当前位置:文档之家› 有限元分析方法

有限元分析方法

有限元分析方法

有限元分析方法

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

第9章 非线性问题的有限单元法

第9章非线性问题的有限单元法 9.1 非线性问题概述 前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。 1. 材料非线性(塑性, 超弹性, 蠕变) 材料非线性指的是材料的物理定律是非线性的。它又可分为非线性弹性问题和非线性弹塑性问题两大类。例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。 2. 几何非线性(大应变, 大挠度, 应力刚化) 几何非线性是有结构变形的大位移引起的。例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。 3. 状态非线性(接触, 单元死活) 状态非线性是一种与状态相关的非线性行为。例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。这些系统的刚度随着它们状态的变化而发生显著变化。 9.2 非线性有限元问题的求解方法 对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。 1.迭代法 迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。 与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。以平面问题 为例,迭代法的存贮量一般只需直接法的14左右。在求解非线性方程组时,一般采用迭代 法。 2. 牛顿—拉斐逊方法 ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性救求解是将载荷分成一系列的载荷增量,即逐步递增载荷和平衡迭代。它可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的

求解温度场的非线性有限元方法

Ξ 求解温度场的非线性有限元方法 刘福来1, 杜瑞燕2 (1.东北大学信息科学与工程学院,辽宁沈阳 110004;2.河北青年干部管理学院教务处,河北石家庄 050031) 摘要:从G alerkin 有限元方法出发,对自由表面上的辐射换热的数学表达式不作线性化处理,而是把温 度场的求解问题转化为非线性代数方程组的求解问题,并且用Newton 迭代法计算了温度场. 关键词:温度场;有限元方法;Newton 迭代法 中图分类号:O 242.21 文献标识码:A 文章编号:100025854(2005)0120021204 由文献[1]知,求解二维待轧过程的温度场,就是要求下面微分方程和初值问题的解: 52T 5 x 2+52T 5y 2=1α5T 5t ;(1) -k 5T 5n =0,(x ,y )∈S 2; (2) -k 5T 5n =σεA (T 4-T 4 ∞),(x ,y )∈S 3; (3) T (x ,y ,0)=T 0(x ,y ). (4)其中:α=λ ρc 称为导温系数,λ,ρ和c 分别为热导系数、密度和比热;S 2为给出热流强度Q 的边界面; T ∞为环境温度;S 3为给出热损失的边界面.对轧制问题的温度场,常常考虑的几种边界面[1] 是:对称 面、自由表面和轧件与轧辊的接触面.在辐射面上,边界条件的数学表达式为σεA (T 4-T 4 ∞)(其中:σ为 Stefan 2Boltzmann 常数,ε为物体表面黑度,A 为辐射面积,T ∞为环境温度)是温度T 的4次幂,具有强 烈的非线性.以往在实际计算中有2种处理方法[2],一种是简化问题的物理模型,有时将表达式看成常 数,有时将边界条件转化成h r A (T -T ∞)(其中h r =σ ε(T 2+T 2∞)(T +T ∞)),在轧制问题中求解温度场时文献[1,3]都采用了这一方法;另一种是处理问题的数学方法,即用近似方法求解非线性的偏微分方程问题.例如,用数值分析的方法,文献[4]中利用了差分方法. 本文中,笔者从G alerkin 有限元法出发,对自由表面上辐射换热的数学表达式不作线性处理,而是直接对非线性代数方程组用Newton 迭代法计算温度场,以二维待轧过程温度场的有限元解析进行讨论.1 G alerkin 有限元方法简介 将待求解区域Ω剖分为E 个单元,每个单元4个节点.设N i 是形函数(i =1,2,3,4),用4节点线性等参单元,则单元内的温度为 T e =N 1T 1+N 2T 2+N 3T 3+N 4T 4={N }T {T}e , (5) 其中:{N }=(N 1,N 2,N 3,N 4)T ;{T}e =(T 1,T 2,T 3,T 4)T .设ω1,ω2,…,ωn 是一组基函数,用 G alerkin 方法求方程(1)~(4)的解,实际上是求c 1,c 2,…,c n ,使T n =c 1ω1+c 2ω2+…+c n ωn 满足 κ Ω ρc 5T n 5t -k 52T n 5x 2+ 52T n 5y 2 ωi d x d y =0,i =1,2,…,n. (6) 对式(6)应用Green 公式,有 Ξ收稿日期:2004 0105;修回日期:20040420 作者简介:刘福来(1975),男,河北省唐山市人,东北大学博士研究生. 第29卷第1期2005年 1月河北师范大学学报(自然科学版) Journal of Hebei Normal University (Natural Science Edition )Vol.29No.1Jan.2005

第八章几何非线性问题的有限元法

第八章 几何非线性问题的有限元法 引言 前面各章所讨论的问题都是在小变形假设的前提下进行的,即假定物体所发生的位移远小于物体自身的几何尺寸,应变远小于1。在此前提下,建立物体或微元体的平衡条件时可以不考虑物体的位置和形状(简称位形)的变化,因此在分析中不必区别变形前后位形的差别,且应变可用一阶无穷小的线性应变表达。 实际上,上述假设有时是不成立的。即使实际应变可能是小的,且不超过材料的弹性极限,但如果需要精确地确定位移,就必须考虑几何非线性,即平衡方程应该相对于变形后的位置得出,而几何关系应该计及二次项。例如平板大挠度理论中,由于考虑了中面内的薄膜应力,求得的挠度比小挠度理论的结果有显著的减低。再如在结构稳定性问题中,当载荷达到一定数值后,挠度比线性解答予示的结果更剧烈地增加,并且确实存在承载能力随继续变形而减低的现象。在冷却塔、薄壁结构及其它比较细长的结构中,几何非线性分析都显得十分重要。 几何非线性问题可以分为以下几种类型: (1)大位移小应变问题。一般工程结构所遇到的几何非线性问题大多属于这一类。例如高层建筑或高耸构筑物以及大跨度网壳等结构的分析常需要考虑到结构大位移的影响。 (2)大位移大应变问题,如金属压力加工中所遇到的问题就属于这一类型。 (3)结构的变形引起外载荷大小、方向或边界支承条件的变化等。 结构的平衡实际上是在结构发生变形之后达到的,对于几何非线性问题来说,平衡方程必须建立在结构变形之后的状态上。为了描述结构的变形需要设置一定的参考系统。一种做法是让单元的局部坐标系始终固定在结构发生变形之前的位置,以结构变形前的原始位形作为基本的参考位形,这种分析方法称作总体的拉格朗日(Lagrange )列式法;另一种做法是让单元的局部坐标系跟随结构一起发生变位,分析过程中参考位形是不断被更新的,这种分析方法称作更新的拉格朗日列式法。 本章首先对几何非线性问题作一般性讨论,从中导出经典的线性屈曲问题的公式;然后建立平板大挠度问题和壳体的大位移(及大转动)分析的有限方法公式;接着还给出了大应变及大位移的一般公式,最后还详细讨论了杆系结构几何非线性问题的有关公式。在讨论中我们采用总体的拉格朗日列式法,但对杆系结构,为应用方便我们给出了两种列式法的公式。 & 一般性讨论 理论基础 无论是对于何种几何非线性问题,虚功原理总是成立的。由虚功原理,单元的虚功方程可以写成如下的形式 {}{}{}{}0=-???**v e eT e eT F dv δσε () 其中{}F 为单元节点力向量,{}e *ε为单元的虚应变,{}e *δ为节点虚位移向量。 增量形式的应变一位移关系可表示为 {}[] {}e e d B d δε= ()

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

有限元极限载荷分析法在压力容器分析设计中的应用2010

有限元极限载荷分析法在压力容器分析设计中的应用2010-07-15 10:39:54| 分类:分析设计| 标签:极限分析分析设计asme规范先进设计方法经验分享|字号大 中 小订阅 在某炼化一体化项目中,几个加氢反应器均采用分析法设计。详细设计时,国内计算后,反应器的主要受压元件厚度均要比专利商建议的厚度多出10~30mm不等。这其中有国内设计出于保守的考虑,另一个原因:同是采用分析设计,ASME的非线性分析相对先进一点。参与国际竞争时,先进的设计方法值得我们研究。 1.背景 随着中国加入WTO,国内各工程公司正积极走向海外。随之进入国际市场的压力容器产品也面临着严峻的挑战,为了在国际舞台上获得竞争优势,各工程公司必须采用先进的技术设计出更安全和更低成本的产品。压力容器分析设计是力学与工程紧密结合产物,解决了常规设计无法解决的问题,代表了近代设计的先进水平[1]。过去,国内分析设计通常采用弹性应力分析法,通过路径分析,应力线性化处理获得路径上的一次应力和二次应力,进而进行强度评定。该方法主要存在以下问题:⑴对大多数情况是安全可靠的,但对某些结果可能出现安全裕度不足的情况(如球壳开打孔);⑵如何对有限元法求解获得的总应力分解并正确分类遇到了困难。假如把一次应力误判为二次,则设计的结果将非常危险,反之,把二次应力误判为一次,则又非常保守。文[2]5.2.1.2节明确提到:应力分类需特殊的知识和识别力,应力分类方法可能产生模棱两可的结果。国内专家亦也认为对应力进行正确的分类存在一定困难[3-6]。 以弹性分析代替塑性分析,是一种工程近似方法。实际结构的破坏往往是一个渐进过程,随着载荷的增加,高应力区首先进入屈服,载荷继续增加时塑性区不断夸大,同时出现应力重新分布。当载荷增大到某一值时,结构变为几何可变机构,此时即使载荷不在增加,变形也会无限增大,发生总体塑性变形(overall plastic deformation),此时的载荷称为“极限载荷(limit load)”。 极限载荷分析法(下文简称极限分析)的目的是求出结构的极限载荷。在防止塑性垮塌失效时,极限分析相比弹性应力分析更接近工程实际,同时避免了应力分类,对防止塑性垮塌有比较精确的评定。 2.极限载荷的求解方法 塑性力学提出极限分析法由来已久。经典的极限分析方法有如下3种[8]:(1)广义内力与广义变形法;(2)上限定理与下限定理法;(3)静力法和机动法。经典解法的分析与计算均很复杂,只能应用于少数结构简单的压力容器元件,从而使极限分析的工程应用受到了限制。 上世纪七十年代出现三维有限元计算后,有限元的应用大大扩展。为了适应工程需要,有限元极限分析应运而生,形成了分析设计中的一个重要分支,它使得复杂的塑性极限分析可以通过计算机数值计算得以解决。在不久的将来,极限分析必与弹性应力分析法、弹-塑性应力分析法一同形成三足鼎立之势。极限分析的模型精度和计算成本居后两者之间。

钢筋混凝土梁非线性有限元分析方法

第28卷第1期 V ol.28 No.1 工 程 力 学 2011年 1 月 Jan. 2011 ENGINEERING MECHANICS 82 ——————————————— 收稿日期:2009-06-19;修改日期:2010-03-11 基金项目:国家科技支撑计划项目(2006BA904B03) 作者简介:*周凌远(1968―),男,四川成都人,副教授,工学博士,从事桥梁结构行为分析研究(E-mail: zhoulingyuan@163.com); 李 乔(1954―),男,黑龙江铁力人,教授,工学博士,博导,西南交通大学土木工程学院院长,从事桥梁结构行为分析研究 文章编号:1000-4750(2011)01-0082-05 钢筋混凝土梁非线性有限元分析方法 * 周凌远,李 乔 (西南交通大学土木工程学院,成都 610031) 摘 要:针对钢筋混凝土结构有限元分析中,材料进入非线性阶段后,难以通过梁理论准确描述混凝土截面和钢筋应力状态的问题,提出了基于柔度法和分布式塑性理论的钢筋混凝土梁单元材料非线性方法——网格截面法。这种方法采用平面等参单元将梁单元网格化,由单元轴向积分点位置截面网格积分点的混凝土应力描述单元截面应力分布,同时考虑钢筋对刚度的贡献,并通过对截面网格材料的积分计算积分点位置的截面刚度矩阵,再利用力插值函数和能量原理得到梁单元的柔度矩阵,进而对柔度矩阵求逆计算单元刚度矩阵。通过算例验证该方法在钢筋混凝土承载力分析时的准确性。 关键词:有限元;钢筋混凝土梁;柔度法;网格截面;极限承载力 中图分类号:TU375.1; O241.82 文献标识码:A AN APPROACH OF NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAM * ZHOU Ling-yuan , LI Qiao (School of Civil Eng, Southwest Jiaotong University, Chengdu 610031, China) Abstract: A beam element with a meshed section based on distributed plasticity and flexibility theory is presented for the material nonlinear finite element analysis of a reinforced-concrete framed structure, the sections of a concrete beam element are discretized into the plane isotropic components in this formulation, the stress distribution on the sections is described with the stresses at quadrature points in the mesh, the stiffness matrices of the sections are calculated by integration of the stress-strain relations of the material on the meshes and the contribution of the stiffness by reinforcing steel is also counted, the flexibility matrix of the element is formed by integration of section flexibility matrices with force-interpolation functions, and then it is inverted to obtain the element stiffness matrix. Finally, a numerical example of the ultimate load capacity analysis of a reinforced concrete beam illustrates the accuracy of the formulation. Key words: finite element; reinforced concrete beam; flexibility method; meshed section; load capacity 钢筋混凝土结构的整体承载力问题一直为工程界所关注,材料非线性有限元方法是研究这类问题的有效手段,其分析模型主要包括集中塑性铰 法[1]和纤维模型法,1977年,Kang 提出了基于纤维模型的二维梁单元[2],并运用于预应力混凝土框 架的分析,1993年Izzuddin B A 等提出了三次多项式插值的分布式塑性方法分析空间梁单元[3 ―4] ,通 过对沿梁轴方向两个积分点位置的截面划分监控区域,并假定每个监控区域内的法向应力均匀,得到单元的刚度矩阵和节点力,这样在同一个单元内

岩土工程极限分析有限元法及其应用

岩土工程极限分析有限元法及其应用 摘要:通过研究分析发现,将工程结构离散化是极限分析有限元法的核心内容,简单地说实际的工程结构是通过想象进行离散一定数量的规则单元组合体,然后 分析这些组合,结果应用于实际的结构中,通过这种实践在一定程度上解决了工 程建设过程中的问题。因此,本文笔者将详细对极限分析有限元法进行分析阐述。关键字:岩土工程;极限分析有限元法;应用 引言 自上世纪初,岩土工程的极限分析方法(包括极限平衡法、滑移线场法、上下限分析法)取得了较好进展,在实际工程得到了广泛的应用。其中一些方法需要一些人工架设,一些方 法的解决方案非常有限,这限制了该方法的开发和应用。其中有限元法数值方法适应力较强 且应用广泛,但在工程设计中,不能求出稳定安全系数 F 和极限承载力,从而限制了岩土工 程中有限元数值分析方法的运用。 一、经典岩土极限分析法的发展及问题 基于力学的极限分析方法,土体处于理想的弹塑性或者刚塑性状态,处于极限平衡状态,即土体滑动面上各点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。 极限平衡状态下的土体有两个力学性质:第一是土体处于不稳定的状态,所以它可以作为一 个岩土工程破坏失稳的判据;第二是岩土材料强度充分发挥,达到最大经济效益,因此,在 岩土工程中常把土体极限平衡作为设计依据。有两种方法可以将地基或土坡引入极限状态: 一是增量加载,如地基的极限承载力;二是强度折减,如土坡的稳定安全系数。 经典极限分析方法普遍应用于均质材料。极限状态的设计计算仅参考破坏条件及屈服条件,不需要参考岩土复杂的本构关系,从而大大简化了岩土工程的设计计算。极限状态计算 应满足以下条件: (1)屈服条件或者破坏条件。 (2)静力平衡条件和力的边界条件。 (3)应变、位移协调条件和位移边界条件。 目前主要采用以下4种经典极限分析法:上、下限分析法、滑移线场法、变分法与极限 平衡法。每种都具有各自的特点,但还有一些需作假定,如上限法、滑移线场法、极限平衡 法等都需对临界滑动面作假定,不适用于非均质材料,特别是岩石工程强度的不均性,从而 限制了极限分析法的应用,这正是极限分析法在经典岩土工程的缺陷。 二、极限分析有限元法的基本原理 2.1 安全系数的定义 有两种方法可以将地基或者土坡引入极限状态:一是增量加载,如求地基的极限承载。 力二是强度折减,如求土坡的稳定安全系数。 极限平衡方法是先假定滑动面,再使用传统边坡稳定分析,按照力(矩)的平衡计算安全系 数并将其定义为滑动面的抗滑力(矩)与下滑力(矩)之比。 目前,不平衡推力法(传递系数法)在我国滑坡稳定分析中得到广泛应用,该方法是我国 独立开创的滑坡稳定分析方法。有关推力安全系数,一般将增加下滑力的分项系数作为安全 贮备,但严格意义上不是荷载增加系数,因为边(滑)坡工程中荷载增加,不但会导致下滑力 增加,还会导致抗滑力增加,但目前的传递系数法中不考虑抗滑力增加,这与力学规律相符。一般,滑坡推力的标准值为:

有限元极限分析发展及其在岩土工程中的应用

科技论坛 有限元极限分析发展及其在岩土工程中的应用 何小红 (长春科技学院,吉林长春130000) 有限元极限分析法实际应用于岩土工程中,能够对岩土工程的安全系统、失稳数据等做出判断,但是在应用的过程中,需要做出假设,并且求解范围相对有限,在应用上有一定的限制。尽管如此,有限元极限分析法的适应性能也比较强,尽管它在使用的过程中不能对稳定安全系数F做出明确计算,受到了限制,但是在实际应用中依然能够发挥出其自身价值,为工作人员提供有用的数据信息,让岩土工程的发展也得到促进性作用。 1有限元极限分析法发展历程 有限元极限法最初的提出者是英国科学家,时间在20世纪70年代中期,这也是首次将有限元极限分析法应用于岩土工程中,计算出岩土工程额极限荷载及其安全系数。在20世纪90年代,该方法又应用于边坡和地基的稳定性分析中,但当时收到技术限制,并没有较强大和可靠的元程序支持,计算的精度也不够,在岩土工程中的推广使用收到了限制。 在20世纪末,国际又对有限元极限分析法做出了新的研究,主要以有限元强度折减法的求解上比较集中,计算结果和之前的结果仍然很相似,慢慢也就被学术界接受到,从此有限元极限分析法也就进入了一个新的发展时期。直到20世纪末,有限元分析法才在我国开始应用,主要是应用于土坡分析上。在21世纪初,我国学者分析边坡稳定性上,有效应用了有限元折减法,这也是我国最早对有限元强度折减法的应用,并在基本理论以及计算精度上做出了细致研究。在这两方面,我国也得到了较好的应用,并向着长远发展目标推进。 在研究方面,有限元强度折减法主要集中在安全系数与滑面系数方面,而有限元增量超载法主要是在地基极限车承载力方面。这方面的研究文献虽然不多,但是却取得了可观的研究成果。这两种方法,统称为有限元极限分析法,从根本上来说,均为采用数值分析方法求解的一种极限分析法。在国际上,有限元极限分析法大都采用编数值分析程序比较多,而该方法的应用范围仅局限于二维平面土基与土坡分析中。而在国内方面,大都采用大型通用程序,在计算、程序可靠性、功能等方面,均有很大的优势。近年来,国内在有限元极限分析法方面,取得了很大的进展。但是从整体情况来看,仍然研究的起步阶段,距离革新设计方法,尚有一段很长的距离。 2有限元极限分析法原理 2.1安全系数概念。对于有限元极限分析法安全系数有很多种定义,这些定义都是和岩土工程受破坏状态有直接关系。安全系数定义主要非两种,即有限元强度折减法以及有限元增量超载法;有限元强度折减法主要指受到环境影响,让岩土强度较低,边坡失去稳定性,通过岩土强度的降低计算出最终破坏的状态;有限元增量超载法主要指岩土地基上的荷载持续性增加,让地基稳定性受到破坏,导致超载安全系数呈现倍数递增上涨趋势;这两种方式计算的安全系数是有所不同的。 2.2有限元极限分析法原理。(1)有限元强度折减法原理。在岩土工程中,主要采用莫尔-库仑材料,安全系数w的计算式为:T= c'=c/ω,tanφ'=(tanφ)/ω(2) 有限元增量超载法。在工程中,岩土的破坏,不是朝夕之事,而是一个循序渐进的过程,由线弹性状态,逐步过渡到塑性流动,最终达到 极限破坏状态。因此,这就给增量超载方法求解地基的极限承载力,提供了有利的条件。 3有限元极限分析法基本理论 3.1判断岩土工程整体失稳的依据。所谓岩土工程整体失稳破坏,主要是指岩土沿滑面出现滑落或者是坍塌情况,导致岩土不能达到极限的平衡状态,不能继续承载,滑面的岩土也会有位移现象发生。在滑面节点上位移导致的塑形或者是突变性就是对边坡整体失稳的判断标志。所以,可以利用有限元静力计算来确定边坡是否失稳,判断出边坡失稳特征。 3.2提高计算精度的条件。在有限元极限分析法中,要想将计算的精度提高上来,就要满足一定的条件。首先是成熟可靠、程序的功能足够强大,尤其是通用于国际的程序;其次是强度准则以及结构模型有较高的实用性;最后是满足计算的需要,即计算的范围、网络划分以及边界条件等。只有满足这些条件,有限元极限分析法的计算精度才能够提高上来,降低计算的误差。 4有限元极限分析法的应用 4.1在二维边坡中的应用。结合下面的算例,探讨该方法的应用。通过大型有限元ANSYS5.62软件建立有限元模型,根据平面建立有限元模型,左右两侧为边界约束条件。按照边坡破坏的特点,在边坡遭到破坏时,滑面上的塑性应变和节点上的位移,将发生突变、塑性应变突变和滑动面水平位移。所以,这就能够按照塑性应变值云图方法来确定滑动面,并与之前的滑面方法相比。 4.2有限元超载法在土基上的应用。光滑刚性条形地基的极限承载力,均承受为垂直半无限、无重量地基,计算的方法如下:qu=ccosφ[exp(πtanφ)tan2(π/4+φ/2)-1 根据上述公式,当地基处于极限状态下,基础附近局部位移矢量将随着基础附近局部的等效塑性应变等发生变化。通过计算结果可看出,计算的结果与实际相符合。而对于有重地基极限承载力的计算,已经存在各种公式,但是相比较而言,魏锡克经验公式计算的记过比较准确。此外,有限元极限分析法在隧道工程、滑坡支档结构等均有着实际的应用,而且该方法的应用范围还在不断扩大。 结束语 从有限元极限分析法的自身应用方法来看,主要有有限元强度折减法以及有限元超载法这两种,这两种方法在当前的应用上都处于快速发展阶段,对其的研究也一直在进行,应用于岩土工程中也有着较好的效果。本文中,主要是从岩土工程的实际工作中应用有限元极限分析法做出简单分析,从其发展历程,再到安全系数定义,最后到岩土工程中的应用,这些都能够有效促进有限元极限分析法的进一步发展,以期有着借鉴价值。 参考文献 [1]赵尚毅,郑颖人.基于Drucker-Prager 准则的边坡安全系数转换[J].岩石力学与工程学报,2013(11). [2]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2013(21). [3]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2014(23). [4]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程 学院学报,2011(21). [5]宋亚坤,赵尚义,郑颖人.有限元强度折减法在三维边坡中的应用 与研究[J].地下空间与工程学报,2010(12). 摘要:从有限元极限分析法的优点上来看,该方法特别适合在岩土工程中应用,也得到了较好的发展。在实际应用过程中,是需要做 出假设并求解的,而且应用的范围有一定的局限性,这是有限元极限分析法应该创新的地方,在科技进步之下,对方法进行完善,让其适用的范围有所扩大,同时也推动在岩土工程中应用的价值。本文主要从有限元极限分析法做出了介绍,进而分析其在岩土工程中实际的应用。 关键词:有限元极限分析法;应用;岩土工程92··

有限元分析的基本步骤

一个典型的ANSYS分析过程可分为以下6个步骤: 1定义参数 2创建几何模型 3划分网格 4加载数据 5求解 6结果分析 1定义参数 1.1指定工程名和分析标题 启动ANSYS软件,选择File→Change Jobname命令 选择File→Change Title菜单命令 1.2定义单位 (2) 设置计算类型 ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK (3) 定义分析类型 ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK 1.3定义单元类型 选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令 单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定 1.4定义单元常数 在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令 单击[Add]按钮,进行下一个[Choose Element Type]对话框 1.5定义材料参数 在ANSYS程序主界面,选择Main Menu→Preprocessor→Material Props→Material Models命令 (1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所示[Linear Isotropic Properties for Material Number 1]对话框。 在[EX]文本框中输入弹性模量“200000”,在[PRXY]文本框中输入泊松比“0.3”,单击OK 2创建几何模型 在ANSYS程序主界面,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令 选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令 3网格划分(之前一定要进行材料的定义和分配) 选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令 选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所示网格 4加载数据 (1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令, 出现如下所示对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。

相关主题
文本预览
相关文档 最新文档