产能达到1.5吉瓦。公司所有产品均已通过欧洲VED产品认证、北美CSA产品认证、德国TUV产品认证、美国UL产品认证、澳大利亚CEC产品认证以及中国金太阳产品认证。

产业链定位

上游战略合作伙伴-----太阳能电池片及组件制造组件及服务供

应商-----系统集成应用

专业的系统集成服务

公司设有光伏系统事业部,提供地面或屋顶大型光伏并网电站、小型并网/离网光伏发电系统、光伏建筑一体化等项目咨询、设计、系统集成和工程总承包服务,为客户提供光伏发电系统整体解决方案或系统工程一站式服务。

公司拥有光伏系统集成专业队伍,成员来自于国内外知名光伏系统工程企业、高效、研究设计院所,拥有丰富的研究、设计、工程经验,公司于各电力设计院保持密切合作关系。

公司以客户利益为核心,近三年来,国内外共完成1GW大中型光伏电站的建设。

系统优化设计

一、组件串并联数量优化设计

二、阵列前后排间距优化设计

组件的遮挡对发电量的影响

三、MW阵列单元优化设计

组件与逆变器的容量比,需考虑直流侧损耗,组件的衰减,逆变器的过载能力等。

华为SUN8000过载能力20%。

四、组件之间串联走线方式优化设计

对于上下排布置的组件阵列,采取上、下排组件各自组串方式,还是上下组件连接组串?

五、缩短组件接线盒引线优化设计

带来成本降低、压缩的减小、接线的方便快捷

六、站用辅助电源的优化设计

七、组串联逆变器代替集中式大型逆变器设计

八、组串式方案与集中式方案相比,初始投资已经基本持平。

中利腾晖系统集成技术优势

(1)组件性能匹配技术,提高电站效率

利用腾晖电力制造电池片和组件的优势,从硅片筛选分级、电池片测试分档、组件内部串联匹配一直到增强组串的匹配性设计,降低组件匹配塑损失,保证电站发电功率的最大化。

(2)选用先进的高性能设备,确保电站可靠性

采用先进逆变器、汇流箱和高功率密度逆变升压设备,减少材料用量,降低设备成本;具备低电压穿越、功率因数可调、智能监控等功能,提高电站可靠性。

(3)综合布线优化技术,降低损耗

进行直线、交流综合布线优化设计、集电网络设计及线缆选型,降低线路损耗及线缆量。

(4)快速反应,施工合理、安全、可靠,加快电站建设速度。

项目管理和建设

中利腾晖光伏项目采取项目经理责任制,引进国际先进项目管理理念,严格执行项目管理5大过程组,详细制定项目管理计划。

经验分享

1、项目选址对项目的建设、成本和收益影响巨大;

2、光伏系统成功的关键是高质量的工程设计;

①选择合适的方案,包括与地形匹配,对成本和收益的影响

②主要部件选型(组件,逆变器)直接影响项目收益

3、需要有周密的项目策划和切实可行项目行动计划;

①方案的设备易采购、易齐套、易实施

4、光伏接入系统的早期规划和设计,接入电网相关手续的办理,是电站成功并网发电的前提条件

运行维护要点:

一、建立完善的技术文件管理体系

主要包括:

1、建立电站的设备技术档案盒设计施工图纸档案

包括:

①设计施工、竣工图纸

②各设备的基本工作原理、技术参数、设备安装规程、设备调试步骤

③所有操作开关、旋钮、手柄及状态和信号批示的说明

④设备运行的操作步骤

⑤电站维护的项目及内容

⑥维护日程和所有维护项目的操作规程

2、建立电站的信息化管理系统

利用计算机管理系统建立电站数据库,内容包括两方面

①电站的基本信息:气象地理资料、交通信息等

②电站的动态信息:电站供电信息、电站运行中出现的故障和处理方法。

3、建立电站的运行期档案

日常维护工作主要是每日测量并记录不同时间系统的工作参数,主要内容有:

①日期、记录时间

②天气状况

③环境温度

④逆变器直流输入电流、电压

⑤开关柜输出电流、电压及用电量等

二、完善维护管理的项目内容

1、光伏板的清洁

①清洁周期:一个月

②清洁工具:清水、干净的软布,切勿用有腐蚀性的溶剂或用硬物擦拭。

③清洁时间:没有阳光的时间或早晚,光伏组件被阳光晒热的情况下用冷水清洗会使玻璃破裂。

2、检查方阵之间的连接是否牢固。

定期检查螺丝是否脱落钢构件支架有没有锈蚀

3、支架与接地系统的连接是否可靠

4、箱式变电站的维护

主要有:①防水:爱热水蒸气损坏设备②隔离:小动物等进入。

5、高低压配电线路

①架空线路日常巡检主要是检查危及线路安全运行的内容,及时发出

缺陷,进行必要的维护。

②线路老化及时解决,以免发生意外

三、加强人员的培训

主要针对两方面的人员进行:

①对专业技术人员进行培训,针对运行维护管理存在的重点和难点问题,组织专业技术人员进行各种专题的内部培训工作,并将技术人员送出去进行系统的相关知识培训,提高专业技术人员的专业技能。

②对电站操作人员的培训,经过培训,使其了解和掌握光伏发电的基本工作原理和个设备的功能,并要达到能够按要求进行电站的日常维护工作,具有能判断一般故障的产生原因并能解决的能力

四、建立通畅的信息通道

设立专人负责与电站操作人员和设备厂家的联系。当电站出现故障时,操作人员能及时将问题提交给相关部门,同时也能在最短的时间内通知设备厂家和维修人员及时到现场进行修理。

对每个电站都要建立全面完善的技术文件资料档案,并设立专人负责电站技术文件的管理,为电站的安全可靠运行提供强有力的技术基础数据支持。

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

(完整版)光伏发电站设计规范GB50797-2012

光伏发电站设计规范(GB 50797-2012)1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array

将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system 通过支架系统的旋转对太阳入射方向进行实时跟踪,从而使光伏方阵受光面接收尽量多的太阳辐照量,以增加发电量的系统。 2.1.10单轴跟踪系统 single-axis tracking system 绕一维轴旋转,使得光伏组件受光面在一维方向尽可能垂直于太阳光的入射角的跟踪系统。 2.1.11双轴跟踪系统 double-axis tracking system 绕二维轴旋转,使得光伏组件受光面始终垂直于太阳光的入射角的跟踪系统。 2.1.12集电线路 collector line 在分散逆变、集中并网的光伏发电系统中,将各个光伏组件串输出的电能,经汇流箱汇流至逆变器,并通过逆变器输出端汇集到发电母线的直流和交

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

水面光伏电站的设计方案与成本

一、某地区大型水库项目概况(参考) 本项目选址,水域开阔,面积约为3000亩,项目现场照片情况如下: 水库的深度约3~4米,采用漂浮式光伏水面电站形式。组件和汇流箱漂浮在水面上,逆变器及后端设备设置在岸基上。 二、水面漂浮式光伏电站解决方案 第一方案:传统浮筒 + 光伏支架方案 1)结构方案 传统浮筒尺寸为500*500*400mm,方阵主要采用单排浮筒,即可提供足够支撑。 另外一方面,考虑到系统维护通道的情况,需要每个浮筒阵列间隔使用双排浮筒。 组件子阵为2*11,采用255W组件,大方阵为6*16个子阵。大方阵单排浮筒和双排浮筒间隔使用。目的是综合考虑成本及电站维护通道的要求。 阵列面积—6327.75㎡ 光伏组件----2112块,538.56KW 浮筒----4191个 锚----预估60组 支架-----96组

2)方阵抛锚固定方案 锚固系统采用水下抛锚方式。先将组装好的浮码头拖移到合适的位置,与岸边通道对齐后,进行初步定位,待整个码头位置基本就位后开始进行锚固作业。 3)系统容量 本方案组件阵列面积6327.75㎡,功率容量为538.56KW。本项目3000亩水域,水域利用率通常60%-80%。保守情况下按照60%水域利用率计算,可以放置190个模块化组件阵列,约合102.3MW。 4)电气方案 电气系统与结构方案配套,22块组件全部串联形成子阵。每16个子阵并联入一个汇流箱。阵列为6*16个子阵组成,即每个阵列有6个汇流箱。 每2个阵列,即4224块组件(1077.12KW)接入到一台1MW的集中逆变站升压到35KV,送往站区再升压并网。汇流箱放置在光伏支架背面,漂浮于水面上,逆变器及后端设备安置于岸基上。 本项目共401280块255W多晶硅组件, 95组1MW的集中光伏逆变站,1140个16路入口的汇流箱,合计容量102.3MW。 5)方案概算表 水面电站电气设备及并网部分成本与地面电站基本无异,在此不再阐述。

光伏发电站设计规范(GB 50797-2012)

光伏发电站设计规范(GB 50797-2012) 1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system

光伏电站设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长 的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个 2.88kWp的小型系统,平均每天发电 5.5kWh,可供一个1kW的负载工作 5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度 2.5℃;最热月7月份,平均温度27.6℃。

分布式光伏电站设计方案参考

北京市XX厂房 分布式并网光伏发电设计方案 设计单位:北京钇恒创新科技有限公司设计人:屈玉秀日10年4月2017设计日期:

1 / 14 一、项目基本情况 北京延庆县XX工厂厂房,占地15000平方米,其中水泥屋顶可利用面积约7000平方米。年用电约25万度,其中,白天用电约15万度(白天综合电价1元/度);夜间用电10万度(夜间综合电价0.4元/度);全年缴纳电费约19万元。 1、项目建设的可行性 1.1 北京市具备建设分布式并网光伏发电系统的条件 北京地区太阳辐射量全年平均4600~5700MJ/m2。多年平均的年总辐射量为1371kwh/m2 北京地区年平均日照时数在2000~2800h之间,多年平均日照时数为2778.7h(从北京气象局获悉)。通过测算,北京市如果按照最佳倾角36°敷设光伏电池板,峰值小时数为1628h(通过专业软件计算获得),首年满发小时数=1628h*80%(系统效率)=1302.4h 首年发电量=450KW*1302.4h=586080kWh≈58.6万kwh 1.2 北京市分布式光伏发电奖励资金管理办法 为进一步加快本市分布式光伏发电产业发展,优化能源结构,根据《中华人民共和国可再生能源法》、《中华人民共和国预算法》、《国务院关于促进光伏产业健康发展的若干意见》和《北京市分布式光伏发电项目管理暂行办法》等有关规定,适用范围。本办法适用于在北京市行政区域范围内建设的分布式光伏发电项目,具体是指在用户所在场地或附近建设运行,以用户侧自发自用为主,多余电量上网,且在配电网系统平衡调节为特征的光伏发电设施。 奖励对象和标准。对于2015年1月1日至2019年12月31日期间并网发电的分

彩钢瓦屋顶光伏电站设计方案及投资资料

湘潭彩钢瓦屋顶光伏并网发电项目初步设计方案 湖南科比特新能源科技股份有限公司 2015年7月

一、设计说明 1、项目概况 本项目初步设计装机容量为642.6K Wp,属并网型分布式光伏发电系统(自发自用,余电上网)。光伏组件安装在楼顶屋面彩钢瓦上。光伏组件采用与彩钢瓦平行的安装方式。本项目共安装2520块255Wp太阳能电池组件,8台15路光伏直流防雷汇流箱,1台8进1出光伏直流配电柜,1台630K Wp逆变器(无隔离变压器),1台630KV A带隔离升压变压器及1台并网计量柜。 项目于合同签订后15个工作日内即可开始建设,预计6周后可并网发电并投入运行。 光伏组件阵列发出的直流电分120串先经8台15路光伏直流防雷汇流箱汇流,再经1台8进1出光伏直流配电柜进行二次汇流,再连接到630K Wp逆变器,再经逆变器转换为315V交流,再经升压变将电压升至400V,最后经并网计量柜后接至低压电网,所发电量优先供工厂自身负载(机器、照明、动力和空调等)使用,余电送入电网。 太阳电池方阵通过电缆接入逆变器,逆变器输入端含有防雷保护装置,经过防雷装置可有效地避免雷击导致设备的损坏。 按《电力设备接地设计规程》,围绕建筑物敷设闭合回路的接地装置。电站内接地电阻小于4欧。 光伏系统直流侧的正负电源均悬空不接地。太阳电池方阵支架和机箱外壳通过楼顶避雷网接地,与主接地网通过钢绞线可靠连接。 屋顶设备,含电池板,支架,汇流箱等设备总质量约为50吨,单位面积载荷约为50吨÷(160m×60m)=10.2kg/m2 。 2、设计依据 本工程在设计及施工中执行国家或部门及工程所在地颁发的环保、劳保、卫生、安全、消防等有关规定。以下未包含的以国家和有关部门制订、颁发的有关规定、标准为准。如国家有关部门颁发了更新的规范、标准,则以新的规范、标准为准。 参考标准: GB 2297-89太阳能光伏能源系统术语

2MW光伏电站设计方案

宁夏塞尚乳业2MW光伏电站 设计方案 宁夏银新能源光伏发电设备制造有限公司 2012-5-15

一、综合说明 (4) 1、概述 (4) 2、发电单元设计及发电量预测 (6) 2.1楼顶安装 (6) 2.2车间彩钢板安装 (6) 2.3系统损耗计算 (8) 2.4光伏发电量预测 (9) 二、光伏电站设计: (10) 1、光伏组件的选型及参数 (10) 2、逆变器设计: (12) 3、逆变器的选型 (13) 4.防逆流设计 (15) 三、太阳能电池阵列设计 (16) 1并网光伏发电系统分层结构 (16) 2.系统方案概述 (17) 3.太阳能电池阵列子方阵设计 (17) 4.电池组件串联数量计算 (18) 5.太阳能电池组串单元的排列方式 (20) 6.太阳能电池阵列行间距的计算 (20) 7.逆变器室布置 (21) 8.太阳能电池阵列汇流箱设计 (21) 9.太阳能电池阵列设计 (22) 10.光伏阵列支架设计 (22) 四.电气 (22) 1电气一次 (22) 2电气二次 (22)

一、综合说明 1、概述 宁夏是我国太阳能资源最丰富的地区之一,也是我国太阳能辐射的高能区之一(太阳辐射量年均在4950MJ/m2~6100MJ/m2之间,年均日照小时数在2250h-3100h之间),在开发利用太阳能方面有着得天独厚的优越条件一地势海拔高、阴雨天气少、日照时间长、辐射强度高、大气透明度好。区域内太阳辐射分布年际变化较稳定,因地域不同具有一定的差异,其特点是北部多于南部,尤以灵武、同心地区最高,可达6100MJ/m2,辐射量南北相差约1000MJ/m2。灵武、同心附近是宁夏太阳辐射最丰富的地区。

光伏电站设计 完整

光伏电站设计 前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个 1 兆瓦的光伏并网发电单元,分别经过35KV变压配电装置并入电网,最终实现将整个光伏并 网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个 太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜, 然后经光伏并网逆变器和交流防雷配电柜并入35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40 元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在 13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36 元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 ⑵根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率n 1:光伏阵列在1000W/ rf太阳辐射强度下,实际的直流输出功率与 标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损

失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率n 2 :逆变器输出的交流电功率与直流输入功率之比, 取逆变器效率95%计算。 (3)交流并网效率n 3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 ⑷系统总效率为:n 总=n 1 Xn 2 Xq 3=85% x 95% x 95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐 射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量 计算经验公式为: R 3 =S X [sin( a + 3 )/sin a ]+D 式中: R 3 --倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 a --中午时分的太阳高度角 3 --光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表: 不同倾斜面各月的太阳辐射量(KWH/m2)

太阳能光伏发电项目设计方案

梦之园太阳能光伏发电项目 设 计 方 案 编制单位:光宏照明有限公司 编制日期:2013年7月12日

1.综合说明 1.1.编制依据 光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。根据国家现行的法规和规范编制: 1)IEC61215 晶体硅光伏组件设计鉴定和定型 2)IEC6173O.l 光伏组件的安全性构造要求 3)IEC6173O.2 光伏组件的安全性测试要求 4)GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》 5)SJ/T11127-1997《光伏(PV)发电系统过电压保护—导则》 6)GB/T 19939-2005《光伏系统并网技术要求》 7)EN 61701-1999 光伏组件盐雾腐蚀试验 8)EN 61829-1998 晶体硅光伏方阵I-V特性现场测量 9)EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验) 10)EN 61345-1998 光伏组件紫外试验 11)GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量 12)GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 13)GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据 14)GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 15)GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 16)GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的光谱失配误差的计算》 17)GB 6495.8-2002 《光伏器件第8部分: 光伏器件光谱响应的测量》

大型地面光伏电站设计建设

大型地面光伏电站设计建设和运维经验介绍 1、中利腾晖简介 2、项目概况 3、项目优化设计与经验总结 4、项目运维经验与优化 中利腾晖简介 中利腾晖是由中利科技(深交所上市公司,股票代码002309)投资的一家光伏太阳能企业。公司总投资额达8.5亿美元。引进德国、日本及意大利全自动太阳能电池片及组件设备生产线,建设21万平方米独立生产厂房,太阳能电池片组件产能可达到3吉瓦。中利腾晖已经日渐成为国内规模最大、科技含量最高的光伏制造型企业之一。 公司已经从国内外引入200多名行业内的研发、工艺及市场精英人才,组建形成了一家管理现代化的新兴光伏企业,目前公司员工接近4000人。 公司于2010年12月正式开始运作,截止2013年年底,公司产品生产产能达到1.5吉瓦。公司所有产品均已通过欧洲VED产品认证、北美CSA产品认证、德国TUV产品认证、美国UL产品认证、澳大利亚CEC产品认证以及中国金太阳产品认证。 产业链定位 上游战略合作伙伴-----太阳能电池片及组件制造组件及服务供 应商-----系统集成应用 专业的系统集成服务

公司设有光伏系统事业部,提供地面或屋顶大型光伏并网电站、小型并网/离网光伏发电系统、光伏建筑一体化等项目咨询、设计、系统集成和工程总承包服务,为客户提供光伏发电系统整体解决方案或系统工程一站式服务。 公司拥有光伏系统集成专业队伍,成员来自于国内外知名光伏系统工程企业、高效、研究设计院所,拥有丰富的研究、设计、工程经验,公司于各电力设计院保持密切合作关系。 公司以客户利益为核心,近三年来,国内外共完成1GW大中型光伏电站的建设。 系统优化设计 一、组件串并联数量优化设计 二、阵列前后排间距优化设计 组件的遮挡对发电量的影响 三、MW阵列单元优化设计 组件与逆变器的容量比,需考虑直流侧损耗,组件的衰减,逆变器的过载能力等。 华为SUN8000过载能力20%。 四、组件之间串联走线方式优化设计 对于上下排布置的组件阵列,采取上、下排组件各自组串方式,还是上下组件连接组串? 五、缩短组件接线盒引线优化设计 带来成本降低、压缩的减小、接线的方便快捷

光伏电站施工图设计说明

工程检索号:QHKJ-NA00341S-J0101 滑县凤凰光伏金太阳示范项目 2.5MWp工程 施工图设计 光伏部分第1卷第1册 施工图设计说明 QHKJ-NA00341S-J0101

北京乾华科技发展有限公司 2012-3-25

批准:日期: 审核:日期: 校核:日期: 编写:日期:

1.设计依据 (1) 2.工程概况 (2) 3.主要设计原则 (2) 4.施工安装要求及注意事项 (3) 5.施工图卷册目录 (6)

1.设计依据 1.1 滑县凤凰光伏金太阳示范项目 2.5MWp工程相关输入资料: 1)《滑县凤凰光伏金太阳示范项目 2.5MWp技术服务合同》; 2)《滑县凤凰光伏金太阳示范项目 2.5MWp工程设计协调会会议纪要》; 3)国家有关法令、法规、政策及有关设计规程、规范、规定等; 4)业主提供的本项目相关建筑结构、基础工程资料。 1.2 国家颁布的有关技术标准及行业技术标准、法规及规范太阳能并网光伏电站相关的国家 颁布的有关技术标准及行业技术标准、法规及规范:GB/T 2296-2001 《太阳电池型号命名方法》 GB/T 2297-1989 《太阳光伏能源系统术语》 GB/T 4797.4-1989 《电工电子产品自然环境条件太阳辐射与温度》 ICE 60904-1-2006 《光伏器件第1 部分:光伏电流- 电压特性的测量》 GB/T 6495.2-1996 《光伏器件第2部分:标准太阳能电池的要求》 GB/T 6497-1986《地面用太阳电池标定的一般规定》 GB/T 1 82 1 0-2000 《晶体硅光伏(PV)方阵I-V 特性的现场测量》 GB/T 18479-2001《地面用光伏(PV发电系统概述和导则》 GB/T 6495.3-1996 《光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据》GB/T 6495.4-1996 《晶体硅光伏器件的I-V 实测特性的温度和辐照度修正方法》 GB/T 9535-1998 《地面用晶体硅光伏组件设计鉴定和定型》 GB_T20047.1-2006《光伏(PV)组件安全鉴定第1部分:结构要求》 SJ/T 10460-1993 《太阳光伏能源系统图用图形符号》 SJ/T 9550.29-1993 《地面用晶体硅太阳电池单体质量分等标准》 SJ/T 9550.30-1993 《地面用晶体硅光伏组件质量分等标准》 SJ/T 10459-1993 《太阳电池温度系数测试方法》 CECS 84-1996《太阳光伏电源系统安装工程设计规范》 CECS 85-1996《太阳光伏电源系统安装工程施工及验收规范》 钢结构设计规范《GB50017-2003》;以上规范与标准如有最新版,均以最新版为准。2.工程概况 滑县凤凰光伏金太阳示范项目2.5MW|工程所在地地理坐标为:东经114.35。,北纬 36.1 °。位于河南省滑县凤凰光伏厂区内,光伏组件安装区域占地面积约为 1 9000平方米。

太阳能光伏发电项目设计方案

太阳能光伏发电项目设计方案梦之园太阳能光伏发电项目 设 计 方 案

编制单位:光宏照明有限公司 编制日期:2013年7月12日 1.综合说明 1.1.编制依据 光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。根据国家现行的法规和规范编制: 1)IEC61215 晶体硅光伏组件设计鉴定和定型 2)IEC6173O.l 光伏组件的安全性构造要求 3)IEC6173O.2 光伏组件的安全性测试要求 4)GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》 5)SJ/T11127-1997《光伏(PV)发电系统过电压保护—导则》 6)GB/T 19939-2005《光伏系统并网技术要求》 7)EN 61701-1999 光伏组件盐雾腐蚀试验 8)EN 61829-1998 晶体硅光伏方阵I-V特性现场测量 9)EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验) 10)EN 61345-1998 光伏组件紫外试验 11)GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量 12)GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 13)GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据 14)GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 16)GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的

分布式光伏电站初步设计报告图纸及说明书

分布式光伏电站初步设计报告图纸及 说明书

XXXXXXXXXXXXXXXXXXXXXXXX项目初步设计报告、图纸及说明书一、设计报告: 本项目建设在XXXXXXXXXXXXX地点,拟建分布式地面村级光伏电站为 1 个,电站设计安装容量为XXXXXX千瓦,盈余统筹用于发展壮大村集体经济。本项目利用太阳能源,不产生废水、废弃物、废气、噪声等污染源,符合环境保护要求。经设计单位及公司主要技术人员现场勘测,最终采用地埋走线,经过箱式变压器进行并网。 1、基础开挖 电缆预埋开挖:从逆变器开挖,深度为80cm,延伸至高压箱变并网点。 2、电站施工 该项目设计有XXXXXXXXXXXXXXXXXXXXX公司设计。施工XXXXXXXXXXXXXXXXXXXXX公司承建。 二、设计图纸: 设计图纸图片1 设计图纸图片2 三、说明书: 1、光伏组件说明

现阶段本工程拟采用xxxxxxxxxxxxx有限公司生产的xxxxxWp单晶太阳能电池组件进行光伏发电的系统设计和发电量预测。 XXXXXWP多晶组件 型号Xxxxxxx 峰值功率Xxxxx 开路电压Xxxxxx 短路电流Xxxx 最大工作电压Xxxx 最大工作电流XXXX 电池片尺寸XXXXX 电池排列方式、数量XXXXX 重量XXXX 尺寸XXXXX 正常使用25年后组件输出功率损耗不超过初始值 的20% 光伏电站布置方案 本项目建设规模为XXXXXKWp,实际布置容量为XXXXMWp,共采用XXXXXWp型太阳能电池XXXXX片。 本工程的太阳能电池组件的固定方式采用倾角固定,阵列设计倾角为26o,阵列设计方位为0 o。组件排列方式为竖置,横向(HI)组件布置10~60块,竖向(H2)组件布置2块,每排间距(DI) 0.5m,每列间距(D2)0.5m。安装阵列时根据实际屋顶面积进行布设。

光伏发电设计方案

1概述 1.1设计依据 1.1.2设计围 本工程光伏并网发电系统,一期工程规模10MW,本工程设计围为 (1)新建110KV升压站一座 (2)相关电器计算分析,提出有关电器设备参数要求 (3)相关系统继电保护、通信及调度自动化设计 2.电力系统概述 3..1.电气主接线 本期工程建设容量为20MWp,本期光伏电站接入110KV系统,光伏电站设110KV、35KV集电线路回,经一台升压变电站接入电站110KV变电站,SVG 容量为10Mvar 3.1.3.1 110KV升压站主接线设计 本期110KV升压站设计采用1台20MWa/110KV升压变压器,1回110KV出线。 3.1.3.2 光伏方阵接线设计 1概述;1.1设计依据;1.1.11遵循的主要设计规、规程、规定等:;1)《变电所总布置设计技术规程》(DL/T205;2)《35kV-110kV无人值班变电所设计规程;3)《3kV~110kV高压配电装置设计规》(;4)《35-110KV变

电站设计规》(GB20;5)《继电保护和安全自动装置技术规》(GB14;6)《电力装置的继电保护和自动装置设计 1 概述 1.1设计依据 1.1.11遵循的主要设计规、规程、规定等: 1)《变电所总布置设计技术规程》(DL/T2056-1996); 2)《35kV-110kV无人值班变电所设计规程》(DL/T5103-1999); 3)《3kV~110kV高压配电装置设计规》(GB20060-92); 4)《35-110KV变电站设计规》(GB20059-92); 5)《继电保护和安全自动装置技术规》(GB14285-93); 6)《电力装置的继电保护和自动装置设计规》(GB20062-92); 7)《交流电气装置过电压保护和绝缘配合》; 8)《微机线路保护装置通用技术规程》(GB/T15145-94); 9)《电测量仪表装置设计规程》(DJ9-87); 10) 其它相关的国家规程、规及法律法规。 1.2设计围

屋顶光伏电站设计建设方案

屋顶光伏电站设计建设方案 工商业屋顶面积大,用电需求量大,安装光伏发电站之后不仅可以满足日常用电量,多余电量还可以并入国家电网换取收益。 那工商业光伏电站如何建设呢?下面就跟着小晶来看看吧。 1确定安装容量 确定光伏电站的安装位置,电站不能有建筑、树木遮挡形成阴影;根据可用面积估算电站容量,每平方米可安装组件容量为100W左右。 以一个可用面积为1000m2的屋顶为例,可建设一个约100kW的电站。 水泥平屋顶安装安装 彩钢瓦屋顶安装 2选择并网方式 自发自用,余电上网

收益=度电补贴+卖电收益+节省电费 自发自用,余电上网并网模式适合白天用电量较大的厂房,自用比例越高,成本回收周期越短。 ?全额上网 收益=度电补贴+卖电收益 全额上网并网模式适合白天用电量较少的厂房,并网简单,享受全额上网电价。 3设备选型 ?光伏组件 根据项目要求、成本、转换效率和可用面积、选择单晶或者多晶组件。 按某品牌多晶硅电池板参数:选取275Wp组件396块,总功率 108.9kWp。 ?光伏逆变器

直流电缆要求:直流电缆一般选择光伏认证专用线缆,目前常用的是PV1-F 1*4mm。光伏阵列到逆变器的直流电缆长度应尽可能短,以减少线缆上的功率损耗。 交流电缆要求:交流线缆一般选用YJV型电缆,根据逆变器最大输出电流,查询线缆载流量,可确定线缆的型号。 33kW逆变器配置YJV 4×25+1×16mm2铜芯线缆即可满足载流要求。 汇流箱出线配置YJV 4×70+1×35mm2铜芯线缆即可满足载流要求。 光伏直流电缆 光伏直流电缆 4系统安装要求 组件排布 组件朝向:理想的安装方位角是正南; 组件倾角:系统最佳倾角近似于当地纬度角,或者根据屋顶结构,组件平; 行于屋顶坡度铺设,使用角度测量仪可测量倾角; 组件前后排间距:间距应能保证冬至日早上9点至下午3点太阳能电池方阵不被遮挡。通过使用EXCEL表公式计算,选择纬度、组件宽度、长度、倾角即可计算出合适间距。以广州地区(北纬23°)为例:

薄膜光伏发电设计简述

薄膜光伏发电设计方案 一、光伏发电区设计 1、组件排布 (A)组件选用HNS-ST65H,组件规格: (B)电站按照每1MWp组件容量为一个发电单元(子系统)进 行设计,每1MWp有15600块组件(约合1014kWp);

(C)每两个组件叠加竖放排列,以当地最佳倾角角度或者稍低 为准进行设计; 行间距

(D)10的倍数的组件数量排列成一个阵列,每个发电单元由多 个阵列组件组成; 2、组件串并联 每10块组件为一串(650Wp),每6串组件进一个汇流盒(3900Wp),每13个汇流盒进一个汇流箱(50700Wp),每10个汇流箱进一个直流柜(507kWp),每个直流柜对应一个逆变器(500kW),每两个逆变器对应一个发电单元(或称子系统,1014kWp)。 3、汇流盒、汇流箱排布 (A)每个汇流盒就近组件固定在组件旁边的组件支架上; (B)每个汇流箱就近汇流盒安装在组件支架上,靠近直流 柜方向; 4、电站整体排布 (A)按照设计院可研内容及地勘要求,规划所需土地,排 布好组件单元; (B)根据设计院可研内容及地勘要求,划定好开关站位置; (C)布置好道路,将各发电单元排布好; 二、支架设计 1、支架基础设计

根据地势情况,选择条形基础、柱状基础、螺旋桩基础图1 条形基础: 图2 柱状基础: 图3 螺旋桩基础:

2、支架本身设计 根据当地太阳能辐射量计算最佳倾角及光伏电站所在地的风力情况进行设计,并进行载荷复核。 采用两种固定方案——平铺方式及固定倾角方式 例4:见上图 三、电气设计

(1)一次电气设计 1、汇流盒设计:负极做防反保护,6路汇流; 2、汇流箱设计:负极接地,监控模块,防雷保护,13路

光伏发电项目方案设计-完整版

光伏发电项目方案设计-完整版 1 项目概况 本项目计划在AA市XX绿色能源工业园内建设大型的建筑一体化并网光伏电 站。系统安装在院内三个大型厂房的屋顶,系统总装机容量达到9.31MW,安装 2 面积70000m ,预计项目总投资为33516万元。 1.1 AAXX 光伏科技有限公司简介 XX集团介绍(硅料-电池-组件完整产业链) XX光伏介绍(公司资金、生产规模、公司以往项目。可以重点强调XX为广

东最早、最大的太阳电池生产企业,以及XX以前做的光伏建筑一体化项目。 1.2 项目意义 推动行业发展 近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30[%] 以上的增速,2007 年年增长率达到了 50[%],2008 年年增长率甚至达到了 100[%], 年产量达到 6.85GW。太阳电池产量迅速增加的动力来自于世界对太阳能等清洁 能源持续增长的需求。2008 年世界光伏系统新装机容量达到5.95GW,比 2007 年增长了110[%]。按照目前光伏组件4.5$/W的价格计算,世界光伏市场规模接近

三百亿美元。借着世界光伏产业迅速发展的机遇,一批国内光伏企业经过努力, 获得了世界瞩目的发展。2008 年,中国太阳电池产量占全球产量的 44[%],达到 3.0GW。但是,国内光伏企业面临着市场完全依赖国外的困境,要保持国内光伏 企业长期健康的发展,必须尽快打开国内市场。 09 年 3 月,国家颁发了《关于加快推进太阳能光电建筑应用的实施意见》 以及《太阳能光电建筑应用财政补助资金管理暂行办法》,计划以财政补助的方 式推动光电建筑应用示范项目的实施。国内光伏建筑一体化市场有望在近期得到 快速的发展。但是,目前国内市场缺少高质量的光伏建筑一体化

相关主题
文本预览
相关文档 最新文档