当前位置:文档之家› 地源热泵的应用领域与限制

地源热泵的应用领域与限制

地源热泵的应用领域与限制
地源热泵的应用领域与限制

地埋管地源热泵系统的优点和应用限制

利用地源热泵技术可以为建筑物提供冷量和热量,达到降温和供暖的目的。它的效益表现在以下几个方面。

(1)地源热泵利用清洁的电能实现供热和空调,废除了污染严重的中小型燃煤锅炉。在大型的火电厂中,由于便于采用先进技术,不但能源的利用率提高,而且可以做到对有害气体进行严格集中处理,使SO2, NO X的排放量大大减少,有效改善城市中的大气环境。

(2)地源热泵利用的能量是地壳浅层(200m以内)蓄存的热量,是一种可再生能源。夏季热泵将室内多余的热量释放给地下岩层蓄存起来,冬季再将其从地下抽取出来送到室内。这样,热泵进一步充分利用了地下岩土作为蓄热体,能量循环利用,是一种可持续发展的建筑供热空调新技术。

(3)机组效率高,节省运行费用。地下岩土的温度全年比较恒定,在夏季地下岩土温度比室外环境空气温度低,因此是热泵很好的冷源。在冬季,地下岩土的温度远高于室外大气温度,地源热泵的性能系数可高达4.0;也就是消耗1kWh的电能可以得到4kWh的供热量。采用地源热泵供暖的费用约为采用电锅炉供暖的1/3。与空气热源热泵及其它传统空调方式比较,地源热泵的效率要高20%~50%。

(4)传统的空调系统通常需分别设置冷源(制冷机)和热源(锅炉)。地源热泵既可供冷,又可供暖,一机多用,节约设备用房。采用地源热泵供热和供冷,一套系统代替了原来的锅炉和空调两套系统,夏季也省去冷却塔;热泵机组同时还可提供家用热水。因此一机多用,节省了建筑空间及设备的初投资。

(5)有效地降低了电网在夏季和冬季因建筑空调和(南方)采暖的用电高峰负荷。

(6)由于可以取消建筑空调系统的锅炉和冷却塔,有利于美化建筑的外观和环境。

地埋管地源热泵系统的效率比空气源热泵高,而且不受地下水和地表水资源的限制,只需占用一定的埋管区域,对环境无污染,充分利用可再生能源,因此是一项值得大力推广的新技术。应用地埋管地源热泵技术也有它的限制条件。主要是:

(1)与传统的锅炉+冷水机组的供热空调系统相比,或与空气源热泵系统相比,地埋管地源热泵系统的初投资稍高,在发达国家尤其是如此。这主要是因为设置地埋管换热器增加了初投资,特别是人工费用;而且埋管的费用与地质条件有关,在岩石或其他复杂地层中钻孔的费用较高。在我国由于劳动力成本大大低于发达国家,再加上近年来充分的市场竞争,地埋管的施工成本已大大下降,地埋管地源热泵系统与变频多联机(空气源热泵)的成本已基本相当或略低。此外,各级政府对应用地源热泵实行了多种优惠政策,也进一步提高了地源热泵系统的经济性。

(2)设置地埋管换热器需要一定的土地。在华北地区竖直埋管换热器的需要的土地面积约为建筑供热空调面积的10-15%。虽然这些土地在埋设地埋管换热器后仍可用作绿化、停车场或运动场等,但在建筑高度密集的城镇,埋管占地的因素仍成为应用地埋管地源热泵技术的主要制约条件。我国的工程技术人员为解决地源热泵系统用地紧张的困难,开发了许多独特的技术,特别是在地下车库的下面埋管的技术和在建筑桩基中埋管的技术。

(3)地源热泵系统对系统全年冷热负荷的平衡有一定的要求。在地埋管地源热泵系统中地下岩土在全年起到蓄热器的作用,对热量夏蓄冬供。但在北方严寒地区,冬季供热的负荷和时间远大于夏季空调的负荷和时间,系统多年运行以后地下的平均温度将逐年降低,影响系统的性能甚至使系统失效。在南方则相反,夏季空调负荷占主导地位,地下的平均温度将逐年升高,同样影响系统的性能。在冬冷夏热的华北地区对供热和空调都有较高的需求,地埋管换热器中全年的冷热负荷比较平衡,具有推广应用地源热泵技术的理想气候条件。对于地下全年冷热负荷不平衡的情况可采用地源热泵复合系统。

应用地源热泵技术的注意事项

由于地埋管地源热泵技术应用于建筑供热和空调时具有节能高效的特点,且对环境友好,特别是不影响地下水资源,因此近年来得到政府的大力提倡,应用规模日益扩大。由于这种供热空调系统在中国还属

于新技术,整个产业还处于初创期但是又急速膨胀,因此整个地源热泵产业的技术力量参差不齐,对技术的把握也有较大的差别。这就造成在地埋管地源热泵的应用中也出现了一些不成功的案例。例如,有一些项目第一个冬季运行就出现停机保护而失效;也有一些项目的效率逐年下降,3-5年后不能满足供热空调的需求而失效。出现这样的问题不是因为地源热泵技术本身不成熟,而是这些项目的设计施工和运行管理不到位。一个原因是承包商为了低价竞争,钻孔埋管的数量达不到要求;或者埋管施工中偷工减料,致使系统不能正常工作。另一个原因是对地源热泵系统的特点没有充分的了解。

地埋管地源热泵供热空调系统的工作原理实际上是利用地下岩土作为一个蓄热器,把夏天空调排出的热量蓄在地下土壤中,冬季取出热量给建筑供热;冬季运行时又把冷量蓄在土壤中,提高了夏季制冷时的效率。这种冬夏两用的特点本来是地源热泵系统的一大优点,但也成为它的一个限制条件,就是要考虑地下埋管换热器在全年中冷热负荷的基本平衡。如果全年中从地下取热大于向地下的排热,地下埋管周围的平均温度就可能逐年下降,造成系统在冬季工况的效率逐年下降,最后甚至不能正常工作。反之,在南方气候温暖的地区,如果一年中向地下的排热大于从地下的取热,也可能造成地下温度的逐年升高,影响系统夏季工况的运行。我们山东省夏天热、冬天冷,供热和空调都需要,本来是应用地源热泵技术的最适合的地区。但是山东的住宅建筑,特别是在像青岛、烟台等夏季较凉快的地方,建筑冬季供热所需的热量还是比夏季空调排出的热量多很多,有一定的冷热不平衡的问题。还有一些开发商希望开发的房子只解决供热问题,把供冷的问题留给住户自己用分体式空调解决。在这样的建筑中采用地源热泵系统就会引起的地下全年冷热负荷严重的不平衡。在山东已经有一些这样的系统在运行几年之后发现性能下降,甚至失效。因此在单供热的建筑中采用地源热泵技术是不经济、不合适的。对地下冷热负荷不平衡度较大的地源热泵项目,现在已经开发了一些技术措施,可以采用例如太阳能或燃气锅炉辅助的地源热泵的复合系统。

总之,采用地源热泵技术时应对建筑负荷和地埋管换热器进行正规的计算和设计,同时应委托有资质和有技术实力的承包商实施地埋管地源热泵供热空调工程。这样,地源热泵这个节能环保的新技术一定能为山东的节能减排做出重要的贡献。

关于地源热泵技术的开题报告

关于地源热泵技术的开题报告 一、选题的依据及意义: 1.依据: 进入90年代后,我国的居住环境和工业生产环境都已广泛地应用热水供应装置,热水供应装置已成为现代学校居住必备。90年代中期,由于大中城市电力供应紧张,供电部门开始重视需求管理及削峰填谷,热泵供热技术提到了议事日程。近年来,由于能源结构的变化,促进了地源热泵供热机组的快速发展。 随着生产和科技的不断发展,人类对地源热泵供热技术也进行了一系列的改进,同时也在积极研究环保、节能的地源热泵供热产品和技术,现在利用成熟的电子技术来进行综合的控制,并和太阳能结合更注意能源的综合利用、节能、保护环境及趋向自然的舒适环境必然是今后发展的主题。 2.意义: 地源热泵技术,是利用地下的土壤、地表水、地下水温相对稳定的特性,,通过消耗电能,在冬天把低位热源中的热量转移到需要供热或加温的地方,在夏天还可以将室内的余热转移到低位热源中,达到降温或制冷的目的。地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。同时,它还可供应

生活用水,可谓一举三得,是一种有效地利用能源的方式。通常根据热泵的热源(heat source)和热汇(heat sink)(冷源)的不同,主要分成三类: 空气源热泵系统( air-source heat pump) ashp 水源热泵系统(water- source heat pump) wshp 地源热泵系统(ground- source heat pump)gshp 平时还有人把热泵系统按照一次和二次介质的不同,分别叫做:空气---水热泵系统 水--- 空气热泵系统 水--- 水热泵系统 空气---空气热泵系统 这些都是把热源、热汇以及空调系统的传递介质也包括进来分类形成的。 为了和国际标准接轨,我们还是应该依照国际惯例来命名。在1997年由美国的ashrae(美国采暖、制冷与空调工程师学会)统一了标准术语,无论是wshp、gshp都叫做gshp--地源热泵系统。 另外,为了让我们在学习和讨论中更方便,介绍一些地源热泵室外能量交换系统的概念: 土壤埋管系统----土壤换热器(水平埋管、竖直埋管) 地下水系统 地表水系统 这些都是地源热泵的热源或热汇形式。(具体参见下图)

地源热泵供暖系统使用常识和维护保养注意事项

地源热泵供暖系统使用常识和维护保养注意事项 很多人觉得地源热泵管道埋在地下,即使清洗保养也是很件很麻烦的事情,所以就放任不管了。其实地源热泵对管路内密闭循环的介质水的质量有较高的要求,常见的管路循环不畅、局部堵塞、金属件被腐蚀、微生物滋生影响换热效果等问题,根源就是管路水质不良。传统的中央空调为了延长使用寿命,都需定期进行清理保养,地源热泵管道也不例外,也是需要清洗保养的。 地源热泵空系统机械清洗需要注意以下问题: 1、清洗完后用清水冲洗,直到达到标准,然后盖好端盖 2、拆开冷凝器前后端盖 3、关闭冷却水进出口阀门 4、用管路清洗机清洗传热管路 5、清理冷凝器端盖、水室腔内结垢和锈蚀 热泵压缩机的保养问题很重要: 1、压缩机的外观检查 检查压缩机进出口阀门的连接可靠性,是否有泄露情况;试验时应该注意压缩机运行的声音来判断是否有异常。 2、电压及电流测量工具 钳形电流表用钳形电流表工作电压,运行电流。测量运行电流时电缆应该位于测量环路的中心。 3、油品的测定方法 可从地源热泵机组内提取少许冷冻油装入容器,取一滴装入酸试剂瓶观察酸度,与比色卡进行对照。符合比色卡对照颜色的不需要更换冷冻油可从机组内提取少许冷冻油装入容器,尽量减少在空气中的暴露时间,然后用PH试纸判别油的 酸度。符合油酸度要求的不需要更换冷冻油用吸水纸检查油中的杂质,如有碳析出或其它杂质,应更换冷冻油。 4、绝缘电阻的测量测量工具 在地源热泵机组切断电源的情况下,用兆欧表检测压缩机的三相对地阻值是否符合标准。如果机组长时间未启用,则应该先将机组的曲轴箱电加热启动,加热机组的油腔,使机组机油内的氟利昂蒸发,提高测量电阻的准确度测量注意:严禁在真空状态下测量绝缘度,防止绝缘层被击穿引起事故。 冬季使用地源热泵的注意事项问题,要注意的点: 1、冬季家用地源热泵是制热运行的,在使用之前应检查制冷循环管道,确保全部阀门的关闭,然后开启制热循环管道阀门。 2、在使用前应先检查机组线路,避免出现缺相、反相等问题的发生;检查外接地线

芬尼克兹地源热泵三联供系统介绍及应用

地源热泵三联供系统介绍及应用 广州市密西雷电子有限公司――刘万才 1、概述 地源热泵三联供机组是一种利用地能(包括地下水、土壤、地表水等)作为冷(热)源,对室内空间提供采暖、空调与生活热水等多种功能的空调热水设备。地源热泵三联供通过输入少量的高品位能源(如电能),系统以水为载体,夏季制冷季时从室内吸收热量通过载体将热量释放到地下土壤中储存起来,同时载体得到冷却,从而实现对室内进行降温、除湿,该系统每消耗1KW的电能,可以得到4-5KW的冷量,同时所得生活热水为完全免费获得。冬季采暖时系统从地下土壤中吸收热量通过载体将热量释放到室内,满足室内供热与采暖的需求。地源热泵三联供所利用的是地球所储藏的太阳能资源作为冷热源,是清洁的可再生能源,取之不尽、用之不竭。热泵系统进行能量的转换利用,节能环保。 3、工程应用 3.1.工程根况: 本工程为上海某会所楼的中央空调,属于舒适性空调。空调使用面积为1200m2.层数为3层,主要区域为办公室,会议室、健身中心等;本大楼需要24小时有热水供应。 3.2.系统配置 经计算本工程总设计冷负荷为264KW,热负荷为160KW,热水用量为5T/天。空调主机选用PHNIX(芬尼克兹)型号为PWSRW250S-HGLQX地源三联供机组(地下环路式)系列4台。该机组单机制冷量为65KW;制热量为50KW;额定产热水量680L/h。 室内空调末端采用卧式暗装风机盘管,合理配置室内机机型,及均匀布置送、回风位置,保证房间气流组织,做到装潢及使用效果的完美。空调供回水系统采用异程式,管材为镀锌钢管,冷凝水管材用PVC管排至地漏,为防止冷结产生,分别采用20mm厚和8mm厚橡塑材料管材保温。空调机组在震动及运行方面具备良好的性能,且机组在冷量控制方面实行全自动控制运行。 热水供应系统,热水系统配置1个不锈钢保温水箱(有效容积为5m3)。机组进水和出水管接水箱,管材采用PPR管外包橡塑保温,水箱中热水经机组加热(水温55℃),由热水供水泵送到各用水点。

地源热泵技术简单介绍.

地源热泵 地源热泵的利用是国土资源部大力推广的一种新型环保、节能技术,具有再生、清洁、安全、高效的特点。 地源热泵系统的利用分地埋管地热源系统、地下水地热源系统和地表水地热源系统。 量转移到建筑物内 , 一个年度形成一个冷热循环 . 是最具有发展前景的一种形式。但对于该项技术的使用,受限制较多(需要当地土地资源部门对当地土地资源的评估、批准 ,而且其初步的投资较高。 2. 地表水地热源系统,即污水源热源系统。城市污水来源广泛,汇流面积大,污水原水流量具有小时变化规律明确、日流量相对稳定、随着城市规模的扩大而呈逐年递增的趋势。利用污水热泵空调系统不仅可以使污水资源化,更是改善我国供暖以煤为主的能源消费结构现状的有效途径。城市污水有三种形式:原生污水、二级再生水和中水。原生污水是指未经过任何物理手段处理的污水。运用原生污水源热泵空调系统相比于二级再生水和中水热泵空调系统的初投资及运行费用低。城市污水温度变化幅度较小,与环境温度相比,表现为冬暖夏凉,污水温度在冬季通常为13℃ ~17℃,在夏季为 22℃ ~25℃与河水及空气相比较,城市污水在温度在冬季最高、夏季最低,全年波动最小。污水的温度在城市可以利用的热能中是最多的。而且在能量消费密度越高的城市中其蕴藏的热量也越大。虽然污水的热赋存量很大,却不适用于产生动力,仅适用于 50℃一下的低温用户。

由于城市污水具有比较稳定的流量和适宜的温度, 污水源热泵系统能够高效稳定、安全可靠的运行, 可使夏季室温保持在 21℃ ~26℃, 冬季可达 18℃ ~24℃ . 城市污水热源泵,容易安装。一套设备可以实现夏季供冷、冬季供热,设备利用率高,总投资额为传统空调的 60%。 该技术已在北京、秦皇岛、哈尔滨等地开始运用。 下面是污水热源泵系统原理图: 但该项技术对于污水的需求量非常大,受水资源的限制。 3. 地下水热源系统(水源热泵常常被人们赞誉为“绿色空调” 。水源热泵就是以地下水作为冷热 " 源体 " ,在冬季利用热泵吸收其热量向建筑物供暖,在夏季热泵将吸收到的热量向其排放、实现对建筑物供冷。传统的暖通空调系统需要很多辅助系统或设备来完成一个完整的暖通空调功能,如冷却塔。而水源热泵系统只是通过与地下水的热交换来完成制冷或制热的效果。只应用一个硬件系统, 通过在不同季节进行冷凝器和蒸发器的转换,就可以完成制冷与制热功能的转换。该向技术已在我市部分楼盘开始使用。

地源热泵优缺点

1、地源热泵的优缺点:节能 地源热泵主要是与地下土壤进行热交换,而不是与室外空气进行热交换。在夏季,在为室内提供冷气的同时,其废热不再是排入空气中,而是储存于地下,以此提高冬季供暖的效率;在冬季,室内供暖的大部分能量来自于地下,利用地下土壤的温度来为室内提供免费的热能。一般来讲,冬季每千瓦的电力能为室内带来4—5千瓦热量,而土壤温度的降低又为下一季节的空调带来冷源。因此地源热泵更多地是在室内和地下“转移”能量,而不是“创造”热量。由于地源热泵是在土壤和室内空气之间工作,二者的温差较室内外空气温差要小很多所以它的工作效率非常的高。是目前国际上最先进的中央空调系统。 2、地源热泵的优缺点:运行可靠 采用地源热泵进行热交换的方式,已经是非常成熟的施工工艺,只要按相关标准施工,其稳定性已经得到广泛认可。且由于其不受外界气候的影响,地源热泵是目前所有空调系统中运行最为可靠的。 3、地源热泵的优缺点:不需要地热资源 地源热泵(Ground Source Heat Pump)有时也被称为地热热泵(Geothermal Heat Pump)但实际上,它完全不需要当地具有地热资源,它利用的只是地下介质如土壤、岩石和水的蓄热能力。 4、地源热泵的优缺点:不适合装地源热泵的情况 答:相比之下,在下列情形中,地源热泵的优势不是十分明显:(1)楼层高、档次较低的住宅,此时地源热泵投资会明显抬高单位面积成本,影响房产商的利润,用户可能更倾向于简便、低廉的窗式空调或分体式空调。(2)地质情况不好,如遇岩层、空洞等特殊土壤结构等,或外部场地十分狭小,造成钻井距离不足甚至是无法完成钻孔布局的情况下,就不宜安装地源热泵。 5、地源热泵的优缺点:使用年限 地源热泵系统非常的可靠耐用。一般室外地埋换热部分寿命为50年,热泵机组

关于地源热泵技术的毕业论文开题报告

关于地源热泵技术的毕业论文开题报告 一、选题的依据及意义: 1.依据: 进入90年代后,我国的居住环境和工业生产环境都已广泛地应用 热水供应装置,热水供应装置已成为现代学校居住必备。90年代中期,由于大中城市电力供应紧张,供电部门开始重视需求管理及削峰填谷,热泵供热技术提到了议事日程。近年来,由于能源结构的变化,促进 了地源热泵供热机组的快速发展。 随着生产和科技的不断发展,人类对地源热泵供热技术也进行了一 系列的改进,同时也在积极研究环保、节能的地源热泵供热产品和技术,现在利用成熟的电子技术来进行综合的控制,并和太阳能结合更注意 能源的综合利用、节能、保护环境及趋向自然的舒适环境必然是今后 发展的主题。 2.意义: 地源热泵技术,是利用地下的土壤、地表水、地下水温相对稳定 的特性,,通过消耗电能,在冬天把低位热源中的热量转移到需要供热 或加温的地方,在夏天还可以将室内的余热转移到低位热源中,达到降 温或制冷的目的。地源热泵不需要人工的冷热源,可以取代锅炉或市政 管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地 下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。通常根据热泵的热源(heatsource)和热汇(heatsink)(冷源)的不同,主要分成三类:空气源热泵系统(air-sourceheatpump)ashp 水源热泵系统(water-sourceheatpump)wshp 地源热泵系统(ground-sourceheatpump)gshp 平时还有人把热泵系统按照一次和二次介质的不同,分别叫做: 空气---水热泵系统 水---空气热泵系统

地源热泵技术原理及其优缺点

地源热泵技术介绍 一、什么是热泵 热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出可用的高品位热能的设备,可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。热泵技术在空调领域的应用可分为空气源热泵、水源热泵以及地源热泵三类。由于热泵是提取自然界中能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已经在全世界范围内受到广泛关注和重视。 二、什么是地源热泵 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 三、地源热泵的结构 地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 四、地源热泵的基础原理 地源热泵原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。 1、地源热泵制热原理 地源热泵系统在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进

行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器(风机盘管),以13℃以下的冷风的形式为房供冷。 2、地源热泵制冷原理 地源热泵系统在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过四通阀将冷媒流动方向换向。由室外地能换热系统吸收地下水或土壤里的热量,通过水源热泵机组系统内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/空气热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下的热量不断转移至室内的过程中,以室内采暖空调末端系统向室内供暖。

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

地源热泵系统操作手册

新龙生态林工程项目指挥部(办公楼) 地源热泵空调系统操作手册

工程概况 工程名称:新龙生态林工程项目指挥部(办公楼)地源热泵空调系统工程地点:常州市新北区长江北路 建设单位:常州龙城生态建设有限公司 施工单位:江苏凯源机电设备安装工程有限公司 设备描述 1、本工程系统为地源热泵系统,主机品牌为上海美意,配置热泵机组4台;室内风机盘管品牌为浙江盾安,室内配置风机盘管57台;中厅配置风管式机组2台,配置室内新风机4台。 地源侧配备循环水泵两台,一用一备;空调侧配备循环水泵两台,一用一备。 地源侧与空调侧各配置定压稳压装置一套。 2、美意主机液晶控制面板使用说明:

○1开关 ○2模式 ○3热水 ○4温度加键/风速 ○5确认 ○6温度减键/睡眠 ○7设置 ○8清除 ○9节能 ○10室温 3、室内风机盘管液晶控制面板使用说明: ○1开/关机按键 ○2模式按键,冷/热转换 ○3风量调节键 ○4/○5温度设置键 ○6红外接收窗 ○7/○8冷/热符号 ○9通风符号 ○10自动风速符号 ○11手动风速符号 ○12室温符号 ○14/○15温度显示

4、新风机组液晶控制面板使用说明 ○1开关键 ○2模式键 ○3风速键 ○4/○6上下键 ○5空格 开机步骤 开启地源侧水泵和空调侧水泵 按主机液晶控制面板开关,依次开1#、2#机 开启室内液晶控制面板开关(设置温度及风量) 关机步骤 关闭室内液晶控制面板开关

关闭主机液晶控制面板开关 关闭地源侧水泵和空调侧水泵 五、中厅风管机组操作步骤 中厅部分空调机组控制箱 1、按开机键,运行灯亮,机组启动运转 2、按停机键,停止灯亮,机组停止运转

地源热泵技术文件

辛集市阳光壹号翡翠园住宅小区 建筑能耗监测 审查:XXX 校对:XXX 设计:XXX 2011年06月09日

1.设计依据 1.1《过程检测及控制流程图图形符号和文字代号》GB2625-81 1.2《民用建筑电气设计规范》JGJ16 -2008 1.3《财政部、建设部关于加强可再生能源建筑应用示范管理的通知》(财建[2007]38号) 1.4《关于加快开展可再生能源建筑应用示范项目验收评估工作的通知》(财办建[2009]116号) 2.概述 地源热泵技术是一种利用浅层常温土壤或地下水中的能量作为能源的高效节能、零污染、低运行成本的既可供暖又可制冷并能提供生活热水的新型热泵技术。热泵是一种从低温热源汲取能量,使其转换成有用热能的装置。 系统由水循环系统、热交换器、地源热泵机组和控制系统组成。冬季代替锅炉从土壤中取出热量,以30-40℃左右的热风向建筑物供暖,夏季代替普通空调向土壤排热,以10—17℃左右的冷风形式给建筑物制冷。同时,它还能供应生活热水。它的最大优点是节能、无污染和运行费用低、空气质量高。它不向外界排放任何废气、废水、废渣,是一种的理想的“绿色技术”。从能源角度来说,它是一种用之不尽的可再生能源。 先进的自动化技术在可再生能源建筑应用中已广泛使用,并发挥出显著的技术经济效益。在系统控制过程中,通过对水泵、热泵、机组以及水流流量的控制和监测,使系统达到最大程度的高效和节能。 3.监控系统构成 根据本工程的实际情况及工艺要求,监控系统设计采用分布式计算机监控系统。系统由中心监控计算机和现场控制分站组成,采用以太网及现场控制总线相结合的通讯网络。同时中心监控计算机预留与物业管理网络衔接的通讯接口。设置中央控制室,中央控制室内设置中央监控计算机、打印机、投影仪等设备。 由可编程序控制器及自动化仪表组成检测控制系统---现场控制站,对各工艺过程进行分散控制;再由中央控制室,对全系统实行集中管理。分控站与中央控制室之间由以太网进行数据通信。

地源热泵优缺点及基本原理和参数

地源热泵的12大优势 由于地源热泵系统采取了特殊的换热方式,使它具有普通中央空调和锅炉不可比拟的优点: 一、高效节能 与锅炉(电、燃料)供热系统相比,土--气/水型地源热泵系统的转换效率最高可达4.7 。而锅炉供热只能将90%以上的电能或70~90%的燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/2以上的能量,运行费用为各种采暖设备的30-70%。由于土壤的温度全年稳定在10℃—20℃之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。夏季高温差的散热和冬季低温差的取热,使得土--气型地源热泵系统换热效率很高。因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。 二、绿色环保 土--气/水型地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。 三、分户计费 实现机组独立计费,分户计表,方便业主对整个系统的管理。 四、使用寿命长

家用空调设计寿命8年,燃气锅炉为10年;土--气型地源热泵机组为50年,水循环和风管系统60年以上,地耦管路系统为70年,它比所有各种空调系统和采暖设备的寿命都要长。 五、节省建筑空间控制设备简单 土--气/水型地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。 六、系统可靠性强 每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。机组的运行工况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜除霜之虑。 七、同时供暖制冷 土--气/水型地源热泵系统可做到同时有的房间或区域制冷,有的房间或区域供暖,这对大型商业建筑尤其重要。采用传统中央空调系统只有使用造价极其昂贵的四管空调系统才能做到,而土--气型地源热泵不需增加任何设备便可做到。 八、维护费用低廉 土—气/水型地源热泵系统不带有室外安装的设备,不设冷却塔、屋顶风机,没有室外设备安装维护费用。压缩机工作稳定,不会出现传

地源热泵系统操作手册

地源热泵系统操作手册 Prepared on 24 November 2020

新龙生态林工程项目指挥 部(办公楼) 地源热泵空调系统操作手册 一、工程概况 工程名称:新龙生态林工程项目指挥部(办公楼)地源热泵空调系统 工程地点:常州市新北区长江北路 建设单位:常州龙城生态建设有限公司 施工单位:江苏凯源机电设备安装工程有限公司 二、设备描述 1、本工程系统为地源热泵系统,主机品牌为上海美意,配置热泵机组4台;室内风机盘管品牌为浙江盾安,室内配置风机盘管57台;中厅配置风管式机组2台,配置室内新风机4台。 地源侧配备循环水泵两台,一用一备;空调侧配备循环水泵两台,一用一备。 地源侧与空调侧各配置定压稳压装置一套。 2、美意主机液晶控制面板使用说明: ○1开关 ○2模式 ○3热水

○4温度加键/风速 ○5确认 ○6温度减键/睡眠 ○7设置 ○8清除 ○9节能 ○10室温 3、室内风机盘管液晶控制面板使用说明:○1开/关机按键 ○2模式按键,冷/热转换 ○3风量调节键 ○4/○5温度设置键 ○6红外接收窗 ○7/○8冷/热符号 ○9通风符号 ○10自动风速符号 ○11手动风速符号 ○12室温符号 ○14/○15温度显示 4、新风机组液晶控制面板使用说明 ○1开关键 ○2模式键

○3风速键 ○4/○6上下键 ○5空格 三、开机步骤 1、开启地源侧水泵和空调侧水泵 2、按主机液晶控制面板开关,依次开1#、2#机 3、开启室内液晶控制面板开关(设置温度及风量) 四、关机步骤 1、关闭室内液晶控制面板开关 2、关闭主机液晶控制面板开关 3、关闭地源侧水泵和空调侧水泵 五、中厅风管机组操作步骤 中厅部分空调机组控制箱 1、按开机键,运行灯亮,机组启动运转 2、按停机键,停止灯亮,机组停止运转

地源热泵技术方案

地源热泵系统工程 技术方案 一、项目介绍

1、工程概况 本工程为。总用地15322.46㎡。 本项目总建筑面积约为,包括,旧楼。空调系统需满足建筑物冷、热负荷要求。 2、设计依据 2.1 参考资料 《建筑给水排水设计规范》GB 50015-2003(2009) 《采暖通风与空气调节设计规范》GB 50019-2003 《高层民用建筑设计防火规范》GB 50045-95(2005年版) 《公共建筑节能设计标准》GB 50189-2005 《公共建筑节能设计标准》DB13(J)81-2009 2.2 设计参数 采用负荷指标法估算建筑物的冷、热负荷: 夏季冷指标为94.5w/㎡,冷负荷为3130.82kw; 冬季热指标为81.7 w/㎡,热负荷为2706.75kw。 二、设计方案描述 1、设计思路 本项目埋孔面积有限,土壤换热器的数量仅能满足部分建筑物冷热需求,所以空调系统采用地源热泵+户式空调的组合方式,新增建筑的七层以下(含七层)及原有培训楼(旧楼)采用地源热泵系统,新增建筑的八层以上(含八层)采用户式空调。地源热泵系统采用集中温控系统实现自动控制。 2、热泵主机配置描述 本方案配置2台美国美意公司生产的 MWH2800CC型地水源热泵机组。 MWH2800CC型地水源热泵机组是以地能即 地下水(井水、地埋管或其他地表水)为主要能源辅以 电能,通过先进的设备将地下取之不竭但不易利用的 低品位再生能源开发利用,使其变为高品位能源。

MWH2800CC型地水源热泵机组的性能参数如下:

3、室外地埋孔描述 目前普遍采用的有垂直埋管和水平埋管两种基本的配置形式。 水平埋管是在浅层土壤中挖沟渠,将PE管水平的埋置于沟渠中,并填埋的施工工艺。水平埋管占地面积较垂直埋管大,效率较垂直埋管低。 垂直埋管是在地层中垂直钻孔,然后将地下热交换器(PE管)以一定的方式置于孔中,并在孔中注入填充材料的施工工艺。 地下热交换器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。本方案采用垂直埋管的型式。 根据本项目地源热泵空调系统设计负荷,经过计算得土壤换热器总延米数为42000m,单位土壤换热器孔深选100m,则需要布置土壤换热器的数量为420个,孔径φ220mm。换热孔间距4×4m,若单孔占地面积平均以16㎡计,孔位分布总面积为6557㎡ 室外埋管采用高密度聚乙烯(PE100)塑料管,采用进口原料。垂直管采用抗压1.6MPa,SDR11 D32的PE100塑料管,单U下管。室外水平管采用抗压1.0MPa,SDR17的PE100塑料管。 室外地埋管为隐蔽工程,使用寿命50年以上,地埋管的管材、管件的选择与土壤热泵系统的使用效果、寿命等密切相关。多年来我公司致力于土壤源热泵技术的发展,在地下埋管方面做了许多研发工作,并在国家《土壤源热泵系统工程技术规范》GB 50366-2005中得以体现。 4、软化水系统描述 空调系统末端循环水侧由于要经常运行,同时要适应冷、热两种工况,必须进行软化处理,选用全自动软化水器制取软化水共空调系统末端侧循环系统使用。 5、水泵描述 本方案水泵采用了上海凯泉泵业(集团)有限公司生产的KQL、KQDP 系列水泵。该系列水泵用电机直接连接,振动小、噪音低;电机采用Y2型电机,防护等级IP54全封闭结构,防止粉尘、飞雨、飞溅水滴等进入电机内部,造成电机损坏;F级绝缘,提高了电机使用的最高允许温升,因而抗过载能力高,

埋管式地源热泵系统介绍

一、地源热泵系统简介 0 引言 “热泵”这一术语是借鉴“水泵”一词而来。在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。我们也可以称热泵为既可以制冷又可以供热的机组。热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。 地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。 00 空气源热泵

空气源热泵以室外空气作为热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒1 冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,应用受到很大局限。 01地下水源热泵 地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电

(整理)地源热泵技术

地源热泵技术 地源热泵技术是一种无污染、可再生的新能源技术。地源热泵是热泵技术应用的一个新的分支,其节能和优越的环保性能,近年来正在得到广泛的应用,同时受到国家政府的大力支持。地源热泵技术有效的利用了土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用技术。 在夏季供冷时,地源热泵技术利用地下环境温度较低的特点,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器,以冷风的形式为房供冷。地源热泵与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。 在冬季供热时,地源热泵系统通过埋藏在地下的管道将储存在地下的热能通过传热介质吸收,作为逆循环中的低温热源,通过输入少量的高位电能使热泵压缩机完成逆循环,并向用户提供高品位的热能。 地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。因此,如不考虑电能的来源和对环境污染,地源热泵技术是城市供热及供冷的一种清洁能源技术,它不需要建立一般城市供热所需的锅炉房,也不存在燃料燃烧而带来的城市环境污染问题,而且可以实现冷热联供。另外,地源热泵技术在实际应用中,对于一些客观条件受限制而无法采用其他供热、供冷方式的场所(如高速公路收费站、人员设备相对较少的科考站、边防哨所),地源热泵技术的应用则更体现出其特有的优越性。 地源热泵技术是一种利用地下浅层地热资源进行供热、供冷的新型节能技术。由于其热源温度比较高,全年稳定,不随外界环境温度的变化而变化,所以不管是冬季供暖,还是夏季制冷,地源热泵的能效比都要比其他热源形式的热泵高出许多。

地源热泵简介地源热泵概述

地源热泵简介地源热泵概述 地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。 地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。 地源热泵由来 "地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。编辑本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。编辑本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。其中地源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 主要特点

(1)地源热泵技术属可再生能源利用技术。由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。 (2)地源热泵属经济有效的节能技术。其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。 (3)地源热泵环境效益显著。其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。 (4)地源热泵一机多用,应用范围广。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。水力平衡分配器(5)地源热泵空调系统维护费用低。地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。

地源热泵优缺点

地源热泵通过输入少量的高品位能源(电能),即可实现能量从低温热源向高温热源的转移,是一种非常节能的采暖制冷方式,因此受到国家建设部大力推荐,许多新建小区也是不遗余力大兴土木,地源热泵工程在全国各地轰轰烈烈开展,但是任何事情都是利弊共存,地源热泵也不是十全十美的,以下为地源热泵优缺点。 优点1:稳定性好:地能或地表浅层地热资源的温度一年四季相对稳定,常年保持在较适宜的10—20℃范围内,冬季比环境空气温度高,夏季比环境空气温度低。 优点2:节能高效:地源热泵系统主要利用地下恒定的能量,以电力为辅,节能高效。在冬季运行的时候,地源热泵电能转化率为百分之百,而常规中央空调为了维持正常运转,需要将将近40%的电能用于化霜,仅有60%的电能正常转化为热能,这使得地源热泵空调比传统中央空调节能40%~50%左右。 优点3:使用寿命长:地源热泵系统非常的可靠耐用,它的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,一般室外地下换热部分寿命为50年,地上热泵机组寿命为25年。 优点4:一机多用:地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,一步到位,高效便捷。 优点5:环保可再生:地源热泵的运行没有任何污染,可以建造在居民区内,在供热时,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,不会产生城市热岛效应,对环境非常友好。并且,地源热泵属于可再生能源,符合能源可持续性发展的趋势,是理想的绿色环保产品。 缺点1:地源热泵的使用受到场地限制,热交换是在地下进行的,必须通过打井进行热量传输,因此没有足够的场地就不能实现能量交换。 缺点2:一次性投资价格高。地源热泵属于高档次的商品,地源热泵中央空调比一般中央空调档次又要高许多,节能高达百分之四十以上,但比一般中央空调投资高约百分之四十左右,如果有能力使用中央空调,地源热泵的高投入部分实际上是一种高回报投资。 缺点3:如果使用抽地下水那种地源热泵,对地下水和地质有不好的影响,保护不好会污染地下水,回灌不好会影响地基下沉。

地源热泵的工作原理及技术经济性分析

地源热泵的工作原理及技术经济性分析 一、什么是地源热泵 地源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。热泵机组的能量流动是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+吸收的热能)一起排输至高温热源。而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到吸收低温热源中热能的作用。请参见能流图所示。 通常地源热泵消耗1kW的能量,用户可以得到5kW以上的热量或4kW以上冷量,所以我们将其称为节能型空调系统。 与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~9 0%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵的热源温度全

年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。 二、地源热泵国内外发展近况 地源热泵的历史可以追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。它以河水低温热源,向市政厅供热,输出的热水温度可达6 0o C。在冬季采用热泵作为采暖需要,在夏季也能用来制冷。1973年能源危机的推动,使热泵的发展形成了一个高潮。目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”并且环保的设备在法、德、日、美等发达国家业已广泛使用。如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中有新建筑中占30%。美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。美国计划到2001年达到每年安装40万台地源热泵的目标,届时将降低温室气体排放1百万吨,相当于减少50万辆汽车的污染物排放或种植树1百万英亩,年节约能源费用达4.2亿美元,此后,每年节约能源费用再增加1. 7亿美元。 与美国的地源热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅层地热资源,地下土壤埋盘管(埋深<400米深)的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,为家用的供热装置中,地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。 我国的地源热泵事业近几年已开始起步,而且发展势头看好。天津大学、清华大学分别与有关企业结成产学研联合体开发出中国品牌的地源热泵系统,已建成数个示范工程,越来越多的中国用户开始熟悉地源热泵,并对其应用产生了浓厚的兴趣,可以预计中国的地源热泵市场前景广阔。之所以对中国的地源热泵市场发展前景持乐观态度,一方面是要节约常规能源、充分利用可再生能源的国内

地埋管地源热泵系统的优点和应用限制

地埋管地源热泵系统的优点和应用限制 发布时间:2013/9/12 地埋管地源热泵系统的优点和应用限制 利用地源热泵技术可以为建筑物提供冷量和热量,达到降温和供暖的目的。它的效益表现在以下几个方面。 (1)地源热泵利用清洁的电能实现供热和空调,废除了污染严重的中小型燃煤锅 炉。在大型的火电厂中,由于便于采用先进技术,不但能源的利用率提高,而且可以做 到对有害气体进行严格集中处理,使SO2, NO X的排放量大大减少,有效改善城市中的大气环境。 (2)地源热泵利用的能量是地壳浅层(200m以内)蓄存的热量,是一种可再生 能源。夏季热泵将室内多余的热量释放给地下岩层蓄存起来,冬季再将其从地下抽取出来送到室内。这样,热泵进一步充分利用了地下岩土作为蓄热体,能量循环利用,是一种可持续发展的建筑供热空调新技术。 (3)机组效率高,节省运行费用。地下岩土的温度全年比较恒定,在夏季地下岩 土温度比室外环境空气温度低,因此是热泵很好的冷源。在冬季,地下岩土的温度远高 于室外大气温度,地源热泵的性能系数可高达4.0;也就是消耗1kWh的电能可以得到4kWh的供热量。采用地源热泵供暖的费用约为采用电锅炉供暖的1/3。与空气热源热泵及其它传统空调方式比较,地源热泵的效率要高20%~50%。 (4)传统的空调系统通常需分别设置冷源(制冷机)和热源(锅炉)。地源热泵 既可供冷,又可供暖,一机多用,节约设备用房。采用地源热泵供热和供冷,一套系统代替了原来的锅炉和空调两套系统,夏季也省去冷却塔;热泵机组同时还可提供家用热水。因此一机多用,节省了建筑空间及设备的初投资。 (5)有效地降低了电网在夏季和冬季因建筑空调和(南方)采暖的用电高峰负荷。(6)由于可以取消建筑空调系统的锅炉和冷却塔,有利于美化建筑的外观和环境。 地埋管地源热泵系统的效率比空气源热泵高,而且不受地下水和地表水资源的限制,只需占用一定的埋管区域,对环境无污染,充分利用可再生能源,因此是一项值得大力推广的新技术。应用地埋管地源热泵技术也有它的限制条件。主要是:

相关主题
文本预览
相关文档 最新文档