当前位置:文档之家› 高中数学 1.1.1 正弦定理 教案

高中数学 1.1.1 正弦定理 教案

高中数学 1.1.1 正弦定理 教案
高中数学 1.1.1 正弦定理 教案

高中数学 1.1.1 正弦定理教案教学分析

本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.

在初中学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.在学法上主要指导学生掌握“观察——猜想——证明——应用”这一思维方法,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力.本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.

本节可结合课件“正弦定理猜想与验证”学习正弦定理.

三维目标

1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.

重点难点

教学重点:正弦定理的证明及其基本运用.

教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.

课时安排

1课时

教学过程

导入新课

思路 1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,

这两个等式间存在关系吗?学生可以得到

a

sinA

b

sinB

,进一步提问,等式能否与

边c和∠C建立联系?从而展开正弦定理的探究.

思路 2.(情境导入)如图,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A 的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC 与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习.

推进新课

新知探究

提出问题

1 阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?

2 联想学习过的三角函数中的边角关系,能否得到直角三角形中角与它所对的边之间在数量上有什么关系?

3 由 2 得到的数量关系式,对一般三角形是否仍然成立?

4 正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法

证明它?

5 什么叫做解三角形?

6 利用正弦定理可以解决一些怎样的三角形问题呢?

活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.关于任意三角形中大边对大角、小边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在Rt△ABC中,设BC=a,AC

=b,AB=c,根据锐角三角函数中正弦函数的定义,有a

c

=sinA,

b

c

=sinB,又

sinC=1=c

c

,则

a

sinA

b

sinB

c

sinC

=c.从而在Rt△ABC中,

a

sinA

b

sinB

c

sinC

.

那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析.

如下图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三

角函数的定义,有CD=asinB=bsinA,则

a

sinA

b

sinB

.同理,可得

c

sinC

b

sinB

.

从而a

sinA =

b

sinB

c

sinC

.

(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a sinA =b sinB =c sinC

上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得a <b.当∠A、∠B 都是锐角,

由正弦函数在区间(0,π2

)上的单调性,可知sinA <sinB.当∠A 是锐角,∠B 是钝角时,由于∠A+∠B<π,因此∠B<π-∠A,由正弦函数在区间(π2,π)上的单调性,可知sinB >sin(π-A)=sinA ,所以仍有sinA <sinB.

正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.

讨论结果:

(1)~(4)略.

(5)已知三角形的几个元素(把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素)求其他元素的过程叫做解三角形.

(6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出

三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.

应用示例

例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.

活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c.

此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可.

解:根据三角形内角和定理,得

∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.

根据正弦定理,得

b=asinB

sinA

42.9sin81.8°

sin32.0°

≈80.1(cm);

c=asinC

sinA

42.9sin66.2°

sin32.0°

≈74.1(cm).

点评:(1)此类问题结果为唯一解,学生较易掌握,如果已知两角及两角所夹的边,也是先利用三角形内角和定理180°求出第三个角,再利用正弦定理.

(2)对于解三角形中的复杂运算可使用计算器.

变式训练

在△ABC中(结果保留两个有效数字),

(1)已知c=3,A=45°,B=60°,求b;

(2)已知b=12,A=30°,B=120°,求a.

解:(1)∵C=180°-(A+B)=180°-(45°+60°)=75°,

b sinB =

c sinC

∴b=csinB sinC =3sin60°sin75°

≈1.6. (2)∵a sinA =b sinB

, ∴a=bsinA sinB =12sin30°sin120°

≈6.9. 例2已知△ABC,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1):

(1)∠A=60°,∠B=45°,a =10;

(2)a =3,b =4,∠A=30°; (3)b =36,c =6,∠B=120°.

活动:教师可引导学生先画图,加强直观感知,明确解的实际情况,这样在求解之后,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的明确,思路清晰流畅,同时体会分析问题的重要性,养成解题前自觉判定解题策略的良好习惯,而不是盲目乱试,靠运气解题.

解:(1)因为∠C=180°-60°-45°=75°,所以由正弦定理,得 b =asinB sinA =10sin45°sin60°=1063≈8.2,c =asinC sinA =10sin75°sin60°≈11.2(如图1所示).

图1

(2)由正弦定理,得

sinB =bsinA a =4sin30°3=23

, 因此∠B≈41.8°或∠B≈138.2°(如图2所示).

图2 当∠B≈41.8°时,

∠C≈180°-30°-41.8°=108.2°,c=asinC

sinA

3sin108.2°

sin30°

≈5.7;

当∠B≈138.2°时,

∠C≈180°-30°-138.2°=11.8°,

c=asinC

sinA

3sin11.8°

sin30°

≈1.2(如图2所示).

(3)由正弦定理,得

sinC=csinB

b

6sin120°

36

3

2

36

2

2

因此∠C=45°或∠C=135°.

因为∠B=120°,所以∠C<60°.

因此∠C=45°,∠A=180°-∠B-∠C=15°.再由正弦定理,得

a=bsinA

sinB

36

sin15°

3

2

≈2.2(如图3所示).

图3

点评:通过此例题可使学生明确,利用正弦定理求角有两种可能,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于

这一点,我们通过下面的变式训练来体会.

变式训练

在△ABC 中,已知a =60,b =50,A =38°,求B(精确到1°)和c.(保留两个有效数字)

解:∵b<a ,∴B<A ,因此B 也是锐角.

∵sinB=bsinA a =50sin38°60

≈0.513 1, ∴B≈31°.

∴C=180°-(A +B)=180°-(38°+31°)=111°.

∴c=asinC sinA =60sin111°sin38°

≈91. 例3如图,在△ABC 中,∠A 的角平分线AD 与边BC 相交于点D ,求证:BD DC

=AB AC

. 活动:这是初中平面几何中角平分线的性质定理,用平面几何的方法很容易证得.教材安排本例的目的是让学生熟悉正弦定理的应用,教师可引导学生分析相关的三角形的边角关系,让学生自己证明.

证明:如图,在△ABD 和△CAD 中,由正弦定理,得

BD sin β=AB sin α

,① DC sin β=AC sin 180°-α =AC sin α

,② ①÷②,得BD DC =AB AC

.

点评:解完此题后让学生体会是如何通过正弦定理把所要证的线段连在一起的.本例可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.

例4在△ABC中,A=45°,B∶C=4∶5,最大边长为10,求角B、C,外接圆半径R及面积S.

活动:教师引导学生分析条件B∶C=4∶5,由于A+B+C=180°,由此可求解出B、C,这样就转化为已知三个角及最大角所对的边解三角形,显然其解唯一,结合正弦定理的平面几何证法,由此可解三角形,教师让学生自己探究此题,对于思路有阻的学生可给予适当点拨.

解:由A+B+C=180°及B∶C=4∶5,可设B=4k,C=5k,

则9k=135°,故k=15°,那么B=60°,C=75°.

由正弦定理,得R=

10

2sin75°

=5(6-2),

由面积公式S=1

2

bc·sinA=

1

2

c·2RsinB·sinA=75-25 3.

点评:求面积时,b未知但可转化为b=2RsinB,从而解决问题.

知能训练

1.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S的值是( )

A. 2

B.3+1

C.1

2

(3+1) D.2 2

2.在△ABC中,已知a=5,B=105°,C=15°,则此三角形的最大边长为__________.

3.在△ABC中,若(3b-c)cosA=acosC,则cosA=__________.

答案:

1.B 解析:由正弦定理

a

sinA

c

sinC

,得c=

asinC

sinA

=22,B=180°-A-C

=105°,

∴△ABC的面积S=1

2

acsinB=

1

2

×2×22sin105°=3+1.

2.5 32+6

6

解析:∵B=105°,C=15°,∴A=60°.

∴b为△ABC的最长边.

由正弦定理,得

b=asinB

sinA

5sin105°

sin60°

5 32+6

6

.

3.

3

3

解析:由正弦定理,知

a=2RsinA,b=2RsinB,c=2RsinC(R为△ABC的外接圆半径).∴(3sinB-sinC)cosA=sinA·cosC,

化简,得3sinB·cosA=sin(A+C)=sinB.

∵0<sinB≤1,

∴cosA=

3 3

.

课堂小结

1.先由学生回顾本节课正弦定理的证明方法、正弦定理可以解决的两类问题及解三角形需要注意的问题,特别是两解的情况应怎样理解.

2.我们在推证正弦定理时采用了从特殊到一般的分类讨论思想,以“直角三角形”作问题情境,由此展开问题的全面探究,正弦定理的证明方法很多,如平面几何法、向量法、三角形面积法等.让学生课后进一步探究这些证明方法,领悟这些方法的思想内涵.

3.通过例3引入了三角形外接圆半径R与正弦定理的关系.但应引起学生注意,R的引入能给我们解题带来极大的方便.

作业

习题1—1A组1、2、3.

设计感想

本教案设计思路是:立足于所创设的情境,通过学生自主探索、合作交流,让学生亲身经历提出问题、解决问题、应用反思的过程,使学生成为正弦定理的“发现者”和“创造者”,切身感受创造的快乐,知识目标、能力目标、情感目标均得到较好的落实.

本教案的设计时刻注意引导并鼓励学生提出问题.一方面鼓励学生大胆地提

出问题;另一方面注意妥善处理学生提出的问题,启发学生抓住问题的数学实质,将问题逐步引向深入.根据上述设想,引导学生从感兴趣的实际问题到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的情况,从而形成猜想,激起进一步探究的欲望,然后引导学生对猜想进行严格的逻辑证明,并让学生通过自己的努力发现多种证法,开阔学生视野.

备课资料

一、知识扩展

1.判断三角形解的方法

“已知两边和其中一边的对角”解三角形,这类问题分为一解、两解和无解三种情况.一方面,我们可以利用课本上的几何图形加以理解,另一方面,也可以利用正弦函数的有界性进行分析.

设已知a、b、A,则利用正弦定理

sinB=bsinA a

如果sinB>1,则问题无解;

如果sinB=1,则问题有一解;

如果求出的sinB<1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.

2.利用正弦定理进行边角互换

对于三角形中的三角函数,在进行恒等变形时,常常将正弦定理写成

a=2RsinA,b=2RsinB,c=2RsinC或sinA=

a

2R

,sinB=

b

2R

,sinC=

c

2R

(R

为△ABC的外接圆半径).

这样可以很方便地把边和角的正弦进行转换,我们将在以后具体应用.3.正弦定理的其他几种证明方法

(1)三角形面积法

如图,已知△ABC,设BC=a,CA=b,AB=c,作AD⊥BC,垂足为D.

则Rt△ADB 中,sinB =AD AB

, ∴AD=AB·sinB=csinB.

∴S △ABC =12a·AD=12

acsinB. 同理,可得S △ABC =12absinC =12

bcsinA. ∴acsinB=absinC =bcsinA.

∴sinB b =sinC c =sinA a ,即a sinA =b sinB =c sinC

. (2)平面几何法

如图,在△ABC 中,已知BC =a ,AC =b ,AB =c ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于C′点,设BC′=2R ,则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAC′=90°,∠C=∠C′,

∴sinC=sinC′=c 2R .∴c sinC

=2R. 同理,可得a sinA =2R ,b sinB

=2R. ∴a sinA =b sinB =c sinC

=2R. 这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式

a sinA =

b sinB =

c sinC

. 这种证明方法简洁明快.在巩固平面几何知识的同时,将任意三角形与其外

接圆联系在一起,并且引入了外接圆半径R ,得到a sinA =b sinB =c sinC

=2R 这一等式,其变式为a =2RsinA ,b =2RsinB ,c =2RsinC ,可以更快捷地实现边角互化.特别是可以更直观地看出正弦定理描述的三角形中大边对大角的准确数量关系,为正弦定理的应用带来更多的便利.

(3)向量法

①如图,△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC →,则j 与AB →的夹角为90°-A ,j 与CB →的夹角为90°-C.

由向量的加法原则可得AC →+CB →=AB →,

为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j ·(AC →+CB →)=j ·AB →,

由分配律可得j ·AC →+j ·CB →=j ·AB →.

∴|j ||AC

→|cos90°+|j ||CB →|cos(90°-C)=|j ||AB →|cos(90°-A). ∴as inC =csinA.∴a sinA =c sinC

. 同理,可得c sinC =b sinB

. ∴a sinA =b sinB =c sinC

. ②如图,△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC →垂直的单位向量j ,则j 与AB →的夹角为A -90°,j 与CB →的夹角为90°-C.

由AC →+CB →=AB →,得j ·AC →+j ·CB →=j ·AB →,

即a·cos(90°-C)=c·cos(A-90°),

∴asinC=csinA.∴a sinA =c sinC

. 同理,可得b sinB =c sinC .∴a sinA =b sinB =c sinC

. ③当△ABC 为直角三角形时,a sinA =b sinB =c sinC

显然成立. 综上所述,正弦定理对于锐角三角形、钝角三角形、直角三角形均成立.

二、备用习题

1.在△ABC 中,A =45°,B =60°,a =10,则b 等于( )

A .5 2

B .10 2 C.1063

D .5 6 2.△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且sinB =12,sinC =32

,则a∶b∶c 等于 … ( )

A .1∶3∶2 B.1∶1∶ 3

C .1∶2∶ 3

D .2∶1∶3或1∶1∶ 3

3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于 … ( ) A. 6 B .2 C. 3 D. 2

4.在锐角△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且B =2A ,则b a

的取值范围是 … ( )

A .(-2,2)

B .(0,2)

C .(1,3)

D .(2,3)

5.在△ABC 中,若∠A=120°,AB =5,BC =7,则△ABC 的面积为________.

6.在△ABC中,已知a=33

4

,b=4,A=30°,则sinB=________.

7.在△ABC中,cosA=-

5

13

,cosB=

3

5

(1)求sinC的值;

(2)设BC=5,求△ABC的面积.参考答案:

1.D 解析:由正弦定理,知

b

sinB

a

sinA

,即

b

sin60°

10

sin45°

,解得b=

5 6.

2.D 解析:由题意,知C=60°或120°,B=30°,因此A=90°或30°.故选D.

3.D 解析:由正弦定理得

6

sin120°

2

sinC

,得sinC=

1

2

,于是有C=30°

或C=150°(不符合题意,舍去).从而A=30°.于是△ABC是等腰三角形,a=c= 2.

4.D 解析:由正弦定理知b

a

sinB

sinA

,又∵B=2A,

∴b

a

sin2A

sinA

=2cosA.

∵△ABC为锐角三角形,

∴0°<B<90°.∴0°<2A<90°.∴0°<A<45°.又∵0°<C<90°,∴A+B>90°.∴3A>90°.

∴A>30°.∴30°<A<45°.

∴2<2cosA<3,

即2<b

a

< 3.故选D.

5.1534 解析:由正弦定理,得AB sinC =BC sinA ,即5sinC =7sin120°,∴sinC =57×32=5

3

14.

因此sinB =33

14, 所以S △ABC =12×5×7×3314=153

4. 6.839 解析:由正弦定理,得4sinB =334sin30°,解得sinB =83

9.

7.解:(1)由cosA =-513,得sinA =12

13.

由cosB =35,得sinB =4

5,

∴sinC=sin(A +B)=sinA·cosB+cosA·sinB=16

65.

(2)由正弦定理,得

AC =BC×sinB sinA =5×4

5

1213

=13

3, ∴△ABC 的面积S =12×BC×AC×sinC=12×5×13

3×1665=8

3.

高中数学正弦函数的性质

正弦函数的性质 一、 教学目标: 1、 知识与技能 (1)进一步熟悉单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)掌握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能熟练运用正弦函数的性质解题。 2、 过程与方法 通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R 上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。 3、 情感态度与价值观 通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 二、教学重、难点 重点: 正弦函数的诱导公式,正弦函数的性质。 难点: 诱导公式的灵活运用,正弦函数的性质应用。 三、学法与教学用具 在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。 教学用具:投影机、三角板 第一课时 正弦函数诱导公式 一、教学思路 【创设情境,揭示课题】 在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2k π+α)=sin α (k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。这就是我们这一节课要解决的问题。 【探究新知】 1. 复习:(公式1)sin(360?k +α) = sin α 2. 对于任一0?到360?的角,有四种可能(其中α为不大于90?的非负角) [ [ [ ??????β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角 ),当为第三象限角), 当为第二象限角 ), 当为第一象限角,当οοοοο ο οο οοο36027036027018018018090180) 900 (以下设α为任意角) 3. 公式2: 设α的终边与单位圆交于点P(x ,y ),则180?+α终边与单位圆交于点P’(-x ,-y ),由正弦线可知: sin(180?+α) = -sin α 4.公式3: 同样可得: P (,-y )

苏教版高中数学必修五正弦定理教案

第 1 课时: §1.1 正弦定理(1) 【三维目标】: 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题; 3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一. 4.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】: 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【学法与教学用具】: 1. 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.在直角三角形中的边角关系是怎样的? 2.这种关系在任意三角形中也成立吗? 3.介绍其它的证明方法 二、研探新知 1.正弦定理的推导 (1)在直角三角形中:c a A = sin ,1sin ,sin ==C C B B , 即 =c A a sin ,=c B b sin ,=c C c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形? (2)斜三角形中 证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111 sin sin sin 222 ABC S ab C ac B bc A ?= ==,每项

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

人教版高中数学必修五 余弦定理优质教案

1.1.2 从容说课 课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角 形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题, 也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实 基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比 如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过 向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力. 在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾 股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系, 如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两 边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的 角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还 要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的 启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系 教学重点余弦定理的发现和证明过程及其基本应用 教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程 2.余弦定理在解三角形时的应用思路

高中数学:(一)正弦定理

课时达标训练(一) 正 弦 定 理 [即时达标对点练] 题组1 利用正弦定理解三角形 1.若△ABC 中,a =4,A =45°,B =60°,则b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 解析:选C 由正弦定理a sin A =b sin B ,得4sin 45°=b sin 60°,所以b =26,故选C. 2.在△ABC 中,A =60°,a =3,b =2,则B =( ) A .45°或135° B .60° C .45° D .135° 解析:选C 由正弦定理a sin A =b sin B , 得sin B =b sin A a =2sin 60°3=2 2. ∵a >b ,∴A >B , ∴B =45°. 3.在△ABC 中,cos A a =sin B b ,则A =( ) A .30° B .45° C .60° D .90° 解析:选B ∵sin A a =sin B b ,又cos A a =sin B b , ∴cos A a =sin A a , ∴sin A =cos A ,tan A =1. 又0°

5.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1 sin 30°=2,∴a =2sin A ,b =2sin B ,c =2sin C . ∴ a -2 b +c sin A -2sin B +sin C =2. ★答案★:2 6.已知b =10,c =56,C =60°,解三角形. 解:∵sin B = b sin C c =10·sin 60°56 =2 2, 且b =10,c =56,b 0,∴cos A =0,即A =π 2 ,∴△ABC 为直角三角形. ★答案★:直角三角形 8.在△ABC 中,a cos ????π2-A =b cos ????π 2-B ,判断△ABC 的形状. 解:法一:∵a cos ????π2-A =b ·cos ????π2-B , ∴a sin A =b sin B .由正弦定理,得a ·a 2R =b ·b 2R , ∴a 2=b 2,∴a =b , ∴△ABC 为等腰三角形. 法二:∵a cos ????π2-A =b cos ????π 2-B , ∴a sin A =b sin B . 由正弦定理,得2R sin 2A =2R sin 2B , 即sin A =sin B ,

《正弦定理》教学设计方案

探寻提出特例猜想:回顾直角三角形中边角关系.如图: 引导学生寻求联系,发现规律深化学生对直角三角形边角关系的理解. 小组交流,在教师引导 下得出:利用c边相同, 寻求形式的和谐统一,即: 在Rt△ABC中 引导 学生 经历 经历 由特 殊到 一般 的发 现过 程 提问: 思考:在斜三角中,上式关系是否成立1、小组交流合作 2、小组长上黑板展示:正 弦定理及其推导 在锐角三角形中 作CD AB于D,有 在钝角三角形中 引导 学生 通过 自主 探 究、 合作 交流 寻求 问题 结论 和解 决办 法

作CD AB于D,有 综上: (1)正弦定理展现了三角形边角关系的 和谐美和对称美; (2)解三角形:一般地,我们把三角形 的三个角和它的对边分别叫做三角形的元 素.已知三角形的几个元素求其他元素的过 程叫做解三角形. (3)思考:直接应用正弦定理至少需要已 知三角形中的几个元素才能解三角形? 学生在教师引导下充 分理解正弦定理,掌握正 弦定理的结构特征,启发 学生思考正弦定理可以那 些解决解三角问题. 引 导学 生体 会正 弦定 理所 体现 的美 学价 值, 挖掘 正弦 定理 的应 用(1)正弦定理可以用于解决已知两角和 任意一边求另两边和一角的问题. 例1: 例1由学生给出条件 结合两道例题,引导学生 总结:(1)已知两角一边, 进一

(2)正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题.. 例2:解三角形,解的情况唯一;步深 化对 正弦 定理 的认 识和 理解 变式训练: 利用作图法总结已知两边及一边对角解三 角形时解的情况 讨论完成变式训练 六、教学评价设计 这堂课由实际问题出发,引导学生探索研究三角形中边角关系,展示了一个完整的数学探究过程。提出问题、发现规律、推到证明,定理应用,让学生经历了知识再发现的过程,促进了个性化学习。在教学过程中,使学生体会认识事物由特殊到一般,再由一般到特殊的规律,体会分类讨论、数形结合的数学思想方法,并提高运用所学知识解决实际问题的能力。 七、教学板书 正玄定理 教学重点:1.正弦定理的推导. 2.正弦定理的运用 教学难点:1.正弦定理的推导. 2.正弦定理的运用.

高一数学正弦定理余弦定理习题及答案

高一数学正弦定理余弦定理习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

正 余 弦 定 理 1.在ABC ?中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02C x x A B -?+ =的两根之和等于两根之积的一半,则ABC ?一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= . 4、如图,在△ABC 中,若b = 1,c =3,23C π∠= ,则a= 。 5、在ABC ?中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 . 6、在?ABC 中,,,a b c 分别为角,,A B C 的对边,且2 74sin cos 222 B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状. 8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c . A B 323 π

1、解:在ABC A B ?>中,2sin 2sin sin sin a b R A R B A B ?>?>?>,因此,选C . 2、【答案】由题意可知:211cos cos cos 2sin 222 C C A B -=??=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+- cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ?一定是等腰三角形选C 3、【命题立意】本题考察正弦定理在解三角形中的应用. 【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得 1sin sin 60A =得1sin 2 A =,由a b <知60A B <=,所以30A =,180 C A B =-- 90=,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。 【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。 【规范解答】由余弦定理得,222121cos 33 a a π+-???=,即220a a +-=,解得1a =或2-(舍)。【答案】1 【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。 5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。

(完整word)高中数学余弦定理教案.doc

1、1、 2 余弦定理 一、【学习目标】 1.掌握余弦定理的两种表示形式及其推导过程; 2.会用余弦定理解决具体问题; 3.通过余弦定理的向量法证明体会向量工具性. 【学习效果】:教学目标的给出有利于学生整体的把握课堂. 二、【教学内容和要求及教学过程】 阅读教材第 5—7 页内容,然后回答问题(余弦定理) <1>余弦定理及其推导过程? <2>余弦定理及余弦定理的应用? 结论:<1>在中,AB、BC、CA的长分别为c、a、b.由向量加法得: <2>余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角 的余弦的积的两倍. 余弦定理还可作哪些变形呢?

[ 理解定理 ] (1)余弦定理的基本作用为: ①已知三角形三边求角;②已知两边和它们的夹角,求第三边。 [ 例题分析 ]例1评述:五个量中两边及夹角求其它两个量。 例 2 评述:已知三边求三角。 【学习效果】:学生容易理解和掌握。 三、【练习与巩固】 根据今天所学习的内容,完成下列练习 练习一:教材第 8 页练习第1、 2 题 四、【作业】 教材第 10 页练习第3---4题. 五、【小结】 (1)余弦定理适用任何三角形。(2)余弦定理的作用:已知两边及两边夹角求第三边;已知三边求三角;判断三角形形状。( 3)由余弦定理可知 六、【教学反思】 本节课重点理解余弦定理的运用.要求记住定理。 习题精选 一、选择题

1.在中,已知角则角 A 的值是()A.15°B.75°C.105°D.75°或 15° 2.中,则此三角形有() A.一解 B .两解 C .无解 D .不确定 3.若是() A.等边三角形B.有一内角是30° C.等腰直角三角形D.有一内角是30°的等腰三角形 4.在中,已知则AD长为() A.B. C .D. 5.在,面积,则BC长为 () A.B.75 C .51D.49 6.钝角的三边长为连续自然数,则这三边长为() A. 1、2、3、B.2、3、4C. 3、 4、5D. 4、 5、6 7.在中,,则A等于() A.60°B.45° C .120°D.30° 8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D .等边三角形 9.在中,,则等于()

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

正弦定理教案

课题:§2.1.1正弦定理 教学目标: 1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 2. 能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力 教学重点:正弦定理的探索和证明及其基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。 教材版本:北师大必修5 教学课时:1 教学过程: 一、新课引入: 如左图,在ABC Rt ?中,有 s i n ,s i n ,s i n 1 a b A B C c c ===。 经过变形有,,sin sin sin a b c c c c A B C ===, 所以在ABC Rt ?中有:c C c B b A a ===sin sin sin 思考:在其他任意三角形中是否也有 s i n s i n s i n a b c A B C ==等式成立呢,这个时候 ?sin sin sin ===C c B b A a 观察下图,无论怎么移动B ’,都会有角B ’=B,所以在C AB '?中,c B b B b ==sin sin ', c

C 是ABC Rt ?,C AB ' ?外接圆的直径。所以对任意ABC ?,均有R C c B b A a 2s i n s i n s i n ===(R 为ABC ?外接圆的半径) 这就是我们这节课所探讨的内容:正弦定理 二、新课讲解 (一)正弦定理及变形: R C c B b A a 2sin sin sin === 定理变形:⑴C R c B R b A R a sin 2,sin 2,sin 2=== ⑵R c C R b B R a A 2sin ,2sin ,2sin === ⑶C B c b C A c a B A b a sin :sin :,sin :sin :,sin :sin :=== (二)定理应用 例1、在△ABC 中,BC =3,A =45°,B =60°,求AC ,AB,c 解:【分析】 由三角形内角和定理得 B A C --=0180 由正弦定理A BC B AC C AB sin sin sin = = 得A B BC AC sin sin = ,A C BC AB sin sin = 【点评】:已知两角一边,通过正弦定理求剩下的三个量:两边一角。 例2、已知:△ABC 中,a =3,b =2,B =45°,求A 、C 及c. 解:【分析】 根据正弦定理,得 sin A =asin B b =3sin 45°2 =32, ∵b

最新高中数学《余弦定理》教案精编版

2020年高中数学《余弦定理》教案精编版

仅供学习与交流,如有侵权请联系网站删除 谢谢5 1.1.2余 弦 定 理(1) 一、教学内容分析 《余弦定理》第一课时。通过利用平面几何法,坐标法(两点的距离公式),向量的模,正弦定理等方法推导余弦定理,正确理解余弦定理的结构特征,初步体会余弦定理解决“边、角、边”和“边、边、边”问题,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生学习数学的积极性和浓厚的兴趣,培养学生思维的广阔性。 二、学生学习情况分析 本课之前,学生已经学习了两点间的距离公式,三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用多种方法探求余弦定理,学生已有一定的学习基础和学习兴趣。 三、教学目标 继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会多种方法特别是向量方法推导余弦定理的思想;通过例题运用余弦定理解决“边、角、边”及“边、边、边”问题;理解余弦定理是勾股定理的特例,理解余弦定理的本质。 四、教学重点与难点 教学重点:余弦定理的证明过程特别是向量法与坐标法及定理的应用; 教学难点:用正弦定理推导余弦定理的方法 五、教学过程: 1.知识回顾 正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即 正弦定理可以解什么类型的三角形问题? (1)已知两角和任意一边,可以求出其他两边和一角(AAS,ASA); (2)已知两边和其中一边的对角,可以求出三角形的其他的一边和另外两角(SSA)。 2.提出问题 已知三角形两边及其夹角如何求第三边? (SAS 问题) 在三角形ABC 中,已知边a,b,夹角C, 求边c C c B b A a sin sin sin = =

高中数学 第二章 正弦定理教学设计 北师大版必修5

《正弦定理》教学设计 一、教学内容分析 本节内容安排在《普通高中课程标准实验教科书·数学必修5》(北师大版)第二章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。 根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。 二、学情分析 对于高一的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

高中数学全套讲义 必修4 正弦型函数图像与性质 中等教师版

目录 正弦型函数的图像与性质 (2) 模块一:正弦型函数图像与性质 (2) 考点1:正弦型函数性质 (3) 考点2:五点法作正弦型函数图像 (6) 考点3:求正弦型函数解析式 (7) 课后作业: (10)

正弦型函数的图像与性质模块一:正弦型函数图像与性质1.正弦函数sin =. y x 2

3.函数()sin y A x ω?=+的性质 ⑴ 周期性:函数()sin y A x ω?=+(其中A ω?,,为常数,且00A ω≠>,)的周期仅与自变量的系数有关.最小正周期为2π T ω =. ⑵ 值域:[]A A -, ⑶ 奇偶性:当()π k k ?=∈Z 时,函数()sin y A x ω?=+为奇函数; 当()π π 2 k k ?= +∈Z 时,函数()sin y A x ω?=+为偶函数. ⑷ 单调区间:求形如()sin y A ωx φ=+或()cos y A ωx φ=+(其中0A ≠,0ω>)的函数 的单调区间可以通过图象的直观性求解,或根据解不等式的方法去解答,列不等式的原则是:①把“()0ωx φω+> 视为一个“整体 .②0A >()0A <时, 所列不等式的方向与()sin y x x =∈R 、()cos y x x =∈R 的单调区间对应的不等式的方向相同(反). ⑸ 对称轴方程:0x x =,其中()0π π 2 x k k ω?+= +∈Z . ⑹ 对称中心:()00x , ,其中()0π x k k ω?+=∈Z . 考点1:正弦型函数性质 例1.(1)(2019春?南平期末)已知函数()sin(2)f x x ?=+的图象关于直线3 x π = 对称,则 ?可能取值是( ) A . 2 π B .12 π - C . 6 π D .6 π - 解:函数 故选:D . (2)(2019春?娄底期末)函数5()3cos(4)6 f x x π =+ 图象的一个对称中心是( )

《正弦定理》教学设计

《正弦定理》教学设计 一、教材分析 正弦定理是高中新教材人教A版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。通过创设问题情景,从而引导学生产生探索愿望,激发学生学习的兴趣,并指出解决问题的关键在于研究三角形中的边、角关系。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题: (1)已知两角和一边,解三角形; (2)已知两边和其中一边的对角,解三角形。 二、学情分析 本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。 根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标: 1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦定理。会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。 3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之

间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。 四、教学重点与难点: 重点:正弦定理的探索和证明及其基本应用。 难点: ①正弦定理的证明; ②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。 五、学法与教法 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C = = , 接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖,培养学生“会观察”、 “会类比”、“会分析”、“会论证”的能力。 教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式 (1)新课引入——提出问题, 激发学生的求知欲。 (2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。 (3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。 (4)巩固练习——深化对正弦定理的理解。 六、教学过程 创设问题情境:如图,设A 、B 两点在河的两岸,要测量两点之间的距离。测量者在A 的同侧,在所在的河岸边选定一点C ,测出两点间A 、C 的距离55m ,∠ACB=600,∠BAC=450求A 、B 两点间的距离。 引导学生理清题意,研究设计方案,并画出图形,探索解决问题的方法. 启发学生发现问题实质是:已知△ABC 中∠A 、∠C 和AC 长度,求AB 距离.即:已知三角形中两角及其夹边,求其它边. B C A

高中数学正弦定理

正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的 定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B (图1.1-3)

余弦定理 优质课

余弦定理教学设计 一、教学内容分析 人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。 二、学生学习情况分析 本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 三、设计思想 新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。 四、教学目标 1、知识与技能 (1)掌握余弦定理的证明方法,牢记公式. (2)掌握余弦定理公式的变式,会灵活应用余弦定理. 2、过程与方法 (1)使学生经历公式的推导过程,培养严谨的逻辑思维.

(2)培养学生数形结合的能力. (3)培养学生的问题解决能力. 3、情感态度价值观 经历余弦定理的推导过程,感受数学思维的严谨美,通过比较余弦定理公式感受数学公式的对称美,通过比较勾股定理以及余弦定理体会一般与特殊的关系. 五、教学重点与难点 教学重点:余弦定理的发现过程及定理的应用; 教学难点:用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。 六、教学过程:

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

相关主题
文本预览
相关文档 最新文档