当前位置:文档之家› 励磁系统与PSS

励磁系统与PSS

励磁系统与PSS
励磁系统与PSS

技术讲座讲稿

励磁系统与PSS

2008年10月

1. 前言

根据我国国家标准GB/T 7409.1~7409.3-1997“同步电机励磁系统”的规定的定义,同步电机励磁系统是“提供电机磁场电流的装置,包括所有调节与控制元件,还有磁场放电或灭磁装置以及保护装置”。励磁控制系统是包括控制对象的反馈控制系统。励磁控制系统对电力系统的安全、稳定、经济运行都有重要的影响。我国国家标准和行业标准都对励磁控制系统提出了具体的要求。这里,就励磁系统分类、对励磁控制系统的要求、励磁控制系统与电力系统稳定的关系、电力系统稳定器等几个问题和大家一起进行讨论。

2. 励磁系统分类

同步电机励磁系统的分类方法有多种。主要的方法有两种,即按同步电机励磁电源的提供方式分类和同步电机励磁电压响应速度分类两种分类方法。

按同步电机励磁电源的提供方式不同,同步电机励磁系统可以分为直流励磁机励磁系统,交流励磁机励磁系统和静止励磁机励磁系统。

按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。

2.1 直流励磁机励磁系统

由直流发电机(直流励磁机)提供励磁电源的励磁系统叫直流励磁机励磁系统。它主要由直流励磁机和励磁调节器组成。早期的中小容量的同步电机的励磁调节器从发电机的PT(电压互感器)和CT(电流互感器)取得电源;较大容量的同步电机的励磁调节器的电源有时经励磁变压器取自发电机端时,此时,励磁变压器也是主要组成部分(图2-1)。

同步电机的励磁电源是直流励磁机的输出,励磁调节器根据发电机运行工况调节直流

励磁机的输出,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。

直流励磁机主要采用由原动机拖动与主发电机同轴的拖动方式,少数(主要是备用励磁机)为由异步电动机非同轴的拖动方式。直流励磁机的励磁方式,主要有它励、自并励和自励加它励三种方式 。它励方式的直流励磁机的励磁全部由励磁调节器提供;自并励方式的直流励磁机的励磁全部由直流励磁机本身提供,励磁调节的任务是通过调节与励磁绕组相串联的电阻的大小来实现的;自励加它励方式的直流励磁机的励磁,一部分由励磁调节器提供,一部分由直流励磁机本身提供。励磁调节器提供的励磁安-匝与总励磁安-匝之比称为自励系数。早期的直流励磁机还有采用副励磁机做它励电源的,现在已不再采用了。

由于直流励磁机是与主发电机同轴旋转,对于汽轮发电机来说,速度较高,受换向器(整流子)的限制,容量不能做得太大。我国生产的、使用直流励磁机励磁系统的汽轮发电机的最大容量为125MW 。对于水轮发电机来说,速度较低,直流励磁机的容量可能做得大一些,我国生产的、使用直流励磁机励磁系统的水轮发电机的最大容量达到300MW 。随着电力电子技术的发展和在电力工业中的应用,直流励磁机励磁系统,我国新投产的100MW 及以上的发电机已不再使用直流励磁机励磁系统了。

2.2 交流励磁机励磁系统

由交流发电机(交流励磁机)提供励磁电源的励磁系统叫交流励磁机励磁系统。交流励磁机为50~200Hz 的三相交流发电机,交流励磁机的三相交流电压经三相全波桥式整流

发电机 图2─1 直流励磁机系统原理图

装置整流后变为直流电压,向同步发电机提供励磁。

交流励磁机的拖动方式为由原动机拖动与主发电机同轴的拖动方式。交流励磁机的励磁方式绝大部分为它励方式,只有极少数采用复励(有串激绕组)方式。

根据整流装置采用的整流元件的不同,交流励磁机励磁系统可分为交流励磁机不可控整流器励磁系统和交流励磁机可控整流器励磁系统。

交流励磁机不可控整流器励磁系统交流励磁机不可控整流器励磁系统一般由交流励磁机、不可控整流装置、励磁调节器和交流副励磁机等组成(图2-2)。

同步发电机的励磁电源是交流励磁机的输出。不可控整流装置将交流励磁机输出的三相交流电压转换成直流电压,励磁调节器根据发电机运行工况调节交流励磁机的励磁电流和输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。励磁调节器从同轴副励磁机取得电源。副励磁机一般为350~500Hz的中频永磁交流发电机。

有些交流励磁机不可控整流器励磁系统的励磁调节器,不是从同轴副励磁机取得电源,而是通过励磁变压器从发电机机端取得电源,此时,励磁变压器也是主要组成部分(图2-2虚线所示)。

励磁调节器的电源由同轴副励磁机供给时简称为三机系统;励磁调节器的电源通过励磁变压器由发电机供给时简称为两机系统。两机系统中励磁调节器的最大输出电压与发电机的机端电压的大小成正比。

图2─2 交流励磁机不可控整流器励磁系统原理

当不可控整流装置为静止整流装置时,称为交流励磁机不可控静止整流器励磁系统,一般简称为交流励磁机静止整流器励磁系统。此时,交流励磁机的励磁绕组在转子上,与发电机转子及副励磁机转子同轴同速旋转。交流励磁机的电枢、不可控整流装置和励磁调节器都是静止的。

交流励磁机静止整流器励磁系统中的交流励磁机和发电机都需要配滑环、炭刷。又称为有刷励磁(系统)。但是交流机本身没有换向问题,因此,其容量不受限制。但是,由于旋转部件较多,励磁系统发生故障的可能性也较多。同时,由于轴系长,轴承座较多。容易引起机组振动超标,轴系稳定问题应引起注意。

当不可控整流装置采用旋转整流器时,称为交流励磁机不可控旋转整流器励磁系统,一般简称为交流励磁机旋转整流器励磁系统。此时,交流励磁机的励磁绕组在定子上,电枢绕组在转子上。励磁调节器是静止的,交流励磁机的励磁绕组也是静止的。交流励磁机的电枢绕组、副励磁机转子、不可控整流装置与发电机转子同轴同速旋转。交流励磁机和发电机都不需要配滑环、炭刷,因此,这种励磁系统又称为无刷励磁系统。

无刷励磁系统的主要特点是:

交流励磁机和发电机都没有滑环、炭刷,励磁容量可以不受限制;

没有滑环、炭刷,运行维护方便;

没有滑环、炭刷,不会产生火花,可以使用于有易燃、易爆气体的场合;

没有滑环、炭刷,不会产生炭粉和铜末,因而不会导致电机绕组的绝缘被污染而降低绝缘水平。

三机系统和两机系统都可以是无刷励磁系统。

交流励磁机不可控整流器励磁系统是目前我国电力系统中使用最多的励磁系统。

交流励磁机可控整流器励磁系统交流励磁机可控整流器励磁系统由三相可控整流桥、发电机的励磁调节器、交流励磁机及其自励恒压装置(系统)组成(图2-3)。

同步电机的励磁电源是交流励磁机的输出。可控整流装置将交流励磁机输出的三相交流电压转换成直流电压,励磁调节器根据发电机运行工况调节可控整流器的导通角,调节可控整流装置的输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。

这种励磁系统也称为它励可控硅励磁系统。

图2─3 交流励磁机可控整流器励磁系统原理图

在我国使用的交流励磁机可控整流器励磁系统,绝大部分是随发电机一起从俄罗斯和捷克等国家进口的。发电机容量从200MW~1000MW不等。国内基本没有正式生产这种励磁系统。

2.3 静止励磁机励磁系统

静止励磁机是指从一个或多个静止电源取得功率,使用静止整流器向发电机提供直流励磁电源的励磁机。由静止励磁机向同步发电机提供励磁的励磁系统称为静止励磁机励磁

系统。

静止励磁机励磁系统分为电势源静止励磁机励磁系统和复合源静止励磁机励磁系统。

电势源静止励磁机励磁系统又称为自并励静止励磁系统,有时也简称为机端变励磁系统或静止励磁系统。同步电机的励磁电源取自同步电机本身的机端。它主要由励磁变压器、自动励磁调节器、可控整流装置和起励装置组成(图2-4)。励磁变压器从机端取得功率并将电压降低到所要求的数值上;可控整流装置将励磁变压器二次交流电压转变成直流电压;自动励磁调节器根据发电机运行工况调节可控整流器的导通角,调节可控整流装置的输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求;起励装置给同步电机一定数量(通常为同步电机空载额定励磁电流的10~30%)的初始励磁,以建立整个系统正常工作所需的最低机端电压,初始励磁一旦建立起来,起励装置就将自动退出工作。

从厂用电系统取得励磁电源的可控整流器励磁系统,当其电压基本稳定,与发电机端电压水平基本无关时,可以看作为它励可控硅励磁系统;当厂用电系统电压与发电机端电压水平密切相关时,看作为自并励静止励磁系统。

自并励静止励磁系统的主要优点是:

无旋转部件,结构简单,轴系短,稳定性好;

励磁变压器的二次电压和容量可以根据电力系统稳定的要求而单独设计。

响应速度快,调节性能好,有利于提高电力系统的静态稳定性和暂态稳定性。

自并励静止励磁系统的主要缺点是,它的电压调节通道容易产生负阻尼作用,导致电力系统低频振荡的发生,降低了电力系统的动态稳定性。但是,通过引入附加励磁控制(即采用电力系统稳定器--PSS), 完全可以克服这一缺点。电力系统稳定器的正阻尼作用完全可以超过电压调节通道的负阻尼作用,从而提高电力系统的动态稳定性。这点,已经为国

内外电力系统的实践所证明。

美国GE公司生产的称为GENERREX-PSS的励磁系统在我国也有应用。其接线图如图8所示。这是一个性能上介于自并励静止励磁系统和它励可控硅励磁系统之间的励磁系统。发电机的励磁功率由定子绕组槽内的三根附加线棒(称为P线棒)提供的。三根P线棒分别放置在定子上相互为120°空间几何角度的三个槽内,组成的线圈切割气隙磁通,产生基频电势。基频电势被接到励磁变压器的一次侧。励磁变压器的二次电压接到可控整流装置,整流后向发电机提高励磁。

复合源静止励磁机励磁系统又称为自复励静止励磁系统,它采用电压源整流变压器和电流源整流变压器两种整流变压器。

复合源静止励磁机励磁系统主要有三种形式

整流器直流侧两个电源串联、电压相加;

整流器交流侧两个电源并联、电流相加;

整流器交流侧两个电源串联、电压相加。

国产水轮发电机上曾采用过整流器交流侧两个电源串联、电压相加的复合源静止励磁机励磁系统,进口水轮发电机上曾采用过整流器直流侧两个电源串联、电压相加的复合源静止励磁机励磁系统。现在已经基本上不再采用复合源静止励磁机励磁系统了。

图2─4 自并励励磁系统原理图

按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。

常规励磁系统是指励磁机时间常数在0.5s左右及大于0.5s的励磁系统。直流励磁机励磁系统,无特殊措施的交流励磁机不可控整流器励磁系统都属于常规励磁系统。

快速励磁系统是指励磁机时间常数小于0.05s的励磁系统。交流励磁机可控整流器励磁系统,静止励磁机励磁系统都属于快速励磁系统。

高起始励磁系统是指发电机机端电压从100%下降到80%时,励磁系统达到顶值电压与额定负载时同步电机磁场电压之差的95%所需时间等于或小于0.1s的励磁系统。这种励磁系统主要是指采用了特殊措施的交流励磁机不可控整流器励磁系统。所采用的措施主要为加大副励磁机容量和增加发电机磁场电压(或交流励磁机励磁电流)硬负反馈。直流励磁机励磁系统在采用相应措施后也可达到或接近高起始励磁系统。

3. 国家标准和行业标准对励磁系统和励磁控制系统的基本要求

励磁系统和励磁控制系统的含义不同。励磁系统是“提供电机磁场电流的装置,包括所有调节与控制元件,还有磁场放电或灭磁装置以及保护装置”,而励磁控制系统则是包括所有调节与控制元件和控制对象(同步电机)的反馈控制系统,不包括那些不参与调节与控制的元件如灭磁装置等。

励磁系统的国家标准GB/T 7409.1~7409.3-1997 “同步电机励磁系统”对励磁系统的基本性能做出了规定,主要有

3.1当同步发电机的励磁电压和电流不超过其额定励磁电压和电流的1.1倍时,励磁系统应保证能连续运行。

3.2励磁顶值电压应根据电网情况与发电机在电网中的地位确定,但必须:

励磁系统顶值电压的倍数:

a. 100MW及以上汽轮发电机不低于1.8倍;

b. 50MW及以上水轮发电机不低于2.0倍;

c.其他不低于1.6倍。

3.3对于用电势源静止励磁机的系统,其励磁顶值电压倍数应按发电机端正序电压为额定

值80%时计算。

3.4励磁系统允许强励时间应不小于10s。

3.5励磁系统标称响应

50MW及以上水轮发电机和100MW及以上的汽轮发电机励磁系统的标称响应不低于2单位/秒;其他不低于1单位/秒。

3.6自动电压调节器应保证能在发电机空载额定电压的70%~110%范围内进行稳定、平滑

地调节。

3.7励磁系统的手动控制单元,应保证同步发电机磁场电压能在空载磁场电压的20%到额

定磁场电压的110%范围内稳定地平滑调节。

3.8同步发电机在空载运行状态下,自动电压调节器和手动控制单元的给定电压变化速度

每秒不大于发电机额定电压的1%,不小于0.3%。

3.9励磁系统应保证同步发电机端电压调差率(无功电流补偿率):

半导体型±10%

电磁型±5%

3.10励磁系统应保证同步发电机端电压静差率:

半导体型±1%

电磁型±3%

3.11励磁系统应保证在发电机空载运行状态下,频率变化1%时,端电压变化率:

半导体型±0.25%

电磁型±2%

3.12在空载额定电压情况下,当发电机给定阶跃为土10%时,发电机电压超调量应不大

于阶跃量的50%,摆动次数不超过3次,调节时间不超过10s。

3.13当同步发电机突然零起升压时,自动电压调节器应保证其端电压超调量不得超过额

定值的15%,电压摆动次数不超过3次,调节时间应不超过10s。

3.14自动电压调节器按用户要求可以全部或部分装设以下附加功能:

a.远方或就地给定装置;

b.电压互感器断线保护;

c.负载电流(无功或有功)补偿;

d.过励限制;

e.欠励限制;

f.伏赫比(V/Hz )限制;

g.电力系统稳定器(PSS);

h.过励磁保护;

i.其他附加功能。

3.15当磁场电流小于1.1倍额定值时,磁场绕组两端所加的整流电压最大瞬时值不应大于

规定的磁场绕组出厂试验电压幅值的30%。

3.16同步发电机磁场回路使用功率整流器的励磁系统应装设转子过电压保护,并在运行

中可能发生有害过电压情况下可靠地动作。无刷励磁系统叮以不加装转子过电压保护装置。

3.17励磁系统应有自动灭磁功能。能在下述工况可靠的灭磁:

a.发电机运行在系统中,其磁场电流不超过额定值,定子回路外部短路或内部短路;

b.发电机空载;

c.发电机空载强励。

3.18使用功率整流器的励磁系统中的功率整流器,其并支路数等于或大于4,而有1/4支

路退出运行时,应保证包括强励在内的所有运行工况所需的励磁电流,其1/2支路退出运行及并联支路数小于4,而有一条支路退出运行时,应保证同步发电机额定工况连续运行所需励磁电流。

3.19静止励磁系统应能可靠起励,起励电源可采用直流或交流整流电源。

3.20励磁系统中设有必要的信号及保护装置,以防止和监视励磁系统各种故障扩大。3.21励磁系统控制柜的噪声应不大于80 d b (A)。

3.22 励磁系统平均强迫切除率应不大于0.2%。

4. 励磁控制系统的主要任务

同步发电机尤其是大型同步发电机的励磁控制系统对电力系统的安全稳定运行有重要的影响。励磁控制系统的任务虽然可以很多,但其主要任务(在可靠性高的前提下)是维持发电机(或其他控制点例如电厂高压侧母线)的电压在给定值水平上和提高电力系统运行的稳定性。

4.1 同步发电机励磁控制系统的最基本和最主要的任务是维持发电机电压在

给定水平上

同步发电机励磁控制系统可以完成许多任务,但其中最基本和最重要的任务是维持发

电机端(或指定控制点)电压在给定的水平上。我国国家标准规定,自动电压调节器应保证同步发电机端电压静差率小于1%。这就要求励磁控制系统的开环增益(稳态增益)不小于100p.u(对水轮发电机)或200p.u(对汽轮发电机)。

把发电机端电压维持在把维持电压水平看作励磁控制系统最基本最主要的任务,有以下三个主要原因。

第一,保证电力系统运行设备的安全。电力系统中运行的设备都有其额定运行电压和最高运行电压。发电机电压水平是电力系统各点运行电压水平的基础,保证发电机端电压在容许水平上,是保证发电机电压及系统各点电压在容许水平上的基础条件之一,也就是保证发电机及电力系统设备安全运行的基本条件之一,这就要求发电机励磁系统不但能够在静态,而且能在大扰动后的稳态中能保证发电机电压水平在给定的容许水平上。

发电机运行规程规定大型同步发电机运行电压正常变化范围为 5%,最高电压不得高于额定值的110%。

第二,保证发电机运行的经济性

发电机在额定值附近运行是最经济的。当发电机电压下降时,输出同样的功率所需要定子电流会上升,损耗增加。当发电机电压下降过大时,由于定子电流的限制,将使发电机的出力受到限制。因此,规程[3]规定,大型发电机运行电压不能低于额定值的90%,当发电机电压低于95%时,发电机应限负荷运行,其他电力设备也有这个问题。

第三,提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。从下面分析可以看到,提高励磁控制系统维持发电机电压水平的能力的同时,也提高了电力系统的静态稳定和暂态稳定水平。

4.2 同步电机励磁系控制统的重要任务是提高电力系统的稳定性

电力系统稳定可分为功角(机电)稳定、电压稳定和频率稳定等。

功角稳定包括静态稳定、动态稳定和暂态稳定。 励磁控制系统对静态稳定、动态稳定和暂态稳定的改善,都有显著的作用,而且也是改善电力系统稳定的措施中,最为简单、经济而有效的措施。

4.2.1 同步电机励磁控制系统对提高静态稳定的作用

以图4-1为一个单机无限大母线系统,发电机输送功率可以表示为

图4-1 单机无限大母线系统

8.0,1.0,3.0,5.121'======L T T d q d X X X X X X

Eq d s

q X U E Pe δsin ∑?= (4-1)

''sin 'E d s X U E Pe δ∑?= (4-2)

t U s t X U U Pe δsin ∑?= (4-3)

其中 ?????++=+++=+++=∑∑L T T e

L T T d d L T T d d X X X X X X X X X X X X X X 2121''21

设U t =1.0,U s =1.0,发电机并网后运行人员不再手动去调整励磁,则无电压调节器时的静Xd ,Xq ,X ’d X T

1 X T 2

X L

稳极限、有能维持E’恒定的调压器时的极限、有能维持发电机端电压恒定的调压器时的静稳极限分别为:0.4、0.77和1.0。

可见,当自动电压调节器能维持发电机电压恒定时,静态稳定极限达到线路极限,比维持E’恒定的调节器,提高静稳极限约30%.维持发电机电压水平的要求与提高电力系统静态稳定极限的要求是一致的,是兼容的。

当励磁控制系统能够维持发电机电压为恒定值时,不论是快速励磁系统,还是常规励磁系统,静态稳定极限都可以达到线路极限。

4.2.2 同步电机励磁控制系统系统对提高暂态稳定的作用

暂态稳定是电力系统受大扰动后的稳定性。励磁控制系统的作用主要由三个因素决定。

(1) 励磁系统强励顶值倍数

提高励磁系统强励倍数可以提高电力系统暂态稳定。提高励磁系统强励倍数的要求,与提高调压精度并没有矛盾,是兼容的。

(2) 励磁系统顶值电压响应比

励磁系统顶值电压响应比越大,励磁系统输出电压达到顶值的时间越短,对提高暂态稳定越有利。顶值电压响应比,主要由励磁系统的型式决定,但是,励磁控制器的控制规律和参数对电压响应比也可以有举足轻重的影响。有优良控制规律和参数的励磁控制系统,可以把一个慢速励磁改造成一个接近快速励磁系统的高起始励磁系统,一个规律和参数不合理的励磁控制装置也可以把一个快速励磁系统改变为一个慢速励磁系统。

在相同的控制规律下,增大励磁控制系统的开环增益可以提高励磁电压响应比,同时,也提高了电压调节精度。

(3) 励磁系统强励倍数的利用程度

充分利用励磁系统强励倍数,也是发挥励磁系统改善暂态稳定作用的一个重要因素。如果电力系统发生故障时,励磁系统的输出电压达不到顶值,或者维持顶值的时间很短,在发电机电压还没有恢复到故障前的值时,就不进行强励了,那么,它的强励倍数就没有很好发挥,改善暂态稳定的效果就不好。充分利用励磁系统顶值电压的措施之一,就是提高励磁控制系统开环增益,开环增益越大,强励倍数利用越充分,调压精度也越高,也就越有利于改善电力系统暂态稳定。

由此可见,提高励磁控制系统保持端电压水平的能力,与提高电力系统暂态稳定是一致的、兼容的。

4.2.3 同步电机励磁控制系统系统对提高动态稳定的作用

电力系统的动态稳定问题,可以理解为电力系统机电振荡的阻尼问题。

分析证明,励磁控制系统中的自动电压调节作用,是造成电力系统机电振荡阻尼变弱(甚至变负)的最重要的原因之一。在一定的运行方式及励磁系统参数下,电压调节作用,在维持发电机电压恒定的同时,将产生负的阻尼作用。

许多研究表明,在正常实用的范围内,励磁电压调节器的负阻尼作用会随着开环增益的增大而加强。因此提高电压调节精度的要求和提高动态稳定的要求是不兼容的。解决这个不兼容性的办法有:

(1) 放弃调压精度要求,减少励磁控制系统的开环增益。这对静态稳定性和暂态稳定性

均有不利的影响,是不可取的。

(2) 电压调节通道中,增加一个动态增益衰减环节。这种方法可以达到既保持电压调节

精度,又可减少电压调压通道的负阻尼作用的两个目的。但是,这个环节使励磁电

压响应比减少,不利于暂态稳定,也是不可取的。

(3) 在励磁控制系统中,增加附加励磁控制通道

解决电压调节精度和动态稳定之间矛盾的有效措施,是在励磁控制系统中,增加其他控制信号。这种控制信号可以提供正的阻尼作用,使整个励磁控制系统提供的阻尼是正的,而使动态稳定极限的水平达到和超过咱态稳定和静态稳定的水平。这种控制信号不影响电压调节通道的电压调节功能和维持发电机端电压水平的能力,不改变其主要控制的地位]。因此,又称为附加励磁控制。

电力系统稳定器即PSS是使用最广、最简单而有效的附加励磁控制。

4.2.4 提高电力系统稳定性是电网和电厂的共同责任和共同的利益所在

电力系统是由发电(发电厂)、输电(电网)和用电(配电、供电和用户)三部分组成的。电力系统的稳定性是由发电的稳定性、输电的稳定性和用电的稳定性来共同实现的,缺一不可。电力系统的稳定性不但和电网的结构、运行方式的合理安排有关,而且和发电机的控制系统的规律和参数有重要的关系。也只有电力系统的稳定性提高了,才能保证每个发电厂有更多的安全、满发的机会。把提高和保证电力系统稳定的任务看作仅仅是电网的事、与电厂无关的想法是片面的、错误的。

5. 对励磁控制系统的稳定性的要求

为了发挥励磁控制系统在提高电力系统稳定上的作用,励磁控制系统本身必须是稳定的。

励磁控制系统的稳定性包括空载稳定性和负载稳定性。

励磁控制系统的空载稳定性是指发电机不并网、空载条件下的稳定性。由发电机空载条件下的阶跃响应试验来检验。应当注意的是,励磁控制系统的参数应该能满足国家和行

业标准各项指标的要求,而不能用降低要求的条件下来达到稳定性的要求。

励磁控制系统的负载稳定性是指发电机并网带空载条件下的稳定性。励磁控制系统应该能在发电机并网后的各种运行工况下(包括进相运行、伏/赫限制动作、低励磁限制动作、过励磁限制动作等)保持稳定性。

6. 电力系统稳定器的原理与实践

由于电力系统的发展、互联电力系统的出现和扩大、快速自动励磁调节器和快速励磁系统的应用,国内外不少电力系统出现了低频功率振荡,严重影响电力系统的安全稳定运行,成为制约联络线输送功率极限提高的最重要因素之一。

自上世纪50年代末开始,国外就对低频振荡问题和应采取的措施进行了研究并在实际电力系统中得到了应用。

上世纪50年代,前苏联在建设古比雪夫——莫斯科输电系统时就发现,当线路输电功率达到某一定值后,系统就会在没有任何明显的扰动下也出现增幅振荡。他们称之为“自发振荡”,其实质就是今天说的低频振荡。他们研制了“强力式励磁调节器”解决了这个问题。“强力式励磁调节器”就是在原有的电压调节器功能(按发电机端电压的偏差进行调节发电机的励磁)的基础上,引入了发电机定子电流的偏差△I,一次微分I′和二次微分I″(早期)或机端电压频率的偏差△f和一次微分f′作为附加控制(反馈)信号,进行发电机的励磁调节,有效的解决了“自发振荡”问题,满足了系统安全、稳定、经济运行的要求。

上世纪60年代,北美电力系统发生了功率振荡,他们称为低频振荡。其后,在西欧、日本也多次发生输电线功率低频振荡的事例,于是引起了各国对低频振荡问题的普遍重视。

1964年在美国西部即WSCC将水电为主的西北部与火电为主的西南部用230Kv联络线连接后, 出现了6周/分即0.1Hz的功率振荡, 研究证明该振荡可以用火电机组调速器特殊

控制加以消除.

此后,WSCC在92年12月8日,93年3月14日及95年7月11日, 96年7月2日,96年8月10日先后发生了五次低频振荡。其中96年8月1O日最为典型亦最为严重, 现将当时的过程简述如下:当天 WSCC处于水电大发, 向南输送很重的负荷. 由于一条500Kv 联络线故障断开, 潮流转移使得局部地区电压偏低, 此时一个水电厂13台机组由于励磁误动而相继断开, 系统出现了0.2Hz左右的增幅低频振荡, 使系统失去稳定, 解列成数个小系统。

为了抑制低频振荡,研制了以发电机功率、发电机组的轴速度、发电机机端电压频率为信号的附加励磁控制装置,他们称为电力系统稳定器,即PSS,并在系统中得到广泛的应用。美国第一台抑制低频振荡用的电力系统稳定器(PSS)与1966年投入工业试验。由于电力系统稳定器具有物理概念清楚、参数易于选择、电路简单、调试方便等优点,已为各国电力系统普遍接受和采用。

我国从上世纪80年代初开始,在多个省级电力系统和互联电力系统中发生过低频振荡。1983年,湖南电力系统的凤常线、湖北电力系统的葛凤线;1984年广东——香港互联系统联络线;1994年南方互联系统的天广线;1998年川渝电网的二滩电力送出系统;2003年2月23日、3月6日和3月7日的上午7时至8时间,在南方电网的云南至天生桥(罗马线)、天生桥至广东、广东至香港的联络线上;都曾出现个低频振荡。经过分析和研究,这些低频振荡都是励磁系统的负阻尼作用引起的。只要在相应的机组上配置电力系统稳定器,就可以制止这种低频振荡的发生。

在过去的几年里,我国的电力系统经历了由省(区)间联网到大区电网间互联的飞速发展。2001年,实现了东北电网和华北电网的互联,2002年实现了川渝电网和和华中电网的互联,华中电网和华北电网即将在2003年实现互联。华中和华北联网,将形成从四川二

滩电站到东北伊敏电站,绵延数千公里,包括川渝、华中、华北、东北4个大区的巨大电网。南方互联电网(包括粤、黔、滇三省和广西、香港两区)也绵延两千公里左右。

联网工程的研究表明,随着电网的扩大和送电功率的增加,动态稳定问题(低频振荡问题)已成为影响互联系统安全、稳定、经济运行的最重要的因素之一。研究同时表明,在互联电力系统中一般都存在两种振荡模式,即地区性振荡模式(local model,频率一般在0.5~2.0Hz)和区域间振荡模式(interarea model或tieline model,频率一般在0.1~2.0Hz)。研究还表明,解决属于地区性振荡模式的弱阻尼或负阻尼低频振荡问题,可以通过在一个或少数几个电厂配置电力系统稳定器来完成;要解决属于区域间振荡模式的弱阻尼或负阻尼低频振荡问题,仅靠在一个或少数几个发电厂配置PSS是不够的,需要在一大批与该振荡模相关的发电机上配置电力系统稳定器(PSS),才能有效地解决区域间振荡模式的弱阻尼或负阻尼低频振荡问题,保证联网系统的安全、稳定、经济运行。

在我国,从20世纪70年代末开始,对PSS进行了理论的和实验室的试验研究。1982年,我国自行设计和制造的带电力系统稳定器的自动励磁调节器在湖南凤滩水电厂投入工业运行。1983年10月,在湖南电力系统进行了PSS阻尼电力系统低频战地的系统试验,并取得了圆满成功。最近,中国电力科学研究院又开发了“双输入信号的加速功率型”电力系统稳定器,在三峡电厂700MW发电机试验成功,并投入运行。为解决全国联网后出现的0.15Hz左右的低频振荡的阻尼作出了贡献。

6.1 低频振荡原因分析

采用考虑发电机暂态电势E’q变化的飞利普斯-海佛容(Phillips-Heffrom)模型来分析电力系统动态稳定、低频振荡原因及电力系统稳定器原理是很方便的。

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

励磁系统建模危险点预控措施表(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 励磁系统建模危险点预控措施表 (新版)

励磁系统建模危险点预控措施表(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 作业名称 励磁系统建模 序号 危险点 控制措施 检查执行情况(工作负责人填写) 1 人员思想状态不稳 班组长或工作负责人要对言行、情绪表现非正常状况的成员进行沟通、谈心,帮助消除或平息思想上的不正常波动,保持良好的工作心态,否则不能进入生产现场进行作业 2 人员精神状态不佳 班组长或工作负责人要观察、了解成员精神状态,对酒后上班、

睡眠不足、过度劳累、健康欠佳等成员严禁进入工作现场3 工作票 1、工作票上所填写的安全措施应完善; 2、工作票上的安全措施确已正确执行,并确认无误; 3、工作负责人应向工作班成员交待安全注意事项; 4、外协人员或厂家工作人员必须在监护下进行作业。 4 人身触电 1.试验设备摆放时应轻起轻放,避免碰撞。 2.远离带电设备,对高压设备保持一定的距离(10kV及以下的带电设备应保持0.7米的安全的距离、20kV/35kV应保持1.0米的安全距离、110kV及以下的应保持1.5米的安全距离、220kV应保持 3.00米得安全距离) 3.接线时严格参照试验接线图。 4.接线完成以后由试验负责人检查核实。 5.严禁试验中人员私自改动接地线 5

柴油发电机组励磁系统的智能控制方法研究

柴油发电机组励磁系统的智能控制方法研究 摘要:在电力系统中,主要的电源是柴油发电机组。柴油发电机组一般情况下 由柴油发动机、同步发电机和控制系统三部分组成。因为运行环境复杂,柴油发 电机组的输出功率会有很大波动。由于励磁控制系统可以平滑调节发电机机端的 电压波动,因此稳定可靠的励磁控制系统起着十分重要的作用。 关键词:柴油发电机组;励磁控制系统;模糊PID控制;遗传算法 1智能控制的特点及功能 1.1智能控制在PID控制系统的应用概述 鉴于常规PID控制系统的缺陷,为了能够增强控制系统调节动态数据、消除 静态误差值的能力,越来越多的研究者将智能控制引入到常规PID控制系统之中。不同于常规PID控制系统的简单结构,智能控制下的PID控制系统,在具有常规PID控制系统的功能基础之上,又融入了计算机、人工智能、信息技术等多学科,赋予了PID控制系统更为强大的功能,尤其是增强了PID控制系统在动态信息技 术方面的处理能力,有效的消除了静态误差值。智能控制下的PID控制系统运算 能力大大增强,针对复杂环境下的运算能力大幅度增加。从系统结构上来说,智 能控制下的PID控制系统由以下几种结构组成:二元结构、三元结构、四元结构。其中二元结构是指人工智能与自动控制技术相结合;三元结构是指人工智能、自 动控制技术、运筹学相结合;四元结构是指人工智能、自动控制技术、运筹学、 系统论相结合的一种智能控制技术。 1.2智能控制下的PID控制系统特点 从目前的智能控制下的PID控制系统结构来看,智能控制使常规PID控制技 术呈现出新的发展特点:(1)高效率。区别于常规PID控制系统,智能控制下的PID控制系统在运筹学、计算机等学科的加持下,能够大幅度的提高PID控制系 统的运算效率,提高对不同数据的处理能力,尤其是复杂环境下、复杂参数的有 效处理,从而大大减缓了PID控制系统在多线程任务中的运行压力,保障了各控 制系统的稳定运行,因而具有高效率的特点。(2)实时性。工业自动化控制强 调实时性,实时性是精准作业的保障,一切控制命令的传达均要在第一时间,才 能够使PID控制系统的各模块准确执行。智能控制下的PID控制系统在信息技术 的辅助下,通过遍布PID控制系统的传感器和通信线路,能够及时的将PID控制 中心的指令,传递给各功能模块,并在运筹学的辅助下,计算各功能板块的运行 状态,从而保障了智能化控制系统的精准作业。(3)智能化。在人工智能技术 的辅助下,智能控制下的PID控制系统能够具备智能化的特点,人工智能具有一 定的学习、记忆能力,能够把常规的作业状态记住,并随着学习的增多,在无需 人员操控的情况下,根据人工智能的计算结果,便可以对PID控制系统进行自动 调节,从而保障了PID控制系统的连续稳定运行。 1.3智能控制下PID控制系统的功能 在智能控制技术应用到PID控制系统后,使PID控制系统具备了更为强大的 功能:(1)学习功能。智能控制技术能够使PID控制系统具备学习的功能,根据预设的运行程序,PID控制系统能够自动执行一些任务,并随着执行任务的增多,PID控制系统自动记忆一些新内容,并在大数据、运筹学技术的辅助下,使PID 控制系统能够学习到新的作业方式,并对现有的作业方式进行精简,从而不断的 提高PID控制系统的运行能力和控制能力。(2)自适应功能。根据预设在PID控制系统中的程序,智能控制下的PID控制系统具备了自适应功能,在从传感器感

同步发电机励磁系统的建模及仿真

同步发电机励磁系统的建模及仿真 发电机的三分之一故障来自于同步发电机的励磁系统,所以研究同步发电机励磁系统对于电力系统有举足轻重的作用。所谓同步发电机励磁系统就是向励磁绕组供给励磁电流的整套装置。按照励磁功率产生的方式不同,同步发电机的励磁方式可以分为自励式和他励式两种。自励式是将发电机发出的交流电经过整流后输送到同步发电机的励磁侧,而他励式是同步发电机的励磁侧单独采用直流励磁机或交流励磁机作为电源供电。 以单机―无穷大系统为模型进行研究。单机―无穷大系统模型是简单电力系统分析中最简单最常用的研究对象,其示意图如图1所示,该仿真系统由同步励磁发电机、变压器、双回路输电线和无穷大系统构成。其中,同步励磁发电机参数为200MVA、13800V、112.5r/min、50Hz,变压器参数为Y―Y型210MVA。 图1单机―无穷大系统示意图 建模及其仿真步骤如下。 1.选择模块 首先建立一个Simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中,建立模型所需的模块如下:

1)选择Machines 模块库下的Synchronous Machine pu Standard 模块作为同步励磁发电机、Excitation System 模块作为励磁控制器。 2)选择Elements 模块库下的Three-Phase Transformer (Two Windings) 模块作为三相升压变压器、Three-Phase Series RLC Load 模块作为三相并联RLC 负载接地、Three-Phase Fault 模块作为任意相之间或者任意相与地之间的短路、Ground 模块作为接地。 3)选择Electrical Source 模块库下的Three-Phase Source 模块作为无穷大系统。 4)选择Measurements 模块库下的Voltage Measurement 模块作为电压测量。 5)选择Math Operation 模块库下的Gain 模块。 6)选择Sources 模块库下的Constant 模块。 7)选择Signal Routing 模块库下的Bus Selector 模块作为输出信号选择器。 8)选择Sinks 模块库下的Scope 模块。 2. 搭建模块 将模块放在合适的位置,将模块从输入端至输出端进行连接,搭建完的Simulink 励磁系统模型如图2 所示。 图2 Simulink 励磁系统模型

励磁系统建模试验方案资料

励磁系统建模试验方案

目录 1.试验目的 (1) 2.试验内容 (1) 3.试验依据 (1) 4.试验条件 (1) 5.设备概况及技术数据 (2) 6.试验内容 (4) 7.试验分工 (5) 8.环境、职业健康安全风险因素辨识和控制措施 (6) 9.试验设备 (6)

1.试验目的 对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。 2.试验内容 2.1励磁系统模型传递函数静态验证试验。 2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。 2.3发电机时间常数测量。 2.4 A VR比例放大倍数测量试验。 2.5系统动态响应测试(阶跃试验)。 2.6 20%大干扰阶跃试验。 2.7对发电机进行频率响应测试。 3.试验依据 Q/GDW142-2012《同步发电机励磁系统建模导则》 设备制造厂供货资料及有关设计图纸、说明书。 4.试验条件 4.1资料准备 励磁调节器制造厂应提供AVR和PSS模型和参数。 电机制造厂应提供发电机的有关参数和特性曲线。 4.2设备状态要求 被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。

5.设备概况及技术数据 容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。其励磁系统结构框图如图1: 图1 励磁系统框图 5.1励磁调节器模型: 图2 励磁调节器模型

5.2发电机: 生产厂家:南京汽轮机电机厂 型号:QFR-135-2 额定视在功率:158.8 MV A 额定有功功率:135 MW 额定定子电压:13.8 kV 额定定子电流:6645 A 额定功率因数:0.85 额定励磁电流:893 A 额定励磁电压:403 V 额定空载励磁电流:328 A 额定空载励磁电压:147 V 额定转速:3000 r/min 发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2 转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感: 直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15 直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02 直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67 横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36 横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42 横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79 直轴开路瞬变时间常数Td0’ : 9.8 秒 横轴开路瞬变时间常数Tq0’ : 1.089秒 直轴开路超瞬变时间常数Td0” : 0.06秒 横轴开路超瞬变时间常数Tq0” : 0.054秒

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

发电机励磁系统建模及参数测试现场试验方案

发电机励磁系统建模及参数测试现场试验方案 1.概述 电网“四大参数”中发电机励磁系统模型和参数是电力系统稳定分析的重要组成部分,要获得准确、可信度较高的模型和参数,现场测试是重要的环节。根据发电机励磁系统现场交接试验的一般习惯和行业标准规定的试验内容,本文选择了时域法进行发电机励磁系统的参数辨识及模型确认试验。这种试验方法的优点在于可充分利用现有设备,在常规性试验中获取参数且物理概念清晰明了容易掌握。发电机励磁参数测试确认试验的内容包括:1)发电机空载、励磁机空载及负载试验;2)发电机、励磁机时间常数测试;3)发电机空载时励磁系统阶跃响应试验;4)发电机负载时动态扰动试验等。现场试验结束后,有关部门要根据测试结果,对测试数据进行整理和计算,针对制造厂提供的AVR等模型参数,采用仿真程序或其他手段,验证原始模型的正确性,在此基础上转换为符合电力系统稳定分析程序格式要求的数学模型。为电力系统计算部门提供励磁系统参数。 2.试验措施编制的依据及试验标准 1)《发电机励磁系统试验》 2)《励磁调节器技术说明书》及《励磁调节器调试大纲》 3) GB/T7409.3-1997同步电机励磁系统大、中型同步发电机励磁系统技术要求 4) DL/T650-1998 大型汽轮发电机自并励静止励磁系统技术条件 3 试验中使用的仪器设备 便携式电量记录分析仪,8840录波仪,动态信号分析仪以及一些常规仪表。 4 试验中需录制和测量的电气参数 1)发电机三相电压UA、UB、UC(录波器录制); 2)发电机三相电流IA、IB、IC(录波器录制); 3)发电机转子电压和转子电流Ulf、Ilf(录波器录制); 对于三机常规励磁还应测量: 1)交流励磁机定子电压(单相)Ue(标准仪表监视) 2)交流励磁机转子电压和转子电流Uef、Ief(录波器录制); 3)永磁机端电压Upmg(录波器录制和中频电压表监视); 4)发电机端电压给定值Vref(由数字AVR直读); 5)励磁机用可控硅触发角(由数字AVR自读); 对于无刷励磁系统除发电机电压电流外,仅需测量励磁机励磁电压电流;但需制造厂家提供励磁机空载饱和特性曲线及相关参数。 5.试验的组织和分工 参加发电机励磁系统模型参数确认试验的单位有:发电厂、励磁调节器制造厂、山东电力调度中心、山东电力研究院等。因有关方面提供的机组参数不完整或不正确,使励磁系统参数测试工作有一定的难度和风险性,为保证试验工作的正常顺利进行和机组的安全,应建立完善的组织机构,各部门的职责和分工如下: 1)电厂生技部负责整个试验的组织和协调。 2)电厂继电保护班负责试验的接线及具体安全措施。 3)电厂运行人员负责常规的操作及机组运行状态的监视。

最新发电机励磁系统

发电机励磁系统

发电机励磁系统 一、简介: 励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。 励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。励磁功率单元有足够的可靠性并具有一定的调节容量。在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。 励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。 图一 二、励磁系统必须满足以下要求: 1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、调节器应设有相互独立的手动和自动调节通道; 4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。 三、励磁系统方式: 励磁方式,就是指励磁电源的不同类型。 一般分为三种:直流励磁机方式、交流励磁机方式、静止励磁方式。 静止励磁系统。由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。

清华大学电力系统 同步发电机的数学模型21

长江三峡水电枢纽

同步汽轮发电机的转子同步水轮发电机的转子气隙 定子 同步发电机的FLASH.SWF 11

定子上3个等效绕组 a 相绕组 b 相绕组 c 相绕组 转子上3个等效绕组 同步发电机简化为:定子3个绕组、转子3个绕组、气隙、定子铁心、转子铁心组成的6绕组电磁系统励磁绕组 d 轴等效的阻尼绕组轴等效的阻尼绕组Q 15d 轴 q 轴120度 120度 120度 定子、转子铁心同轴(忽略定、转θ sin )M F =磁动势零点 θ 的,无饱和,无磁滞和涡流损耗,

19 磁链与电流、电压的参考正方向 1、设转子逆时针旋转为旋转正方向; 3、定子三相绕组端电压的极性与相电流正方向按发电机惯例来定义,即 正值电流i a 从端电压u a 的正极流出发电机,b 、c 相类似。 定子绕组的正电流产生负的磁链!! 2、定子三相绕组磁链ψa ,ψb ,ψc 的正方向与a 、b 、c 三轴正方向一致; + -21 5、d轴上的励磁绕组f、阻磁链正方向与d轴磁链正方向与q轴的正方向一致;正电流由端电压,因此绕组电阻: a 相绕组 b 相绕组 c 相绕组 +

26 励磁绕组d 轴阻尼绕组 轴阻尼绕组 绕组、 28 绕组的磁链方程-6个 定子绕组的磁链a 相绕组的磁链= a 相绕组电流产生的自磁链+ b 相绕组电流产生的互磁链+ c 相绕组电流产生的互磁链+励磁绕组电流产生的互磁链+D 绕组电流产生的互磁链 + Q 绕组电流产生的互磁链

31 转子绕组的磁链励磁绕组的磁链= a 相绕组电流产生的互磁链+ b 相绕组电流产生的互磁链+ c 相绕组电流产生的互磁链+励磁绕组电流产生的自磁链+D 绕组电流产生的互磁链+ Q 绕组电流产生的互磁链 36 a 相绕组磁路磁阻(磁导)的变化与转子d 轴与a 相绕组轴线的夹角θa (=ωt )有关 磁路的磁导λaa ,自感L aa 为θa 的周 期函数,周期为π。 θa θa =±π/2 磁路磁导最小,自感最小 a θa =0,π磁路磁导最大,自感最大 a

柴油发电机无刷励磁的结构特点工作方式工作原理

柴油发电机无刷励磁的结构特点工作方式工作原理

————————————————————————————————作者:————————————————————————————————日期:

柴油发电机无刷励磁的结构特点、工作方式、工作原理 无刷励磁的结构特点、工作方式、工作原理。发电机励磁电流的调节过程△由副励磁机——可控硅——A VR 调节器——作为主励磁机定子励磁电流——来调节主励旋转电枢的输出电流——送至旋转整流盘——转子绕组 △静止的永励副励磁机的电枢送出400Hz的电源,通过励磁电压调节器中的三相全控桥式可控硅整流器形成可调的直流电源到交流励磁机的磁场绕组。 通过控制全控桥整流器的导通角来调节交流励磁机的磁场电流,从而达到调节发电机励磁电流的目的。 当DA VR故障时,由厂用电经工频手动励磁调节装置整流后提供。发电机励磁。 工作原理 发电机的励磁电流由交流励磁机经旋转整流盘整流后提供,交流励磁机的励磁电流则由永磁机经调节装置中的可控硅全控桥整流后提供,励磁电流的大小由自励磁调节装置进行自动或手动调节,以满足发电机运行工况的要求。 2.3 无刷励磁系统特点2. 3.1 励磁机与发电机同轴,电源独立,不受电力系统干扰 2.3.2 没有滑环和电刷,根除了碳粉污染,噪音低,维护简单 2.3.3 具备高起始、响应持久、能有效地提高电力系统稳定性 2.3.4 选扎整流盘设计合理、电流和电压余量大,运行可靠 2.3.5 采用双重数字AVR、功能齐全、故障追忆功能强 无刷励磁系统原理框图 整流盘及电路 整流盘采用双盘结构,一个正极盘,另一个负极盘。 整流盘与转轴间绝缘可靠、固定合理,能承受各种短路力矩的冲击而不产生位移。 电路接线是:励磁机电枢八个Y支路中心点通过短路环连接在一起形成公共中心点,八个“Y”支路的出线则分别接一个全波整流桥,它们在直流侧正极性和负极性分别在一起,而后送发电机转子,可称为多支路直流侧并联接线方式,着接线方式可确保各“Y”支路旋转整流管之间均良好。 每个“Y”支路每整流臂有二个整流管,一个电容器和一个保护电容器的小熔断器,它们组装为一体,称为整流组件。另外还有二个主熔断器,主熔断器的端面带有机械熔断器指示器,在电机运转时,当熔丝熔断后,这种指示器弹出,用同步频闪仪能观察到二极管和主熔断器的参数。 主熔断器:电流670A 电压850V 二极管:R6LO—40型平板式元件电流400A 反向峰压2000V 见图(二) 2.4 数字式励磁电压调节器(DA VR)DA VR采用进口三菱公司的用于无刷励磁系统的全双通道数字式励磁电压调节装置MEC5230、DA VR按发电机机端和电网的工况自动地调整发电机的励磁,一旦发电机或励磁系统出现异常,可借助于多种限制功能单元,及时对异常工况限制或发出切机信号,使机组脱离电网并灭磁! 2.4.1 DA VR主要性能:(a) 自动调节范围(恒电压模式) 发电机空载工况:10%~110%额定电压 发电机负载工况:95%~105%额定电压 (b) 手动调节范围(恒磁场电流模式) 发电机空载工况:10%~110%额定电压 发电机负载工况:允许达到110%发电机额定磁场电压(在额定负载和额定电压运行时) (c) 调压精度:<±1% (d) 采样固期:20ms 2.4.2 DA VR工作原理:DA VR控制方式:DA VR提供二种控制方式:发电机恒机端电压控制和恒励磁机磁场电流控制。 (a) 发电机恒机端电压控制:这种方式与常规A VR自动工作方式一样,通过控制发电机的磁场电流使发电机的端电压与电压整定器(90k)的整定值相同,发电机端电压保持恒定值。

发电机励磁系统的数学模型教学文稿

发电机励磁系统的数 学模型

课程设计报告 课程名称电力系统自动装置原理设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期专业年级电气133班 姓名姚晓 学号 2012012154 提交时间 2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB 软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (5) 1.1本课题研究意义 (5) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (11) 2.3.1励磁机的传递函数 (11) 2.3.2励磁调节器各单元的传递函数 (12) 2.3.3同步发电机的传递函数 (14) 2.3.4励磁稳定器 (14) 2.4励磁控制系统的传递函数 (15) 第三章励磁控制系统的稳定性 (16) 3.1传统方法绘制根轨迹 (16) 3.2用MATLAB绘制根轨迹 (19) 第四章 PID在发电机励磁系统中的应用 (21) 4.1同步发电机的励磁系统的动态指标 (21) 4.2无PID调节的励磁系统 (21) 4.2.1源程序 (22) 4.2.2数值计算结果 (24) 4.3有PID调节的励磁系统 (25) 4.3.1源程序 (26) 4.3.2数值计算结果 (28) 第五章总结与体会 (31) 参考文献 (32)

(12)Std 421.5-1992 IEEE推荐的电力系统稳定研究用励磁系统数学模型要点

NARI IEEE推荐的电力系统稳定研究用 励磁系统数学模型 IEEE Std 421.5-1992 IEEE电力工程学会 能源开发和发电委员会提出 IEEE标淮局1992,3,19批准 国电自动化研究院 电气控制技术研究所译 2003年7月

目录 1.范围 (3) 2.参考文献 (3) 3.同步电机励磁系统在型励磁系统模型研究中的表示法 (4) 4.同步电机端电压变送器和负荷补偿器模型 (5) 5.DC型直流励磁机 (6) 5.1DC1A型励磁系统模型 (6) 5.2DC2A型励磁系统模型 (7) 5.3DC3A型励磁系统模型 (8) 6.AC型交流励磁机-整流器励磁系统模型 (9) 6.1AC1A型励磁系统模型 (9) 6.2AC2A型励磁系统模型 (10) 6.3AC3A型励磁系统模型 (11) 6.4AC4A型励磁系统模型 (11) 6.5AC5A型励磁系统模型 (13) 6.6AC6A型励磁系统模型 (14) 7. ST型励磁系统模型 (15) 7.1 ST1A型励磁系统模型 (15) 7.2 ST2A 型励磁系统模型 (16) 7.3 ST3A型励磁系统模型 (17) 8. 电力系统稳定器 (18) 8.1 PSS1A型电力系统稳定器 (18) 8.2 PSS2A型电力系统稳定器 (19) 9. 断续作用励磁系统 (20) 9.1 DEC1A型断续作用励磁系统 (20) 9.2 DEC2A型断续作用励磁系统 (22) 9.3 DEC3A型断续作用励磁系统 (22) 10. 文献目录 (23) 附录A 符号表 (23) 附录B 相对(标么)单位制 (25) 附录C 励磁机饱和负荷效应 (26) 附录D 整流器调整率 (27) 附录E 限制的表示 (28) 附录F 用消除快反馈环避免计算问题 (30) 附录G 同步电机内感应反向磁场电流流通路径 (35) 附录H 励磁限制器 (36) 附录I 采样数据…………………………………………………37--- ..46

柴油发电机技术规范

稳态频率调整率: ≤±2%(固态电子调速器)电压波动率:≤±%(负载功率在25-100%内渐变时) 频率波动率:≤%(负载功率在0-25%内渐变时) c)柴油发电机组在空载状态,突加功率因数≤(滞后)、稳定容量为的三相对称负载或在已带80%Pe的稳定负载再突加上述负载时,发电机的母线电压秒后不低于85%Ue。发电机瞬态电压调整率u≤-15%~+20%,电压恢复到最后稳定电压的±3%以内所需时间不超过1秒,瞬态频率调整率≤5%(固态电子调速器),频率稳定时间≤3秒。突减额定容量为的负载时,柴油发电机组升速不超过额定转速的10%。 d)柴油发电机组在空载额定电压时,其正弦电压波形畸变率不大于3%,柴油发电机组在一定的三相对称负载下,在其中任一相加上25%的额定相功率的电阻性负载,应能正常工作。 发电机线电压的最大值(或最小值)与三相线电压平均值相差不超过三相线电压平均值的5%,柴油发电机组各部分温升不超过额定运行工况下的水平。 应答:满足要求。 4.4.4控制功能 柴油发电机组属于无人值守电站,控制系统具有下列功能: a)保安xx线电压自动连续监测。 b)自动程序起动,远方起动,就地手动起动。 c)柴油发电机与保安段正常电源(3台断路器)同期并网功能。 d)运行状态的柴油发电机组自动检测、监视、报警、保护。 e)厂用电源恢复后远方控制、就地手动、机房紧急手动停机。(详见逻辑附图)f)蓄电池自动充电,具有自动内外部切换功能及蓄电池电压监测。买方提供不小于W的380VAC供电电源。g)预润滑、润滑油预热,xx预热。

h)发电机空间加热器自动投入功能。 应答:满足要求。模拟试验功能 柴油发电机组在备用状态时,模拟保安段母线电压低至25%Ue或失压状态,能够按设定时间快速自起动运行试验,试验中不切换负荷,柴油发电机应具有按预先设定的带负荷百分比自动分担负荷的功能。但在试验过程中保安段实际电压降低至25%时能够快速切换带负荷。 应答:满足要求。 柴油发电机组的性能及结构要求 运行要求 柴油发电机组能在100小时内连续满容量运行。柴油发电机组能通过运行方式选择开关,选择柴油发电机组所处状态。运行方式选择开关有下列四个位置即“自动”、“试验”、“手动”、“零位”。柴油发电机组正常处于准起动状态即“自动”状态。自起动时间<10秒。 应答:满足要求。 起动要求 保证柴油发电机组自起动快速性和成功率,保证柴油发电机组正常处于热态,采取对柴油发电机组冷却水,润滑油的预热和预供手段。 柴油发电机组的起动方式为电起动。电起动方式的电源,采用全密封免维护阀控铅酸蓄电池(容量400AH),蓄电池的浮充装置具备在线小电源浮充和快速充电的两种自动充电功能。 蓄电池的容量满足连续起动15次的用电量要求。 应答:满足要求。 电气接线要求 一次接线

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 技术分类:电机与运动控制作者:赵宇发表时间:2006-11-10 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。 图1 自励直流励磁机励磁系统原理接线图 上图中 LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁机励磁系统愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。 3 半导体励磁系统 半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。半导体励磁系统分为静止式和旋转式两种。 3.1 静止式半导体励磁系统 静止式半导体励磁系统又分为自励式和它励式两种。 3.1.1自励式半导体励磁系统 自励式半导体励磁系统中发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。系统起励时需要另加一个起励电源。 图2 无励磁机发电机自并励系统原理接线图

发电机励磁系统的数学模型

发电机励磁系统的数学模型

课程设计报告 课程名称电力系统自动装置原理 设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期 专业年级电气133班 姓名姚晓 学号2012012154 提交时间2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (6) 1.1本课题研究意义 (6) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (9) 2.3.1励磁机的传递函数 (9) 2.3.2励磁调节器各单元的传递函数 (11) 2.3.3同步发电机的传递函数 (11) 2.3.4励磁稳定器 (12) 2.4励磁控制系统的传递函数 (12) 第三章励磁控制系统的稳定性 (13) 3.1传统方法绘制根轨迹 (13) 3.2用MATLAB绘制根轨迹 (15) 第四章 PID在发电机励磁系统中的应用 (16) 4.1同步发电机的励磁系统的动态指标 (16) 4.2无PID调节的励磁系统 (16) 4.2.1源程序 (16) 4.2.2数值计算结果 (20) 4.3有PID调节的励磁系统 (21) 4.3.1源程序 (22) 4.3.2数值计算结果 (25) 第五章总结与体会 (27) 参考文献 (28)

柴油发电机组电气及控制系统

柴油发电机组电气及控制系统 电气气控制系统是柴油发电机组的重要组成部分。本章将介绍柴油发电机组(电气系统的)直流电启动、继电保护、自动化机组中常用传感器、柴油发电机组的电子管理系统、同步发电机的励磁系统以及自动电压调节装置的原理与应用等。 电启动各部件的作用与结构 一、直流电动启动 电动机启动系统由操作人员通过踏板和杠杆操纵启动开关,使发动机的齿轮啮入飞轮齿圈或者操作人员揿下启动按钮,电磁开关通电吸合,控制启动机和齿轮啮入飞轮齿圈还动柴油机启动。 (一)启动电动机的离合机构 启动动机轴上的啮合齿轮在启动,才与发动机曲轴上的飞轮齿圈相啮合,而当发动机开始运行后,启动电动机应立即与曲轴分离。否则当发动机转速升高,使启动电动机大大超速旋转,产生很大的离心力,造成破坏,甚至使启动电动机电枢飞散。因此,启动电动机必须装离合机构。启动时保证启动电动机的动力能传递给曲轴,启动后能切断电动机与发动机曲轴的联系。 常用的离合机构有以下几种。 1、弹簧离合机构 这种机构套装在启动机电枢轴上,驱动齿轮的右端活套在花键套筒的左端外圆上,两个扇形块装入齿轮右端相应缺口中并伸入花键套筒左端的环槽内,这样齿轮和花键套筒可一起作轴向移动,两者可相对滑转。离合弹簧在自由状态下的内径小于齿轮和套筒相应外圆的直径,安装时紧套在外圆面上。启动时,启

动机带动花键套筒旋转,有使离合弹簧收缩的趋势,由于离合弹簧被紧箍在相应外圆面上,于是,启动机转矩靠弹簧与外圆面的摩擦传给驱动齿轮,从而带动飞轮齿圈转动。当柴油机启动后,齿轮有比套筒转速快的趋势,弹簧胀开,离合齿轮在套筒上滑动,从而使齿轮与飞轮齿圈脱开。 该离合机构较简单,所配用的ST614型启动机,其电压为直流24V,功率为5.3KW,操作方便,因而得到广泛应用。 2、摩擦片式离合机构 摩擦片式离合机构结构,内花键毂装在具有右旋外花键套上,主动片套在内花键毂的导槽中,而从动片与主动片相间排列。旋装在花键套上的螺母与摩擦片之间装有弹性垫圈、压环和调整垫片。驱动齿轮右端的鼓形部分有一个导槽,从动片齿形凸缘装入此导槽之中,最后装卡环,以防止启动机驱动齿轮与从动片松脱。离合机构装好后摩擦片之间无压紧力。 启动时,花键套按顺时针方向转动,靠内花键毂与花键套之间的右旋花键,使内花键壳在花键套上向左移动将驱动齿轮,带动飞轮齿圈转动,发动机启动后,驱动齿轮相对于花键套转速加愉,内花链壳在花键套上右移,于是摩擦片便松开,离合机构处于分离状态。 该离合机构摩擦力矩的调整,即调整垫片可改变内花键壳端部与弹性垫圈之间的间隙,以控制弹性垫圈的变形量,从而调整离合机构所能传递的最大摩擦力矩。 摩擦片式的离合机构由于可传动的转矩较大,因此,通常用于较大启动转矩的柴油机上。 (二)启动机电磁操纵机构

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

柴油发电机工作原理

发电机 { 直流发电机、交流发电机 { 同步发电机、异步发电机(很少采用)交流发电机还可分为单相发电机与三相发电机。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 直流发电机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转动过程中,无

论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理。同时也说明子直流发电机实质上是带有换向器的交流发电机。 铁芯具有吸引磁力线的作用(因为其磁阻很小),发电机电枢线圈是放在定子铁芯槽中的,磁场N-S的磁力线将被吸引,穿过定子铁芯后闭合。磁场的磁力线转动时,也就被电枢线圈切割了,自然就产生了电动势和电流。 异步电机一般定子通电,转子有感应电势,所以我们也称异步电机为感应电机。转子的转速与同步转速总是有一定的差异,这才叫异步电机的。 同步电机是定转子都要通电,而且转子的转速与同步转速一直是一样的,所以叫同步电机。

相关主题
文本预览
相关文档 最新文档