当前位置:文档之家› 2020届高考物理一轮复习:第十三章 第1讲 原子结构 氢原子光谱(含解析)

2020届高考物理一轮复习:第十三章 第1讲 原子结构 氢原子光谱(含解析)

2020届高考物理一轮复习:第十三章 第1讲 原子结构 氢原子光谱(含解析)
2020届高考物理一轮复习:第十三章 第1讲 原子结构 氢原子光谱(含解析)

板块三限时规范特训

时间:45分钟满分:100分

一、选择题(本题共10小题,每小题8分,共80分。其中1~6为单选,7~10为多选)

1.根据经典电磁理论,从卢瑟福原子模型可以得到的结论是()

A.原子十分稳定,原子光谱是连续谱

B.原子十分稳定,原子光谱是线状谱

C.原子很不稳定,原子光谱是连续谱

D.原子很不稳定,原子光谱是线状谱

答案 C

解析按照经典电磁理论,加速运动的电子,要不断地向周围发射电磁波,发射的应该是连续谱,电子的能量不断减少,最后电子要落到原子核上,即原子不稳定,C正确。

2.对原子光谱,下列说法不正确的是()

A.原子光谱是不连续的

B.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的

C.由于各种原子的原子结构不同,所以各种原子的原子光谱也不相同

D.分析物质发光的光谱,可以鉴别物质中含哪些元素

答案 B

解析原子光谱为线状谱,是不连续的,A正确;由于各种原子的原子结构不同,各种原子都有自己的特征谱线,B错误,C正确;根据各种原子的特征谱线,分析物质发光的光谱,可鉴别物质中含哪些元素,D正确。

3.氢原子从能量为E1的较高激发态跃迁到能量为E2的较低激发态,设真空中的光速为c,则()

A .吸收光子的波长为c (E 1-E 2)h

B .辐射光子的波长为c (E 1-E 2)h

C .吸收光子的波长为ch E 1-E 2

D .辐射光子的波长为ch

E 1-E 2

答案 D

解析 由玻尔理论的跃迁假设知,当氢原子由较高的能级向较低

的能级跃迁时辐射光子,由关系式hν=E 1-E 2得ν=E 1-E 2h 。又有λ

=c ν,故辐射光子的波长为λ=ch E 1-E 2

,D 选项正确。 4.[2017·湖南永州二模]如图所示,图甲为氢原子的能级图,图乙为氢原子的光谱。已知谱线a 是氢原子从n =4的能级跃迁到n =2能级时的辐射光,谱线b 可能是氢原子在下列哪种跃迁情形时的辐射光( )

A .从n =3的能级跃迁到n =2的能级

B .从n =5的能级跃迁到n =2的能级

C .从n =4的能级跃迁到n =3的能级

D .从n =5的能级跃迁到n =3的能级

答案 B

解析 由题图乙可知,谱线a 的波长大于谱线b 的波长,所以a 光的光子频率小于b 光的光子频率,则b 光的光子能量大于n =4和n =2间的能级差,分析可知A 、C 、D 错误,B 正确。

5.[2017·山东青岛一模]原子从A 能级跃迁到B 能级时吸收波长为λ1的光子,原子从B 能级跃迁到C 能级时发射波长为λ2的光子。已知λ1>λ2,那么原子从A 能级跃迁到C 能级时将要( )

A .发出波长为λ1-λ2的光子

B .发出波长为λ1λ2λ1-λ2

的光子 C .吸收波长为λ1-λ2的光子

D .吸收波长为λ1λ2λ1-λ2

的光子 答案 B

解析 原子从A 能级跃迁到B 能级时吸收波长为λ1的光子,原子从B 能级跃迁到C 能级时发射波长为λ2的光子,已知λ1>λ2,所以

B 、

C 能级之间能量差等于A 、C 能级与A 、B 能级之间能量差之和,

即有hc λ2=hc λ1+hc λ3

,故从A 能级跃迁到C 能级时将要发出波长为λ3=λ1λ2λ1-λ2

的光子,B 正确。 6.如图所示,是氢原子四个能级的示意图。当氢原子从n =4的能级跃迁到n =3的能级时,辐射出光子a 。当氢原子从n =3的能级跃迁到n =2的能级时,辐射出光子b 。则以下判断正确的是( )

A .光子a 的能量大于光子b 的能量

B.光子a的频率大于光子b的频率

C.光子a的波长大于光子b的波长

D.在真空中光子a的传播速度大于光子b的传播速度

答案 C

解析E a=E4-E3=0.66 eV,E b=E3-E2=1.89 eV,E a

项A错误;根据E=hν可得ν=E

h,因为E a

错误;根据λ=c

ν,νa<νb,可得λa>λb,选项C正确;在真空中光子的

传播速度相同,均是3×108 m/s,选项D错误。

7.关于原子结构的认识历程,下列说法正确的有()

A.汤姆孙发现电子后猜想出原子内的正电荷集中在很小的核内B.α粒子散射实验中少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据

C.对原子光谱的研究开辟了深入探索原子结构的道路

D.玻尔原子理论无法解释较复杂原子的光谱现象,说明玻尔提出的原子定态概念是错误的

答案BC

解析汤姆孙发现了电子后,认为原子是一个带正电的均匀球体,电子一个个镶嵌在其中,选项A错误;由卢瑟福对α粒子散射实验现象的分析所得出的结论可知选项B正确;根据对原子光谱产生的机理进行探究,开辟了深入探索原子结构的道路,选项C正确;玻尔理论虽然不能解释较为复杂原子光谱的现象,但其提出的原子定态概念是正确的,选项D错误。

8.[2017·安徽师大附中二模]已知氢原子的基态能量为E1,n=2、3能级所对应的能量分别为E2和E3,大量处于第3能级的氢原子向低能级跃迁放出若干频率的光子,依据玻尔理论,下列说法正确的是()

A.产生的光子的最大频率为E3-E2

h

B.当氢原子从能级n=2跃迁到n=1时,对应的电子的轨道半径变小,能量也变小

C.若氢原子从能级n=2跃迁到n=1时放出的光子恰好能使某金属发生光电效应,则当氢原子从能级n=3跃迁到n=1时放出的光子照到该金属表面时,逸出的光电子的最大初动能为E3-E2 D.若要使处于能级n=3的氢原子电离,可以采用两种方法:一是用能量为-E3的电子撞击氢原子,二是用能量为-E3的光子照射氢原子

答案BC

解析大量处于能级n=3的氢原子向低能级跃迁能产生3种不

同频率的光子,产生光子的最大频率为E3-E1

h,A错误;当氢原子从

能级n=2跃迁到n=1时,能量减小,电子离原子核更近,电子轨道半径变小,B正确;若氢原子从能级n=2跃迁到n=1时放出的光子恰好能使某金属发生光电效应,由光电效应方程可知,该金属的逸出功恰好等于E2-E1,则当氢原子从能级n=3跃迁到n=1时放出的光子照射该金属时,逸出光电子的最大初动能为(E3-E1)-(E2-E1)=E3-E2,C正确;电子是有质量的,撞击氢原子是发生弹性碰撞,由于电子和氢原子质量不同,故电子不能把-E3的能量完全传递给氢原子,因此不能使氢原子电离,而光子的能量可以完全被氢原子吸收,使氢原子电离,D错误。

9.[2017·湖北七市联考]氢原子的能级图如图所示,大量处于n=5激发态的氢原子向低能级跃迁时,一共可以辐射出10种不同频率的光子。其中莱曼系是指氢原子由高能级向n=1能级跃迁时释放的光子,则()

A.10种光子中波长最短的是从n=5激发态跃迁到基态时产生的

B.10种光子中有4种属于莱曼系

C.使n=5能级的氢原子电离至少要0.85 eV的能量

D.从n=2能级跃迁到基态释放光子的能量等于从n=3能级跃迁到n=2能级释放光子的能量

答案AB

解析从n=5激发态跃迁到基态时产生的光子的能量最大、频率最大,所以波长最短,A正确;由题意知,从n=5、4、3、2激发态跃迁到n=1时发出的4种光子属于莱曼系,B正确;由题图知,n =5能级的电离能为0.54 eV,C错误;从n=2能级跃迁到基态释放光子的能量大于从n=3能级跃迁到n=2能级释放光子的能量,D 错误。

10.[2017·福建漳州模拟]若原子的某内层电子被电离形成空位,其他层的电子跃迁到该空位上时,会将多余的能量以电磁辐射的形式释放出来,此电磁辐射就是原子的特征X射线。内层空位的产生有多种机制,其中的一种称为内转换,即原子中处于激发态的核跃迁回基态时,将跃迁时释放的能量交给某一内层电子,使此内层电子电离而形成空位(被电离的电子称为内转换电子)。钋(21484Po)的原子核从某一激发态回到基态时,可将能量E0=1.416 MeV交给内层电子(如K、L、M层电子,K、L、M标记原子中最靠近核的三个电子层)使其电

离。实验测得从钋原子的K、L、M层电离出的电子的动能分别为E k=1.323 MeV、E L=1.399 MeV、E M=1.412 MeV。则可能发射的特征X射线的能量为()

A.0.013 MeV B.0.017 MeV

C.0.076 MeV D.0.093 MeV

答案AC

解析设原子在n能级能量为E n,电子电离后动能为E动,则E 动=

E n+E0,所以E n=E动-E0。计算K、L、M三个能级值,E K′=-0.093 MeV,E L′=-0.017 MeV,E M′=-0.004 MeV。所以跃迁情形如图所示,共可辐射三种频率的射线,射线能量分别为:

E1=E M′-E K′=0.089 MeV

E2=E L′-E K′=0.076 MeV

E3=E M′-E L′=0.013 MeV

即A、C正确。

二、非选择题(本题共2小题,共20分)

11.(10分)处于基态的一群氢原子受某种单色光的照射时,只发射波长为λ1、λ2、λ3的三种单色光,且λ1>λ2>λ3,则照射光的波长为________。(用λ1、λ2表示)

答案

λ1λ2λ1+λ2

解析如题图所示,原子可发出3种不同波长的光子,由于λ3最小,即频率ν3最大,利用能级图可知,照射光的光子能量必须等

于hν3,hν3=hν1+hν2,即hc

λ3=

hc

λ1+

hc

λ2,得λ3=

λ1λ2

λ1+λ2。

12.(10分)已知氢原子的基态能量为-13.6 eV,核外电子的第一轨道半径为0.53×10-10m,电子质量m e=9.1×10-31kg,电荷量

为1.6×10-19 C,氢原子的量子数为n时的能级公式为E n=E1

n2,电子

轨道半径为r n=n2r1,求电子跃迁到第三轨道时,氢原子的能量、电子的动能和电子的电势能各多大?

答案-1.51 eV 1.51 eV-3.02 eV

解析氢原子的能量可由氢原子能级公式E n=E1

n2求出,而动能

可由氢原子轨道半径公式以及向心力公式求出。氢原子的能量为电子

的动能和电势能之和,则第三个问题不难求出。氢原子的能量E3=1

32 E1=-1.51 eV。

电子在第三轨道时半径为r3=n2r1=32r1=9r1①

电子绕核做圆周运动,向心力由库仑力提供,

所以ke2

r23=

m e v23

r3②

由①②可得电子的动能为:

E k3=1

2m e v

2

3=

ke2

2×9r1

=9×109×(1.6×10-19)2

2×9×0.53×10-10

J=1.51 eV。

由于E3=E k3+E p3,故电子的电势能为:

E p3=E3-E k3=-1.51 eV-1.51 eV=-3.02 eV。

高考经典课时作业15-2 原子结构、氢原子光谱

高考经典课时作业15-2 原子结构、氢原子光谱 (含标准答案及解析) 时间:45分钟 分值:100分 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验 D .氢原子光谱的发现 2.关于巴耳末公式1λ =R ????122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( ) 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )

高中物理第2章原子结构4氢原子光谱与能级结构学案鲁科版选修

第4节氢原子光谱与能级结构 [目标定位]1.知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量.2.理解玻尔理论对氢原子光谱规律的解释. 一、氢原子光谱 1.氢原子光谱的特点: (1)从红外区到紫外区呈现多条具有确定波长的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式: 1 λ =R ? ?? ??1-1n 2(n =3,4,5,…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1 . 二、玻尔理论对氢原子光谱的解释 1.巴尔末系 氢原子从n ≥3的能级跃迁到n =2的能级得到的线系. 2.玻尔理论的局限性 玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大. 一、氢原子光谱的实验规律 1.氢原子的光谱 从氢气放电管可以获得氢原子光谱,如图1所示. 图1 2.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性. 3.巴尔末公式 (1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式: 1 λ =R (1-1 n 2) n =3,4,5…该公式称为巴尔末公式. (2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值. 4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系.例

如: 赖曼线系(在紫外区):1λ=R ? ????112-1n 2(n =2,3,4,…) 帕邢线系(在红外区):1λ=R ? ?? ??132-1n 2(n =4,5,6,…) 例1关于巴耳末公式1λ=R (1-1 n 2)的理解,下列说法正确的是() A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 答案C 解析只有氢原子光谱中可见光波长满足巴耳末公式,氢原子光谱在红外和紫外光区的其他谱线不满足巴耳末公式,满足的是与巴耳末公式类似的关系式,A 、D 错;在巴耳末公式中的n 只能取不小于3的整数,不能连续取值,波长也只能是分立的值,故氢原子光谱不是连续谱而是线状谱,B 错,C 对. 二、玻尔理论对氢原子光谱的解释 1.理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量hν=E n -E 2,又E n =E 1E 2 ,E 2=E 1 ,由此可得hν= -E 1? ?? ??1-1n 2,由于ν=c λ,所以上式可写作1λ=-E 1hc ? ?? ??1-1n 2,此式与巴尔末公式比较,形 式完全一样.由此可知,氢光谱的巴尔末线系是电子从n =3,4,5,…等能级跃迁到n =2的能级时辐射出来的. 2.玻尔理论的成功之处 (1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的. (3)导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系. (4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分. 例2氢原子光谱的巴尔末公式是1λ =R ? ?? ??1-1n 2(n =3,4,5,…),对此,下列说法正确的是() A .巴尔末依据核式结构理论总结出巴尔末公式

2014届高考物理 15-2原子结构、氢原子光谱领航规范训练

2014届高考物理领航规范训练:15-2原子结构、氢原子光谱 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A.光电效应实验B.伦琴射线的发现 C.α粒子散射实验D.氢原子光谱的发现 解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C正确. 答案:C 2.关于巴耳末公式1 λ=R? ? ?? ? 1 22 - 1 n2的理解,下列说法正确的是( ) A.所有氢原子光谱的波长都可由巴耳末公式求出 B.公式中n可取任意值,故氢原子光谱是连续谱 C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱 D.公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n只能取n≥3的整数,故C正确. 答案:C 3.(2012·高考北京卷)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 解析:根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确. 答案:B 4.(2012·高考江苏卷)如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由h ν=h c λ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大, 波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2 ,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 解析:依题意可知第一激发态能量为E 2=E 1 22,要将其电离,需要的能量至少为ΔE =0 -E 2=h ν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc E 1 ,C 正确. 答案:C 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢 原 子( ) A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长 B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大

2019第2章第4节氢原子光谱与能级结构语文

第4节氢原子光谱与能级结构 理解玻尔理论对氢原子光谱规律的解.2) 释.(重点 )(难点3.了解玻尔理论的局限性.谱子光氢原] 先填空[ 氢原子光谱的特点1.个波长~H的这n(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hδα只要它里面含有这些波数值成了氢原子的“印记”,不论是何种化合物的光谱,长的光谱线,就能断定这种化合物里一定含有氢.等谱线间的距离越来越小,(2)从长波到短波,H~H表现出明显的规律性.δα2.巴尔末公式1111.096 775 叫做里德伯常量,数值为,其中RR=,…)(-=R(n=3,4,5)22λn217-. 81×10 m] 再判断[) .氢原子光谱是不连续的,是由若干频率的光组成的.1(√.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是2) ×相同的.() (由于不同元素的原子结构不同,3.所以不同元素的原子光谱也不相同.√] 后思考[ 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?它在可见光区的谱线满足巴耳末公【提示】氢原子光谱是分立的线状谱.式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.] 核心点击[页 1 第

111) ,…n=3,4,5,6-=R()(22λn2 巴尔末公式17-m10只能取整数,最小值为3,里德伯常量R=1.10×式中n 巴尔末线系的14条谱线都处于可见光区1对应的=3时,值越大,对应的波长λ越短,即n在巴尔末线系中n规2波长最长律除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足3与巴尔末公式类似的关系式能级自发跃迁至低能级发出的谱线中属于巴尔末线系=3一群氢原子由1.n ________条.的有能级发光的谱线=2【解析】在氢原子光谱中,电子从较高能级跃迁到n条谱线属巴尔末线能级的1能级跃迁至n=2属于巴尔末线系.因此只有由n=3 系.1 【答案】.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所2 ,并计算其波长.对应的n时,氢原子发光所对应的3n越小,波长越长,故当n=【解析】对应的波长最长.111??17-??m×1.10=×10当n=3时,-22 32λ??17m.λ=6.55×10解得-11111??-??R×,=n当=∞时,波长最短,=R22n2λ4??447=λ103.64m=×=m. - 7R101.1×7-m ×时,波长最长为=当【答案】n36.5510页 2 第 7-m 10=∞时,波长最短为3.64×当n巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n取不同值时求出一一对应的波长λ. 玻尔理论对氢光谱的解释 [先填空] 1.理论推导 按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上E1时,辐射出的光子能量应为hν=E-E,根据氢原子的能级公式E=可得E222nn n -E11111E????11--????,所以上式可写成=,由于c=λν,=由此

高中物理:氢原子光谱练习

高中物理:氢原子光谱练习 [全员参与·基础练] 1.( ·南京高二检测)关于线状谱,下列说法中正确的是( ) A.每种原子处在不同温度下发光的线状谱不同 B.每种原子处在不同的物质中的线状谱不同 C.每种原子在任何条件下发光的线状谱都相同 D.两种不同的原子发光的线状谱可能相同 【解析】每种原子都有自己的结构,只能发出由内部结构决定的特征谱线,不会因温度、物质不同而改变,C正确. 【答案】 C 2.太阳的光谱中有许多暗线,它们对应着某些元素的特征谱线.产生这些暗线是由于( ) A.太阳表面大气层中缺少相应的元素 B.太阳内部缺少相应的元素 C.太阳表面大气层中存在着相应的元素 D.太阳内部存在着相应的元素 【解析】太阳光谱中的暗线是由于太阳内部发出的强光经过温度较低的太阳大气层时产生的,表明太阳大气层中含有与这些特征谱线相应的元素. 【答案】 C 3.下列关于光谱的说法正确的是 ( ) A.炽热固体、液体和高压气体发出的光谱是连续谱 B.各种原子的线状谱中的明线和它的吸收谱中的暗线必定一一对应 C.气体发出的光只能产生线光谱 D.甲物质发出的白光通过低温的乙物质蒸气可得到甲物质的吸收光谱 【解析】由于通常看到的吸收光谱中的暗线比线状光谱中的明线要少一些,所以B不对;气体发光时,若是高压气体发光则形成连续光谱,若是稀薄气体发光则形成线光谱,故C也不对;甲物质发出的白光通过低温的乙物质蒸气后,得到的是乙物质的吸收光谱,所以D错误.答案为A. 【答案】 A 4.(多选)关于物质的吸收光谱和明线光谱之间的关系,下列说法中正确的是( )

A.吸收光谱和明线光谱的产生方法不同,它们的谱线互不相关 B.同种物质吸收光谱中的暗线跟它明线光谱中的明线相对应 C.明线光谱与吸收光谱都是原子光谱,它们的特征谱线相对应 D.明线光谱与吸收光谱都可以用于光谱分析,以鉴别物质和确定化学组成 【解析】明线光谱与吸收光谱都是原子的特征谱线,但是明线光谱是原子光谱,吸收光谱不是原子光谱,C错误;明线光谱和吸收光谱都可以进行光谱分析,D正确;同种物质吸收光谱中的暗线与它明线光谱中的明线相对应,B正确,A错误. 【答案】BD 5.(多选)( ·盐城检测)如图18-3-2甲所示是a、b、c、d四种元素的线状谱,图乙是某矿物质的线状谱,通过光谱分析可以了解到该矿物质中缺乏( ) 甲乙 图18-3-2 A.a元素 B.b元素 C.c元素D.d元素 【解析】对比题图甲和题图乙可知,题图乙中没有b、d对应的特征谱线,所以该矿物质中缺乏b、d两种元素. 【答案】BD 6.(多选)关于经典电磁理论与原子的核式结构之间的关系,下列说法正确的是( ) A.经典电磁理论很容易解释原子的稳定性 B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的 D.原子的核式结构模型彻底否定了经典电磁理论 【解析】根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的. 【答案】BC 7.( ·广州高二检测)下列说法不正确的是( ) A.巴耳末线系光谱线的条数只有4条

08物理《原子物理》(参考答案)

以下是本人经过网络和书本查证的出的答案,每题都经过仔细分析与 查找,如有纰漏请指出。 ——From GK 原子物理学习题 一、选择题 (1)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:D A、原子不一定存在核式结构; B、散射物太厚; C、卢瑟福理论是错误的; D、小角散射时一次散射理论不成立。 (2)用相同能量的α粒子束和质子束分别与金箔(bó)正碰,测量金原子核半径的上限。问用质子束所得结果是用α粒子束所得结果的几倍?B A、1/4 ; B、1/2 ; C、1 ; D、2 。 (3)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:D A、质子的速度与α粒子的相同; B、质子的能量与α粒子的相同; C、质子的速度是α粒子的一半; D、质子的能量是α粒子的一半。 (4)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A A、16 ; B、8 ; C、4 ; D、2 。 (5)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)?B A、13.6 ; B、12.09 ; C、10.2 ; D、3.4 。 (6)由玻尔氢原子理论得出的第一玻尔半径a0的数值是:B A、5.29×10-10m ; B、0.529×10-10m ; C、5.29×10-12m; D、529×10-12m 。(7)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:D A、3Rhc/4 ; B、Rhc; C、3Rhc/4e; D、Rhc/e。 (8)弗兰克—赫兹实验使用的充气三极管是在:B A、相对阴极来说板极上加正向电压,栅极(shān jí)上加负电压; B、板极相对栅极是负电压,栅极相对阴极是正电压; C、板极相对栅极是正电压,栅极相对阴极是负电压; D、相对阴极来说板极加负电压,栅极加正电压。 (9)假设氦(hài)原子的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:A A、54.4 ; B、-54.4 ; C、13.6 ; D、3.4 。 (10)一次电离的氦离子H e+处于第一激发态(n=2)时电子的轨道半径为:B A、0.53?10-10m; B、1.06?10-10m ; C、2.12?10-10m ; D、0.26?10-10m。(11)单个f电子总角动量量子数的可能值为:D A、j =3,2,1,0 ; B、j=±3 ; C、j= ±7/2 , ± 5/2 ; D、j= 5/2 ,7/2 (12)锂(lǐ)原子光谱由主线系、第一辅线系、第二辅线系及柏(bǎi)格曼系组成.这些谱线系中全部谱线在可见光区只有:B A、主线系; B、第一辅线系; C、第二辅线系; D、柏格曼系。

高考物理一轮能力提升 19-1氢原子光谱 氢原子的能级结构和公式考点+重点+方法

第十九章原子结构和原子核 本章概览 1.本章内容可分为两部分,即原子结构和原子核。重点内容是:氢原子的能级结构和公式;原子核的衰变和半衰期;核反应方程的书写;结合能和质量亏损。从考试大纲可以看到全部是I级要求。 2.高考对本专题考查特点是命题热点分散,偏重于知识的了解和记忆,多以每部分内容单独命题,多为定性分析,“考课本”,“不回避陈题”是本专题考查的最大特点,题型多以选择题形式出现,几乎在每年高考中占一个小题。 3.本单元内容与现代科技相联系的题目较多,复习时应引起高度重视。 第一课时氢原子光谱 氢原子的能级结构和公式

【教学要求】 1.了解人们对原子结构的认识过程 2.掌握α粒子散射实验和原子核式结构的 3.理解玻尔模型的三条假设 【知识再现】 一、人们认识原子结构的思维线索 气体放电的研究→阴极射线→发现电子(1897 年,汤姆生)→汤姆生的“枣糕模型” ????→?粒子散射实验α卢瑟福的核式结构模型????→?氢光谱的研究玻尔模型(轨道量子化模型)。 二、卢瑟福的核式结构模型 1.α粒子散射实验 做法:用质量是电子7300倍的a 粒子轰击薄金箔。 结果:绝大多数 ,少数 ,极少数 ,有的甚至 。 2.原子的核式结构 在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.原子核所带的正电荷数等于核外的电子数,所以整个原子是中性的。 3.实验数据估算:原子核大小的数量级为10-15-10-14m ,原子大小的数量级为10-10 m 三、玻尔的原子理论——三条假设 1.“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。 2.“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。 3.“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足)3,2,1(2 ==n nh mvr π 四、氢原子能级及氢光谱 1.氢原子能级:原子各个定态对应的能量是不连续的,这些能量值叫做能级。 2.氢原子的能级图 3.氢光谱 在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系; n=3,4,5,6向n=2跃迁发光形成巴耳末线系; n=4,5,6,7……向n=3跃迁发光形成帕邢线系; n=5,6,7,8……向n=4跃迁发光形成布喇开线系, 其中只有巴耳末线系的前4条谱线落在可见光区域内。 考点剖析

关于氢原子光谱的超精细结构的研究

关于氢原子光谱的超精细结构的研究 摘要:本文通过介绍原子核的结构、原子核的自旋以及核磁矩,讨论了氢原子光谱的超精细结构的产生原因并介绍了相关公式推导。 关键词:光谱;氢原子;超精细结构 原子核的结构 1、原子核 自卢瑟福提出原子的核式模型以来,原子就被分为两部分来处理:一是处于原子中心的原子核,一是绕核运动的电子。除了原子核的质量和电荷外,原子核的其他性质对原子的影响是相当微小的,核外电子的行为对原子核的性质也几乎毫无关系。原子和原子核是物质结构泾渭分明的两个层次。 2、原子核的结构 发现中子之前,人们知道的“基本”粒子只有两种:电子和质子。物理学家开始时有把原子核当做质子和电子的组成体的想法,但一开始就遇到了不可克服的困难。因为假如原子核由质子和电子所组成,那么,我们将无法解释核的自旋,且推导出来的原子核内电子的能量与实验结果不符。在查德威克发现中子之后,海森堡很快就提出了原子核由质子和中子所组成的假说。海森堡把质子和中子统称为核子,并把中子和质子看做核子的两个不同状态。 原子核的自旋以及核磁矩 1、电子自旋 在乌仑贝克和古兹米特提出电子自旋之前,泡利为了解释原子光谱的超精细结构,就提出了原子核作为一个整体必须有自旋的假设。但是,只有在查德威克发现中子之后,人们才理解自旋的起源。实验发现,中子和质子都是费米子,具有的固有角动量(自旋)与电子一样。既然原子核式中子和质子所组成,它的自旋就应该是中子和质子的轨道角动量和自旋之和。我们研究的“原子核的自旋”,都是指原子核基态的自旋。 2、核磁矩 除了核子的自旋磁矩外,我们还要考虑轨道磁矩。下面给出自核自旋的核磁矩的表示式。类似于原子磁矩的表示式,核磁矩和核自旋角动量I成正比。 μI = g IμN I 在磁场中,核自旋磁矩与磁场相互作用所产生的附加能量为 U = -μI ?B = -g IμN Bm I 因为m I有2I+1个值,所以有2I+1个不同的附加能量,于是就发生赛曼能级分裂,一条核能级在磁场中就分裂为2I+1条,相邻两条分裂能级间的能量差为 上述对核自旋磁矩与磁场的相互作用的讨论是下面研究氢原子光谱的超精细结构的基础。 氢原子的超精细结构光谱 最初讨论原子中的电子运动时,只考虑电子和原子核之间的库仑相互作用,后来随着实验水平的提高,人们发现了H的谱线并不是一条,由此引入电子自旋的概念,从而产生了了氢原子的精细结构。

2017年高考物理氢原子光谱知识点总结

2017年高考物理氢原子光谱知识点总结 1、发射光谱:物质发光直接产生的光谱 从实际观察到的物质发光的发射光谱可分为连续谱和线状谱。 (1)连续谱:连续分布着的包含着从红光到紫光的各种色光的光谱。 产生:是由炽热的固体、液体、高压气体发光而产生的。 (2)线状谱:只含有一些不连续的亮线的光谱,线状谱中的亮线叫谱线。 产生:由稀薄气体或金属蒸气(即处于游离态下的原子)发光而产生的,观察稀薄气体放电用光谱管,观察金属蒸气发光可把含有该金属原子的物质放到煤气灯上燃烧,即可使它们汽化后发光。 2、吸收光谱:高温物体发出的白光通过物质后,某些波长的光波被物质吸收后产生的光谱。 产生:由炽热物体(或高压气体)发出的白光通过温度较低的气体后产生。 例如:让弧光灯发出的白光通过低温的钠气,可以看到钠的吸收光谱。 若将某种元素的吸收光谱和线状谱比较可以发现:各种原子吸收光谱的暗线和线状谱和亮线相对应,即表明某种原子发出的光和吸收的光的频率是特定的,故吸收光谱和线状谱中的暗线比线状谱中的亮线要少一些。 3、光谱分析

各种元素的原子都有自己的特征谱线,如果在某种物质的线状谱或吸收谱中出现了若干种元素的特征谱线,表明该物质中含有这种元素的成分,这种对物质进行化学组成的分析和鉴别的方法称为光谱分析。 其优点:灵敏、快捷、检查的最低量是10-10克光谱分析的应用 (1)光谱分析在科学技术中有着广泛的应用,例如,在检测半导体材料硅和锗是不是达到高纯度要求时,就要用到光谱分析。 (2)历史上,光谱分析还帮助人们发现了许多新元素,例如,铷和铯就是人们通过分析光谱中的特征谱线而发现的。 (3)利用光谱分析可以研究天体的物质成分,19世纪初在研究太阳光谱时,人们发现它的连续光谱中有许多暗线,通过仔细分析这些暗线,并把它们跟各种原子的特征谱线对照,人们知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素。 (4)光谱分析还能鉴定食品的优劣。例如,通过分析茶叶的近红外光谱,测定其各种化学成分的含量,就可以鉴定茶叶的优劣、级别、真假以及品种等。 (5)用光谱分析还可以鉴定文物,例如:1978年在新石器时代遗址浙江省余姚县河姆渡村,人们挖掘出一件木质漆碗,器壁外涂有一层朱红色的涂料,且微有光泽,借助光谱分析,鉴定出这种涂料与马王堆出土的漆皮类似,因此漆工艺的历史可追溯至7000年前。

第4节氢原子光谱与能级结构

光电效应、原子结构、原子构练习题 (适用于高中物理各种版本教材) 一、光电效应 1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。 2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率); ②光电子的最大初动能:_________k m =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。 3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为 阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。 ①当A 、K 未加电压时,电流表 示数; ②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值, 即 ;当电压进一步增大时,光电流 。 ③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达 到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能 到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程 为 。 【练习1】某同学用同一装置在甲、乙、丙光三种光的照射 下得到了三条光电流与电压之间的关系曲线,如右图所示。则可 判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初 动能 二、原子结构 1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是 有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。 2、波尔理论: ①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高的能量状态叫做 ; ②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,

高中物理氢原子跃迁与氢原子光谱

氢原子跃迁与氢原子光谱 玻尔原子理论第三条假设的“跃迁’指出:原子从一个定态(设能量为En )跃迁到 )时.它輻射和吸收一定频率的光于.光子能量由这两个定态另一种定态(没能量为E K 能量差决定,即hυ=En-Ek 若原于原来处于能级较大的定态——激发态.这时原子处于不稳定的能量状态,一有机会让会释放能量.回到能量较小的激发态或基态(能级最小的定态).这一过程放出的能量以放出光于的形式实现的,这就是原于发光原因。可见原子发光与能级跃迁有必然联系。对于氢原子它们对应关系如上图所示,从图可知当电子从n=3、4、5、6这四个激发态跃迁到n=2的激发态时,可得到可见光区域的氢原子光增,其波长"入"用下列公式计算 hc/入=E (1/n2-1/n2) 1 其中n=3,4,5,6.相应波长依次为: h α=656.3nm,hβ=486.1nm,hδ=434.1nm,hγ=410.1nm. 它们属于可见光,颜色分别为红、蓝、紫、紫。组成谱线叫巴耳末线系;若从n>1的激发态 跃迁到基态,放出一系列光子组成谱线在紫外区,肉眼无法观测,叫赖曼线系.....。 当原子处于基态或能级较低的激发态向高能级跃迁,必须吸收能量。这能量来源有

两种途径。 其一、吸收光子能量、光子实质上是一种不连续的能量状态。光的发射与吸收都是一份一份的,每一份能量E=hυ叫光子能量.光子能量不能被分割的。因此原子所吸收的光子只有满足hυ=En-Ek时,才能被原子吸收,从En定态跃迁到Ek定态。若不满足hυ=En-Ek的光子均不被吸收,原子也就无法跃迁。 例如用能量为123eV的光子去照射一群处于基态的氢原子.下列关于氢原子跃迁的说法中正确的是() 1)原子能跃迁到n=2的轨道上;2)原子能跃迁到n=3的轨道; 4)原子能跃迁到n=4的轨道上;3)原子不能跃迁。 通过计算可知E 1-E 2 =10.2eV<I2.3ev;E 3 -E 1 =12.09ev<12.3eV,E 4 一E 1 =12.75eV >12.3eV,即任意两定态能级差均不等于12.3eV.此光子原子无法吸收。答案D)正确。 其二、吸收电子碰撞能量。夫兰克——赫兹实验指出:当电子速度达到一定数值时,与原子碰撞是非弹性的,电子把一份份能量传给原子,使原子从一个较低能级跃迁到较高能级,原子从电子处获得能量只能等于两定态能量差。电子与光子不同.其能量不是一份一份的只要人射电子能量大于或等于两定态能量差. 均可使原子发生能级跃迁。 例如,已知汞原子可能能级如下图所示,一个自由电子总能量为9.0电子伏与处 于基态的汞原子发生碰撞,已知碰撞过程中不计汞原子动能变化,则电子剩余能量为()(A)0.2eV;(B)1.4eV(C)2.3eV(D)5.5eV. 因为E 2-E 1 =4.9ev<9.0eV,E 3 -E 1 =7.7eV<9.0ev,E 4 -E 1 =8.8ev<9.0ev. 满足人射电子能量大于两定态能量差 .处于基态汞原子分别吸收电子部分能量跃迁到n= 2、3.4能级,而电子剩余能量分别为4.1ev,1.3ev,0.2ev,只选项(A)正确。 摘自《物理园地》

高考物理总复习第63讲氢原子光谱原子能级讲义

第63讲氢原子光谱原子能级 知识整合 一、电子的发现 英国的物理学家________发现了电子.引发了对原子中正负电荷如何分布的研究. 二、氢原子光谱 1.光谱 (1)光谱 用光栅或棱镜可以把光按波长展开,获得光的________(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的______,这样的光谱叫做线状谱. 有的光谱是连在一起的________,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律 氢原子光谱是________谱. 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1 λ =________,(n=3,4,5,…), R是里德伯常量,R=1.10×107m-1,n为量子数. 核式结构模型正确的解释了α粒子散射实验的结果,但是,经典物理学既无法解释原子的稳定性,又无法解释氢原子光谱的分立特性. 三、玻尔理论

玻尔提出了自己的原子结构假说,成功的解释了原子的稳定性及氢原子光谱的分立特性. (1)轨道量子化:电子绕原子核运动的轨道的半径不是任意的,只有当半径的大小符合一定条件时,这样的轨道才是可能的.电子的轨道是量子化的.电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射. (2)能量量子化:当电子在不同的轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量.因此原子的能量是量子化的. 这些量子化的能量值叫做________.原子中这些具有确定能量的稳定状态,称为________.能量最低的状态叫做________,其他的状态叫做________. 原子只能处于一系列不连续的轨道和能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,保持稳定状态. (3)跃迁频率条件:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即h ν=________.(h 是普朗克常量,h =6.63×10-34 J ·s ) 四、氢原子的能级、半径公式 1.氢原子的能级和轨道半径 (1)氢原子的能级公式:E n =E 1 n 2(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=- 13.6 eV . (2)氢原子的半径公式:r n =n 2 r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径, 其数值为r 1=0.53×10-10 m . 方法技巧考点 能级跃迁与光谱线 1.对氢原子的能级图的理解 氢原子能级图的意义: (1)能级图中的横线表示氢原子可能的能量状态——定态.相邻横线间的距离不相等,表示相邻的能级差不等,量子数越大,相邻的能级差越小. (2)横线左端的数字“1,2,3…”表示量子数,右端的数字“-13.6,-3.4…”表示氢原子的能级. (3)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为:h ν=E m -E n . 2.关于能级跃迁的五点说明 (1)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV ,氢原子电离后,电子具有一定的初动能. (2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2 r =m v 2 r ,所以E k n =k e 2 2r n , 随r 增大而减小. (3)电势能:当轨道半径减小时,静电力做正功,电势能减少;反之,轨道半径增大时,电势能增加. (4)原子能量:E n =E p n +E k n =E 1 n 2,随n 增大而增大,其中E 1=-13.6 eV . (5)一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数:N =C 2 n =n (n -1) 2 . 3.原子跃迁的两种类型

高中物理原子结构光谱氢原子光谱教师用书教科版

3.光谱氢原子光谱 学习目标知识脉络 1.了解光谱、连续谱、线状谱等 概念.(重点) 2.知道光谱分析及应用.(重点) 3.知道氢原子光谱的规律.(重 点、难点) 光谱和光谱分析 [先填空] 1.光谱 复色光分解为一系列单色光,按波长长短的顺序排列成一条光带,称为光谱. 2.分类 (1)连续谱:由波长连续分布的彩色光带组成的光谱. (2)发射光谱:由发光物质直接产生的光谱. (3)吸收光谱:连续光谱中某些特定频率的光被物质吸收而形成的谱线. (4)线状谱:由分立的谱线组成的光谱. (5)原子光谱:对于同一种原子,线状谱的位置是相同的,这样的谱线称为原子光谱. 3.光谱分析 (1)定义:利用原子光谱的特征来鉴别物质和确定物质的组成部分. (2)优点:灵敏度、精确度高. [再判断] 1.各种原子的发射光谱都是连续谱.(×) 2.不同原子的发光频率是不一样的.(√) 3.线状谱和连续谱都可以用来鉴别物质.(×) [后思考] 为什么用棱镜可以把各种颜色的光展开? 【提示】不同颜色的光在棱镜中的折射率不同,因此经过棱镜后的偏折程度也不同.

1.光谱的分类 2.光谱分析的应用 (1)应用光谱分析发现新元素; (2)鉴别物体的物质成分;研究太阳光谱时发现了太阳中存在钠、镁、铜、锌、镍等金属元素; (3)应用光谱分析鉴定食品优劣; (4)探索宇宙的起源等. 1.对原子光谱,下列说法正确的是( ) A.原子光谱是不连续的 B.原子光谱是连续的 C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的 D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同 E.分析物质发光的光谱,可以鉴别物质中含哪些元素 【解析】原子光谱为线状谱,A正确,B错误;各种原子都有自己的特征谱线,故C 错误,D正确;据各种原子的特征谱线进行光谱分析可鉴别物质组成,E正确.故A、D、E. 【答案】ADE 2.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱和白炽灯光谱是线状谱 B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱 C.进行光谱分析时,可以利用线状谱,不能用连续谱

(最新)2020年高考物理总复习 第63讲 氢原子光谱原子能级讲义

第63讲氢原子光谱原子能级 考查内容考纲要求考查年份考查详情能力要求氢原子光谱氢原子 的能级结构、能级公式 Ⅰ 弱项清单轨道跃迁时电子动能、电势能的变化关系,及一群与一个的区别. 知识整合 一、电子的发现 英国的物理学家________发现了电子.引发了对原子中正负电荷如何分布的研究. 二、氢原子光谱 1.光谱 (1)光谱 用光栅或棱镜可以把光按波长展开,获得光的________(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的______,这样的光谱叫做线状谱. 有的光谱是连在一起的________,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律 氢原子光谱是________谱. 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1 λ =________,(n=3,4,5,…), R是里德伯常量,R=1.10×107m-1,n为量子数. 核式结构模型正确的解释了α粒子散射实验的结果,但是,经典物理学既无法解释原子的稳定性,又无法解释氢原子光谱的分立特性. 三、玻尔理论

玻尔提出了自己的原子结构假说,成功的解释了原子的稳定性及氢原子光谱的分立特性. (1)轨道量子化:电子绕原子核运动的轨道的半径不是任意的,只有当半径的大小符合一定条件时,这样的轨道才是可能的.电子的轨道是量子化的.电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射. (2)能量量子化:当电子在不同的轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量.因此原子的能量是量子化的. 这些量子化的能量值叫做________.原子中这些具有确定能量的稳定状态,称为________.能量最低的状态叫做________,其他的状态叫做________. 原子只能处于一系列不连续的轨道和能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,保持稳定状态. (3)跃迁频率条件:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=________.(h 是普朗克常量,h =6.63×10-34 J ·s ) 四、氢原子的能级、半径公式 1.氢原子的能级和轨道半径 (1)氢原子的能级公式:E n =E 1 n 2(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=- 13.6 eV . (2)氢原子的半径公式:r n =n 2 r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径, 其数值为r 1=0.53×10-10 m . 方法技巧考点 能级跃迁与光谱线 1.对氢原子的能级图的理解 氢原子能级图的意义: (1)能级图中的横线表示氢原子可能的能量状态——定态.相邻横线间的距离不相等,表示相邻的能级差不等,量子数越大,相邻的能级差越小. (2)横线左端的数字“1,2,3…”表示量子数,右端的数字“-13.6,-3.4…”表示氢原子的能级. (3)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为:hν=E m -E n . 2.关于能级跃迁的五点说明 (1)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV ,氢原子电离后,电子具有一定的初动能. (2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2 r 2=m v 2 r ,所以E k n =k e 2 2r n , 随r 增大而减小. (3)电势能:当轨道半径减小时,静电力做正功,电势能减少;反之,轨道半径增大时,电势能增加. (4)原子能量:E n =E p n +E k n =E 1 n 2,随n 增大而增大,其中E 1=-13.6 eV . (5)一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数:N =C 2 n =n (n -1) 2 . 3.原子跃迁的两种类型

人教版高中物理选修3-5学案设计-第十八章第三节氢原子光谱

第三节氢原子光谱 【素养目标定位】 ※了解光谱的定义与分类 ※理解氢原子光谱的实验规律,知道何为巴耳末系 ※了解经典原子理论的困难 【素养思维脉络】 课前预习反馈 教材梳理·夯基固本·落实新知知识点1光谱 1.定义 用光栅或棱镜可以把各种颜色的光按__波长__展开,获得__光的波长__(频率)和强度分布的记录,即光谱。 2.分类 (1)线状谱:由__一条条的亮线__组成的光谱。 (2)连续谱:由__连在一起__的光带组成的光谱。 3.特征谱线 各种原子的发射光谱都是__线状谱__,且不同原子的亮线位置__不同__,故这些亮线称为原子的__特征__谱线。 4.光谱光析 由于每种原子都有自己的__特征谱线__,可以利用它来鉴别__物质__和确定物质的__组成成分__,这种方法称为光谱分析,它的优点是__灵敏度__高,样本中一种元素的含量达到__10-10_g__时就可以被检测到。 知识点2氢原子光谱的实验规律 1.光的产生 许多情况下光是由原子内部__电子__的运动产生的,因此光谱研究是探索__原子结构__的一条重要途径。

2.巴耳末公式 1 λ =__R ????122-1n 2__(n =3,4,5…) 3.巴耳末公式的意义 以简洁的形式反映了氢原子的线状光谱,即辐射波长的__分立__特征。 知识点3 经典理论的困难 1.核式结构模型的成就 正确地指出了__原子核__的存在,很好地解释了__α粒子散射实验__。 2.经典理论的困难 经典物理学既无法解释原子的__稳定性__又无法解释原子光谱的__分立特征__。 思考辨析 『判一判』 (1)各种原子的明线光谱中的明线和它吸收光谱中的暗线必定一一对应。(×) (2)炽热的固体、液体和高压气体发出的光形成连续光谱。(√) (3)巴耳末公式是巴耳末在研究氢光谱特征时发现的。(√) (4)分析物质发光的光谱,可以鉴别物质中含哪些元素。(√) (5)经典物理学可以很好地应用于宏观世界,也能解释原子世界的现象。(×) 『选一选』 (多选)关于巴耳末公式1λ=R (122-1 n 2)(n =3,4,5…)的理解,正确的是( AC ) A .此公式只适用于氢原子发光 B .公式中的n 可以是任意数,故氢原子发光的波长是任意的 C .公式中的n 是大于等于3的正整数,所以氢原子光谱不是连续的 D .该公式包含了氢原子的所有光谱线 解析:巴耳末公式是分析氢原子的谱线得到的一个公式,它只反映氢原子谱线的一个线系,故A 正确,D 错误;公式中的n 只能取不小于3的正整数,B 错误,C 正确。 『想一想』 能否根据对月光的光谱分析确定月球的组成成分? 答案:不能。月球不能发光,它只能反射太阳光,故其光谱是太阳的光谱,对月光进行光谱分析确定的并非月球的组成成分。

相关主题
文本预览
相关文档 最新文档