当前位置:文档之家› 氨碱法纯碱生产的主要原料概述

氨碱法纯碱生产的主要原料概述

氨碱法纯碱生产的主要原料概述
氨碱法纯碱生产的主要原料概述

氨碱法纯碱生产的主要原料概述

一、原盐(食盐)

1、原盐的物化性质及成份规格:

原盐是氨碱法纯碱生产的主要原料。原盐的主要成份为氯化钠,化学分子式为NaCL,纯氯化钠为无色等轴晶体,但是由于原盐是由许多晶体机和而成,晶体之间的缝隙中往往含有卤水或者空气,因而变成白色而且不透明体,同时又因含有泥沙等杂质,使原盐常呈现灰褐色,氯化钠晶体通常是正六面体。

(1)食盐的物化性质:

氯化钠的分子量 58.45

熔点 800℃

沸点 1440℃

20℃时比热 0.867(J/g℃)

25℃时密度 2.161t/m3

原盐中因为含有氯化镁等杂质,容易吸收空气中的水分而潮解。氯化钠易溶于水,其溶解热为——4.9KJ/mol,溶解过程为吸热反应,当制成饱和盐水时,可使溶液温度降低6℃多。氯化钠的溶解度随温度升高没有明显的变化,这一性质与绝大多数易溶物质溶解度随着温度升高而增加的性质不同,所以其水溶液(卤水)在冷冻工业中被用作载冷体。

(2)食盐的质量标准:

作为制碱工业的原料,要求原盐中的主要成份NaCL含量尽可能高,而泥沙及其他杂质,特别是钙、镁杂质越低越好。因为食盐中的氯化镁、硫酸镁、硫酸钙等杂质,在盐水精制、吸氨、碳化过程中,会生成炭酸镁、碳酸钙及其他复盐等,使塔器与管道堵塞,这些杂质如不能在碳化以前清除掉,就会较多地混入纯碱中,使产品的品位降低,因此用于氨碱法的食盐一般需要符合以下标准:

NaCL% ≥ 90%;水分% ≤ 4.2%;Mg2+% ≤0.8%;SO42-%≤ 0.8%。

2、原盐的需要用量

氨碱法纯碱生产的全过程,可以归结为一个综合的化学反应方程式。即

CaCO3+2NaCL= CaCL2 +Na2CO3

2×58.45 106

X 1000kg

按照上述反应方程式,可以计算出生产1t纯碱理论上所需要的氯化钠量

X=58.45×2×1000/106=1103kg

所求出的X 是指生产每吨纯碱(含Na2CO3100%) 所需要的纯的氯化钠(折NaCL100%) 的量。实际生产中,由于食盐中只有90%左右的氯化钠,而且又只能有70-75%的NaCL可以转化为Na2CO3, Na+离子至少损失27%以上,加之过程中跑、冒、滴、漏等各项损失,实际耗用食盐的量远远超过上述理论用量,这样使每生产1吨工业纯碱所需耗用的原盐实物量高达1.6—1.7t之多。氨碱法制碱的食盐消耗量是很大的,纯碱工业从来就是用盐大户,因此必须保证有大量、廉价的原盐供应,才能维持生产并在经济上获益。就其纯度而言,矿盐多数要比海盐为高,并可以采用注入高压水压裂地下化盐方法进行开采,得到接近饱和的卤水,节省设备和人力,降低成本。十分适用于由湿法精制盐水的氨碱法生产,不过要铺设卤水输送管道或久盐矿附近建厂均存在其他制约因素,而我国又以盛产海盐为主,尽管其质量不如矿盐,也仍然是氨碱厂原料的天然宝库,所以我国大多数碱厂是以海盐为原料,临海发展纯碱生产。

3、我国盐资源概况

3.1分类

盐是NaCl(氯化钠)的俗称。在我国,根据来源和生产方法可分为3类:以海水为原料晒制而得的盐叫作“海盐”;开采现代盐湖矿加工制得的盐叫作“湖盐”;开采地下天然卤水或古代岩盐矿床加工制得的盐则称“井矿盐”。我国井矿盐工艺以钻井水溶汲取卤水,进而真空蒸发结晶生产高品质盐为主,因此,又称真空盐。

按照产品形式又分为固体盐和液体盐,我国以固体盐为主,液体盐主要指汲取的天然地下卤水或注水溶解地下岩盐矿床而得到的卤水,目前我国液体盐的比例不足10%,但国外发达国家较高,如美国达到51%。

氯化钠除供食用外(惯称食盐),大量用作工业原料(名曰工业用盐),国家统计局的统计年表以“原盐”为总称。

3.2资源分布

我国盐资源非常丰富,开采历史悠久。基本分布状况是:东部海盐,中部及西南部井矿盐,西北部湖盐。

海水晒盐与国家的海岸线长度、滩涂面积及气候条件等有关,我国海盐以北方海盐区(含辽宁、河北、天津、山东和江苏)为主。

井矿盐矿床广泛分布在河南、四川、湖北、湖南、江西、四川、重庆、云南、江苏、山东、安徽及陕西等18个省区。据不完全统计,现已查明的氯化钠储量大于100亿t的盐矿

床就有十余个。

湖盐主要分布在内蒙古、青海、新疆及西藏等西北部地区,以青海盐湖最为丰富,储量在3000多亿t,生产成本较为低廉,但我国西北地区经济相对落后,对盐的需求也较低,远距离运输一直是制约其发展的瓶颈。

我国1995年探明盐矿储量3824亿t,资源量在6.2万亿t以上。目前我国的盐总产量不足6000万t,因此,我国的盐资源可以满足制盐工业长期快速发展的需求,很多省市都有发展制盐工业以及盐化工的资源条件。

4、我国制盐工业概况

4.1生产情况

近十余年,受我国盐化工及下游行业快速发展的影响,我国对原盐的需求也快速增加。2007年,我国原盐生产和消费量5920万t,居世界第1位。从历年统计数据看,海盐产能最大,井盐次之,湖盐最低。

东部沿海地区制盐产能约占总产能的60%。海盐生产主要集中在环渤海湾的山东、河北、天津和辽宁四省市,四省市产量占全国海盐产量的90%以上。湖盐主要集中在内蒙、新疆和青海三省。井矿盐主要分布在四川、湖北、江苏、河南、江西、湖南、安徽、云南、重庆等省市。近年我国原盐产量见表1。

受沿海地区各类园区和工业等项目建设发展的影响,北方海盐区的盐田面积逐年萎缩,海盐产能增幅和所占比例逐渐降低,产能进一步增加的潜力不大。而井矿盐资源丰富且分布广,技术成熟,投资门槛不高,因此近年井矿盐产能增幅较快,在全国盐总产量中的比例逐年提高。目前规划建设的制盐产能(主要是井矿盐)超过1000万t/a,盐业产能的增长可以满足下游行业的需求。

4.2存在问题

(1)产品结构比较单一。公路化雪、畜牧、水处理、洗浴用盐、高纯度工业盐等高附加值产品的开发,从数量、品种、质量等各方面还没有拓展和满足市场需求。尤其是液体盐的开发利用仍处于较低水平,折盐产量仅占井矿盐总产量的12%。卤水化工的深加工系列产品,如钾镁肥、阻燃剂、农药、医药中间体等还没有形成规模化和产业化。

(2)资源利用水平低。目前,制盐工业仍主要以单一的制盐业为主,资源利用率很低。海盐苦卤利用率不足20%,莱州湾地下卤水的掠夺性开采使盐、溴比例失调,这一地区出现水位下降、浓度降低、流量减少等资源枯竭的现象;湖盐区由于单一提取盐,导致镁害严重,使湖盐资源遭到污染;矿盐区的芒硝提取率不足10%。国外则基本做到零排放。

(3)产业布局不合理。50%以上的原盐运输半径超过200km。在美国,80%以上的运输半径在150km以内,管输液体盐比例较高。

4.3发展思路

近年盐业行业效益起伏较大,为避免产能严重过剩,国家发展改革委员会2006年发布《制盐工业结构调整指导意见》。

(1)优先考虑与两碱项目的配套建设。制盐生产能力由2005年的5500万t提高至2010年的6500万t,年增幅控制在5%以内。但实际预测该指标将被大大突破。

(2)稳定海盐生产,主要作为化工用盐,关键是要提高产品质量。有序发展井矿盐。井矿盐生产成本相对较高,但生产稳定,产品质量相对较好,在适度增加产能的前提下,增加低耗能的液体盐的供应量。

(3)按需发展湖盐。湖盐区地处西部,运输条件还有待改善;但资源丰富,成本低廉,也具有一定优势。

4.4消费结构

我国盐化工用盐占73%,食用盐占16%,其它用盐占11%。盐化工是我国制盐工业发展的决定因素。我国盐消费结构与发达国家相比,主要体现在盐化工耗盐比例过大;道路除雪等行业的消费比例过低(美国融雪耗盐达到1900万t);卤水直接消费比例过低(如美国达到51%),而我国液体盐消费比例只有10%左右,可见我国制盐工业的产品结构不尽合理。

我国以盐为原料的盐化工产业,主要是纯碱和氯碱两大行业(俗称“两碱”)。近年来,氯酸钠和金属钠也发展较快,但这两种下游产品的盐的消耗较低,不足总消费量的1%,对全行业的供需平衡影响较小。“两碱”的发展拉动了盐业的发展,我国已形成以纯碱和氯碱为龙头,下游产品开发并存的盐化工产业格局。

二、石灰石

1、石灰石的物化性质及规格成分

石灰石为氨碱法纯碱生产的第二大重要原料,其消耗量不亚于食盐。

(1)石灰石的物化性质:

石灰石颜色有灰白、茶色、褐色等,单纯从色泽不能判断其品质的好坏。典型的矿石时方解石、大理石,主要成份是碳酸钙,其结晶大部分为六方晶系。化学分子式为CaCO3。

碳酸钙的分子量 100.09

密度 2.711T/M3

分解温度 825℃

熔点 1339℃

石灰石在石灰窑中煅烧,发生CaCO3的分解反应。生成的CaO称为生石灰,为无色等轴晶系,熔点2372℃,密度3.37 t/m3,在氨碱厂将它用水消化而制得氢氧化钙悬浊液,用于蒸氨反应。CaO+H2O=Ca(OH)2+65.65KJ/mol 生成的Ca(OH)2称为熟石灰或消石灰,其分子量为74.09,为无色斜方晶系,密度2.24t/m3,无吸湿性,溶解度很小,而且温度越高,溶解度越小。氢氧化钙与水混合呈白色悬浊液即石灰乳,呈强碱性,用于蒸氨及盐水除镁过程。CaCO3 + 2HCl === CaCl2 + H2O + CO2↑摩氏硬度值(MOH):3

化学分析:

二氧化硅0.07%、三氧化二铝0.02%、三氧化二铁0.03%、氧化钙55.22%、氧化镁0.08%、

石灰石块状/粉状:烧失量40.79%,硅4.62%,铝1.21%,铁0.52%,钙50.16%,镁1.10%

白云石粉/块:硅0.19%,铝0.15%,铁0.17%,钙32.1%,镁21.19%

石灰石是生产玻璃的主要原料。

二氧化碳(CO2)能使熟石灰变混浊。

石灰和石灰石大量用做建筑材料,也是许多工业的重要原料。石灰石可直接加工成石料和烧制成生石灰。石灰有生石灰和熟石灰。生石灰的主要成分是CaO,一般呈块状,纯的为白色,含有杂质时为淡灰色或淡黄色。生石灰吸潮或加水就成为消石灰,消石灰也叫熟石灰,它的主要成分是Ca(OH)2。熟石灰经调配成石灰浆、石灰膏、石灰砂浆等,用作涂装材料和砖瓦粘合剂。水泥是由石灰石和粘土等混合,经高温煅烧制得。玻璃由石灰石、石英砂、纯碱等混合,经高温熔融制得。炼铁用石灰石作熔剂,

除去脉石。炼钢用生石灰做造渣材料,除去硫、磷等有害杂质。

(2)石灰石的质量指标:

石灰石的成份规格:

CaCO3 % ≥ 90% ;SiO2≤5.5%;MgCO3 ≤3.5%;R2O3≤ 0.5% (R2O3为铁铝氧化物) 2、石灰石的用量

根据反应方程式:CaCO3+2NaCL= CaCL2 +Na2CO3

100106

X 1000(kg)

可求出 X=100×1000/106=943(kg)

即每生产1吨纯碱(折100%)理论上需耗用的100% CaCO3约943kg。实际生产中石灰石不是纯的CaCO3,也不能百分之百分解,加上各个环节的损失,其耗用量同样大大超过理论值,因此实物耗量达到1.3—1.6t/t之多。

因此,应尽可能采用纯度高的石灰石才较为经济,从而,可以提高CO2气及石灰乳质量,提高关键设备的生产强度,减少系统物料当量,一般要求石灰石含碳酸钙不低于90%,其他酸性杂质如SiO2+ R2O3以不超过6%为佳。这样可使石灰窑生产出的CaO达到80%以上,而窑气含CO2则可以达到40%以上,此外,氨碱厂对石灰石的粒度有特殊要求,其直径在70—150mm较为适宜。

3、我国石灰石的储量及分布情况

石油是经济的命脉,国力发展的命脉,谁拥有了石油,谁就拥有了21世纪的发展。储备石油,参与石油期货市场的交易,不仅仅是经济活动,而是出于战略发展目标的考虑。因此控制石油资源是爆发伊拉克战争的因素之一。中国有句古语,民以食为天,天命也。石灰石就是水泥工业的粮食,是水泥生产的命脉。水泥厂只要生产,就一刻离不开石灰石,谁占有了石灰石资源,谁就占有了水泥工业的发展。目前我国水泥企业争夺市场之战,也可以说是争夺石灰石资源之战,因此大企业集团把占有优势石灰石资源作为实现自身发展战略的措施之一。

①、石灰石是用途极广的宝贵资源石灰石是石灰岩作为矿物原料的商品名称。石灰岩在人类文明史上,以其在自然界中分布广、易于获取的特点而被广泛应用。作为重要的建筑材料有着悠久的开采历史,在现代工业中,石灰石是制造水泥、石灰、电石的主要原料,是冶金工业中不可缺少的熔剂灰岩,优质石灰石经超细粉磨后,被广泛应用于造纸、橡胶、油漆、涂料、医药、化妆品、饲料、密封、粘结、抛光等产品

的制造中。据不完全统计,水泥生产消耗的石灰石和建筑石料、石灰生产、冶金熔剂,超细碳酸钙消耗石灰石的总和之比为1∶3。石灰岩是不可再生资源,随着科学技术的不断进步和纳米技术的发展,石灰石的应用领域还将进一步拓宽。

②、我国石灰石资源概况及其地理分布我国是世界上石灰岩矿资源丰富的国家之一。除上海、香港、澳门外,在各省、直辖市、自治区均有分布。据原国家建材局地质中心统计,全国石灰岩分布面积达43.8万KM2(未包括西藏和台湾),约占国土面积的1/20,其中能供做水泥原料的石灰岩资源量约占总资源量的1/4~1/3。为了满足环境保护、生态平衡,防止水土流失,风景旅游等方面的需要,特别是随着我国小城镇建设规划的不断完善和落实,可供水泥石灰岩的开采量还将减少。

全国已发现水泥石灰岩矿点七、八千处,其中已有探明储量的有1286处,其中大型矿床257处、中型481处、小型486处(矿石储量大于8000万吨为大型、4000~8000万吨为中型、小于4000万吨为小型),共计保有矿石储量542亿吨,其中石灰岩储量504亿吨,占93%;大理岩储量38亿吨,占7%。保有储量广泛分布于除上海市以外29个省、直辖市、自治区,其中陕西省保有储量49亿吨,为全国之冠;其余依次为安徽省、广西自治区、四川(含重庆市)省,各保有储量34~30亿吨;山东、河北、河南、广东、辽宁、湖南、湖北7省各保有储量30~20亿吨;黑龙江、浙江、江苏、贵州、江西、云南、福建、山西、新疆、吉林、内蒙古、青海、甘肃13省各保有储量20~10亿吨;北京、宁夏、海南、西藏、天津5省各保有储量5~2亿吨。

三、焦炭或白煤

1、无烟煤(白煤)的物化性质

无烟煤(英文名称anthracite),俗称白煤或红煤。是煤化程度最大的煤。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。黑色坚硬,有金属光泽。以脂摩擦不致染污,断口成介壳状,燃烧时火焰短而少烟。不结焦。一般含碳量在90%以上,挥发物在10%以下。无胶质层厚度。热值约8000-8500千卡/公斤。有时把挥发物含量特大的称做半无烟煤;特小的称做高无烟煤。

无烟煤为煤化程度最深的煤,含碳量最多,灰分不多,水分较少,发热量很高,可达25000~32500kJ/kg,挥发分释出温度较高,其焦炭没有黏着性,着火和燃尽均比较困难,燃烧时无烟,火焰呈青蓝色。煤样在规定条件下隔绝空气加热,煤中的有机物质受热分解出一部分分子量较小的液态(此时为蒸汽状态)和气态产物,这些产物称为挥发物。挥发物占煤样质量的分数成为挥发分产率或简称为挥发分。以干燥无

灰基为分析基,挥发分低于10%的煤称为无烟煤。挥发分大于6.5%小于10%的无烟煤称为无烟煤三号。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。

2、焦炭的物化性质

焦炭定义:烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。由高温炼焦得到的焦炭用于高炉冶炼、铸造和气化。炼焦过程中产生的经回收、净化后的焦炉煤气既是高热值的燃料,又是重要的有机合成工业原料。

冶金焦是高炉焦、铸造焦、铁合金焦和有色金属冶炼用焦的统称。由于90%以上的冶金焦均用于高炉炼铁,因此往往把高炉焦称为冶金焦。

铸造焦是专用与化铁炉熔铁的焦炭。铸造焦是化铁炉熔铁的主要燃料。其作用是熔化炉料并使铁水过热,支撑料柱保持其良好的透气性。因此,铸造焦应具备块度大、反应性低、气孔率小、具有足够的抗冲击破碎强度、灰分和硫分低等特点。

焦炭物理性质包括焦炭筛分组成、焦炭散密度、焦炭真相对密度、焦炭视相对密度、焦炭气孔率、焦炭比热容、焦炭热导率、焦炭热应力、焦炭着火温度、焦炭热膨胀系数、焦炭收缩率、焦炭电阻率和焦炭透气性等。

焦炭的物理性质与其常温机械强度和热强度及化学性质密切相关。焦炭的主要物理性质如下:

真密度为 1.8-1.95g/cm3;

视密度为0.88-1.08g/ cm3;

气孔率为35-55%;

散密度为400-500kg/ m3;

平均比热容为0.808kj/(kgk)(100℃),1.465kj/(kgk)(1000℃);

热导率为 2.64kj/(mhk)(常温),6.91kg/(mhk)(900℃);

着火温度(空气中)为450-650℃;

干燥无灰基低热值为30-32KJ/g;

比表面积为0.6-0.8m2/g (使用全自动F-Sorb 2400比表面积仪BET方法检测)。

焦炭的比表面积研究是非常重要的,焦炭的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定

出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积分析仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积分析仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。

焦炭的反应性及反应后的强度:焦炭反应性与二氧化碳、氧和水蒸气等进行化学反应的能力,焦炭反应后强度是指反应后的焦炭再机械力和热应力作用下抵抗碎裂和磨损的能力。焦炭在高炉炼铁、铸造化铁和固定床气化过程中,都要与二氧化碳、氧和水蒸气发生化学反应。由于焦与氧和水蒸气的反应有与二氧化碳的反应类似的规律,因此大多数国家都用焦炭与二氧化碳间的反应特性评定焦炭反应性。

中国标准(GB/T4000-1996)规定了焦炭反应性及反应后强度试验方法。其做法是使焦炭在高温下与二氧化碳发生反应没,然后测定反应后焦炭失重率及其机械强度。焦炭反应性CRI及反应后强度CSR的重复性r不得超过下列数值:CRIr≤2.4%

CSR:≤3.2%

焦炭反应性及反应后强度的试验结果均取平行试验结果的算术平均值。

3、焦炭和无烟煤的质量指标

焦炭是高温干馏的固体产物,主要成分是碳,是具有裂纹和不规则的孔孢结构体(或孔孢多孔体)。裂纹的多少直接影响到焦炭的力度和抗碎强度,其指标一般以裂纹度(指单位体积焦炭内的裂纹长度的多少)来衡量。衡量孔孢结构的指标主要用气孔率(只焦炭气孔体积占总体积的百分数)来表示,它影响到焦炭的反应性和强度。不同用途的焦炭,对气孔率指标要求不同,一般冶金焦气孔率要求在40~45%,铸造焦要求在35~40%,出口焦要求在30%左右。焦炭裂纹度与气孔率的高低,与炼焦所用煤种有直接关系,如以气煤为主炼得的焦炭,裂纹多,气孔率高,强度低;而以焦煤作为基础煤炼得的焦炭裂纹少、气孔率低、强度高。焦炭强度通常用抗碎强度和耐磨强度两个指标来表示。焦炭的抗碎强度是指焦炭能抵抗受外来冲击力而不沿结构的

裂纹或缺陷处破碎的能力,用M40值表示;焦炭的耐磨强度是指焦炭能抵抗外来摩檫力而不产生表面玻璃形成碎屑或粉末的能力,用M10值表示。焦炭的裂纹度影响其抗碎强度M40值,焦炭的孔孢结构影响耐磨强度M10值。M40和M10值的测定方法很多,我国多采用德国米贡转鼓试验的方法。

焦炭质量标准:固定碳≥80%;挥发份≤5.0%;水份≤7.0%;灰分≤15.0%;发热值≥28000KJ/kg

无烟煤质量标准:固定碳≥78%;挥发份≤9.0%;水份≤4.0%;灰分≤16.0%;发热值≥28000KJ/kg

4、焦炭质量的评价

①、焦炭中的硫分:硫是生铁冶炼的有害杂质之一,它使生铁质量降低。在炼钢生铁中硫含量大于0.07% 即为废品。由高炉炉料带入炉内的硫有11% 来自矿石;

3.5% 来自石灰石;82.5% 来自焦炭,所以焦炭是炉料中硫的主要来源。焦炭硫分的高低直接影响到高炉炼铁生产。当焦炭硫分大于 1.6%,硫份每增加0.1% ,焦炭使用量增加 1.8%,石灰石加入量增加 3.7%, 矿石加入量增加0.3% 高炉产量降低1.5—2.0%. 冶金焦的含硫量规定不大于1%,大中型高炉使用的冶金焦含硫量小于

0.4—0.7% 。

②、焦炭中的磷分:炼铁用的冶金焦含磷量应在0.02—0.03% 以下。

③、焦炭中的灰分:焦炭的灰分对高炉冶炼的影响是十分显著的。焦炭灰分增加1%,焦炭用量增加2—2.5% 因此,焦炭灰分的降低是十分必要的。

④、焦炭中的挥发分:根据焦炭的挥发分含量可判断焦炭成熟度。如挥发分大于

1.5%,则表示生焦;挥发分小于0.5—0.7%, 则表示过火,一般成熟的冶金焦挥发分为1%左右。

⑤、焦炭中的水分:水分波动会使焦炭计量不准,从而引起炉况波动。此外,焦炭水分提高会使M04偏高,M10偏低,给转鼓指标带来误差。

⑥、焦炭的筛分组成:在高炉冶炼中焦炭的粒度也是很重要的。我国过去对焦炭粒度要求为:对大焦炉(1300—2000 平方米)焦炭粒度大于40 毫米;中、小高炉焦炭粒度大于25 毫米。但目前一些钢厂的试验表明,焦炭粒度在40—25 毫米为好。大于80 毫米的焦炭要整粒,使其粒度范围变化不大。这样焦炭块度均一,空隙大,阻力小,炉况运行良好。

5、白煤和焦炭的用量

焦炭和白煤热值较高,固定碳含量高,挥发份含量低,杂质少,是石灰窑比较理想的燃料。

石灰石在石灰窑中煅烧需要按理论量配以适量的焦炭或白煤。实际配焦或配煤的比列应视石灰石和焦炭、白煤的品位而异。每煅烧单位重量石灰石所需要的焦炭或白妹的重量数,二者之百分率称为配焦率(或配煤率)。例如某氨碱厂煅烧1吨石灰石需用8kg白煤,则配煤率为:85/1000=8.5%

理论上分解1kgCaCO3需要热量1796KJ,这就是说需要发热量为29307KJ/kg的标准煤0.061kg(1796/29307=0.061kg),由于石灰窑本身有热损失,石灰要带走一些显热,加上燃料燃烧不完全,造成燃料消耗比理论值大,实际生产中每煅烧1吨石灰石需要用标煤约75—85kg,而每生产1吨纯碱若按1.5吨石灰石计算,则需耗用标煤120—130kg。

6、我国白煤的储量

中国无烟煤预测储量为4740 亿吨,占全国煤炭总资源量的10%,年产2 亿吨。山西省占32%,河南省占18%,贵州省占11%。中国有六大无烟煤基地:北京京煤集团,晋城煤业集团,焦作煤业集团,河南永城矿区,神华宁煤集团,阳泉煤业集团。

无烟煤块煤主要应用是化肥(氮肥、合成氨)、陶瓷、制造锻造等行业;无烟粉煤主要应用在冶金行业用于高炉喷吹(高炉喷吹用煤主要包括无烟煤、贫煤、瘦煤和气煤)。

焦炭分布:从我国焦炭产量分布情况看,我国炼焦企业地域分布不平衡,主要分布于华北、华东和东北地区。

四、液氨

(1)液氨的物化性质

1、氨的分子式NH3 ,分子量17.07。氨是一种无色、有强烈刺激臭味的气体;它比空气轻,在标准状况下,氨气密度为0.77kg/m3。

2、液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。

3、液氨为无色液体,有强烈刺激性气味,极易气化为气氨。密度0.617g/cm3;沸点为-33.5℃,低于-77.7℃可成为具有臭味的无色结晶。液氨密度在0℃是为0.638t/m3,20℃时为0.607 t/m3。

气氨相对密度(空气=1):0.59 液氨相对密度(水=1):0.7067(25℃)

CAS编号:7664-41-7自燃点:651.11℃

熔点(℃):-77.7 爆炸极限:16%~25%

沸点(℃):-33.4 1%水溶液PH值:11.7

比热kJ(kg·K) 氨(液体)4.609 氨(气体)2.179

蒸气压:882kPa(200℃)

4、氨的临界温度为132.4℃,临界压力为11.29MPa。因为氨的临界温度为132.4℃,低于此温度只要予以适当压力即可将其液化。在常温下,大概需要7~8个大气压即可将氨液化为液氨存放。但实际使用温度未必是常温,我国规定设计时要求不低于50℃的饱和蒸气压力。液氨容器的设计压力应该为2.16MPa。

5、氨可以在氧气中燃烧,呈浅绿色火焰,同时分解成氨和水。4体积氨与3体积氧混合,遇火则发生强烈爆炸。氨与空气混合时,遇火也会引起爆炸,其爆炸范围为氨浓度15.7——27.4%(体积比)。氨的自然点为651℃。

6、液氨的挥发性很强,在常温下易挥发成氨气,气化时吸热,气化热较大(-15℃时气化热为22.31KJ/mol),广泛用作冷冻剂。液氨是一个很好的溶剂,由于分子的极性和存在氢键,液氨在许多物理性质方面同水非常相似。一些活泼的金属可以从水中置换氢和生成氢氧化物,在液氨中就不那么容易置换氢。但液氨能够溶解金属生成一种蓝色溶液。这种金属液氨溶液能够导电,并缓慢分解放出氢气,有强还原性。

7、氨极易溶解于水,并放出大量的热(熔解热为35KJ/mol)。在常温下,一体积水可溶解700体积的氨。氨的水溶液具有较强的碱性,并且易挥发逸出氨气。

8、氨及氨水与酸可发生中和反应,生成铵盐;与硫酸中和生成硫酸铵;与硝酸中和生成硝酸铵;与盐酸中和生成氯化铵;与碳酸、二氧化碳和水中和生成碳酸铵和碳酸氢铵。

9、在有水存在条件下,氨与铜或铜的合金作用生成铜氨络离子〔Cu(NH3)2〕+,使铜受到氨水腐蚀,因此有氨水接触的设备、管线不宜使用铜及铜的合金。

10、氨对人的眼角膜和呼吸器官粘膜有刺激作用:液氨还能灼伤皮肤、眼睛、氨中毒会引起气管阻塞、窒息、肺水肿,甚至造成死亡。空气中氨的最大容许浓度为30mg/m3。

(2)液氨的质量指标

液氨国家标准GB536—88

(3)液氨的使用注意事项

液氨是强腐蚀性有毒物质,对皮肤和眼睛有强烈腐蚀作用,产生严重疼痛性灼伤。液氨蒸气强烈刺激呼吸道粘膜和眼睛,对呼吸有窒息作用。受液氨损伤的皮肤应立即用清水冲洗,然后以3%~5%的硼酸、乙酸或柠檬酸溶液湿敷。严重时应立即请医生处理。

①毒性及中毒机理

液氨人类经口TDLo:0.15 ml/kg

液氨人类吸入LCLo:5000 ppm/5m

氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。

②接触途径及中毒症状

A .吸入

吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。

a轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。

b急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。

c严重吸人中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。

B.皮肤和眼睛接触

低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。

皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。

高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。

③急救措施

A.清除污染

如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。

如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20分钟以上。如在冲洗时发生眼睑痉挛,应慢慢滴入1~2滴0.4%奥布卡因,继续充分冲洗。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。

应对接触的皮肤和头发用大量清水冲洗15分钟以上。冲洗皮肤和头发时要注意保护眼睛。

B.病人复苏

应立即将患者转移出污染区,对病人进行复苏三步法(气道、呼吸、循环):

气道:保证气道不被舌头或异物阻塞。

呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气,

循环:检查脉搏,如没有脉搏应施行心肺复苏。

C.初步治疗

氨中毒无特效解毒药,应采用支持治疗。

如果接触浓度≥500ppm,并出现眼刺激、肺水肿的症状,则推荐采取以下措施:先喷5次地塞米松(用定量吸入器),然后每5分钟喷两次,直至到达医院急症室为止。

如果接触浓度≥1500ppm,应建立静脉通路,并静脉注射1.0g甲基泼尼松龙(methylprednisolone)或等量类固醇。(注意:在临床对照研究中,皮质类固醇的作用尚未证实。)

对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。如果呼吸窘迫,应考虑进行气管插管。当病人的情况不能进行气管插管时,如条件许可,应施行环甲状软骨切开术。对有支气管痉挛的病人,可给支气管扩张剂喷雾,如叔丁喘宁。

如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。

(4)氨的用量

氨在生产过程中作为一种媒介在系统中循环使用,没有最终进入产品之中。但由于氨在制碱过程中参与了化学反应,一度以碳酸铵、碳酸氢铵的形式存在,所以与一般的催化剂又有值得区别(催化剂的定义是:能加速或延缓化学反应速度,而本身的量和化学性质并不改变的物质)。

按照下列化学反应式:

2NH4HCO3+2NaCL=Na2CO3+H2O+CO2+2NH4CL

2×17(NH3) 106

X=320kg 1000kg

理论上制造1吨纯碱,需要有320kg氨循环,由于碳化出碱液中带走部分游离氨,加上各处的损耗,则必须有520kg氨的循环量才能生产1吨纯碱。

在生产过程中,氨只生成中间产品,而并不最终进入产品,因此氨的消耗量主要损失于蒸氨塔排出的废液带走约0.5kg/t碱,此外还有碳化尾气净氨塔尾气,各净氨塔尾气,过滤机爆空,真空机排水以及跑冒滴漏等各项损失。氨耗的高低主要取决于企业的技术管理水平及文明生产程度如何。高效率的氨循环是现代氨碱工业的最大成功之处。当然,由于具有较强的挥发性,从气相中逸散损失是不可避免的,氨又易溶解于水,要从液相中百分之百分离出来也很困难。而且从技术经济观点看,追求百分之百的吸收率及回收率往往要加大设备,使工序复杂化,或增加能量及其他物料的消耗,结果所费多于所得,并不经济。

目前,国内各大型氨碱厂的氨耗水平一般在3—5kg/t,这比世界上的先进水平有很大差距,如美国氨耗在0.7——0.8kg/t,意大利为1.0—1.1kg/t,最先进的氨耗可在0.4kg/t以下。

我们应该努力搞好技术进步,加强生产控制管理,把各项氨损失减少到合理的限度,以求降低氨耗,达到降低纯碱成本和改善劳动环境的目的。

模拟氨碱法制备纯碱

模拟氨碱法制备纯碱 一、实验目的 1.理解氨碱法制备纯碱的实验原理 2.学习实验设计的方法 3.掌握模拟氨碱法制备纯碱的实验操作 二、中学化学中存在的问题 1、对氯化钠、氯化铵、碳酸氢钠的物理性质不了解 2、对实验原理不理解以及装置的气密性的检查 3、饱和溶液的定义理解 4、在制备碳酸氢铵时,加热的温度? 三、实验原理 1、碳酸钠又名苏打,工业上叫纯碱。本次实验是向氨的氯化钠饱和溶液中加入二氧化碳,二氧化碳,水,氨反应生成碳酸氢铵,然后碳酸氢铵和氯化钠生成碳酸氢钠,然后加热碳酸氢钠至300℃,分解成碳酸钠。 主要反应:CaCO3+2HCl=CaCl2+H2O+CO2 NH3+CO2+H2O=NH4HCO3 NH4HCO3+NaCl=NaHCO3+NH4Cl 2NaHCO3=Na2CO3+H2O+CO2 四、实验任务 1、查询所学药品的基本物理参且确定相关药品的用量 2、明白氨碱法制备纯碱的原理 五、影响实验的因素及其影响规律 1、盐酸的用量及其浓度;氯化钠的用量以及是否是饱和溶液 2、水浴加热的温度 3、装置的气密性 六、实验设计过程 1、原料选择 2、反应物用量 3、仪器选择与装置的选择 4、装置的组装

七、药品物理参数 八、仪器药品 仪器:铁架台、分液漏斗、天平、量筒、分液漏斗、烧杯、漏斗、玻璃管、试管、酒精灯、玻璃棒、药匙、 导管和橡皮塞若干、蒸发皿、温度计、铁圈、锥形瓶、洗气瓶 药品:氯化钠、稀盐酸、浓氨水、石灰石(碳酸钙)、蒸馏水 九、实验装置图 物质 相对分子质 量 熔点/℃ 沸点/℃ 密度g/cm 3 溶解度/g 备注 NaCl 58.45 800 1440 2.165 36 溶于水、甘油,微溶于乙醇、液氨 NH 3 17 -77.73 -33.5 0.69 89.9 无色液体,有强烈刺激性气味 NH 4HC 3 79 105 169.8 1.58 11.9 能溶于水 NaHCO 3 84.01 270 851 2.159 小苏打,白色粉末 Na 2CO 3 106 851 1600 2.532 纯碱,苏打,碱灰,易溶于水 NH 4Cl 53.49 340 100 1.52 CO 2 44 -78.46 -56.56 1.977 不可燃,不支持燃烧 CaCO 3 100.09 825 未知 2.70-2.95 灰石、大理石 HCl 36.46 158.8 187.9 1.447 72 无色

氨碱法制纯碱

“氨碱法制纯碱”教学中探究性教学的渗透 在鲁教版初中化学教材中,涉及到了氨碱法制纯碱这一反应原理,这是初中化学最复杂的一个化学反应,要让学生扎实地理解并记住这一反应,难度较大。教学中,我运用了探究性教学方式,在学生原有知识的基础上不断设疑、层层引导,取得了比较不错的教学效果。 依照教材,本知识点是第六单元第三节《海水“制碱”》中的一部分内容。这一节共由两部分内容组成,按照教材顺序,第一部分是氨碱法制纯碱,其中涉及到“多识一点”:侯氏制碱法;第二部分是纯碱的性质,其中涉及到“多识一点”:复分解反应的实质。在处理教材时,我将这节课分为2课时,而且在授课顺序上也做出了很大调整。第一课时完成了纯碱的性质并且总结了盐的化学性质,给出了复分解反应发生的条件。第二课时,主要讲授“氨碱法制纯碱”。其教学过程可分为四个板块: 第一板块:复习旧知识,导入复分解反应的实质。 首先请学生分析:下列四组溶液混合时,能否发生复分解反应,为什么? ① NaOH +HCl ;② Na 2CO 3+HCl ;③ NaCl+KNO 3;④ NaCl+AgNO 3 教师提出问题:为什么交换成分后有水、气体或沉淀生成就能发生复分解反应?为什么第三组中的两种物质之间不能发生复分解反应?能否从溶液中离子的构成这一角度思考这一问题?使学生在思考中,了解复分解反应的实质。 以第一组物质为例:反应前的溶质为NaOH 和HCl ,其离子的构成为:Na +、OH -、H +、Cl -;而反应后按照交换成分的规律,溶液中含有NaCl 和H 2O ,其离子的构成变为Na +和Cl -。这时学生不禁会产生疑问:溶液中的H +和OH -到哪里去了?引导学生思考这一过程:当氢氧化钠溶液与稀盐酸混合时,溶液中的氢离子与氢氧根离子结合成水分子,而钠离子和氯离子仍然存在于溶液中,形成氯化钠溶液,这一过程使溶液中离子的构成发生了变化,因此我们说氢氧化钠与盐酸反应生成了新物质——氯化钠和水。这一反应的实质就是氢离子与氢氧根离子结合成水分子,而使溶液的组成发生了变化,因此我们可以这样说,氢离子与氢氧根离子不能共存。 以第三组物质为例:反应前的溶质为NaCl 和KNO 3,其离子的构成为:Na +、Cl -、K +、NO 3-;而反应后按照交换成分的规律,溶液中含有NaNO 3和KCl ,其离子的构成还是Na +、Cl -、K +、NO 3-。由此看来,溶液在混合前后其组成没有发生变化,因此说NaCl 和KNO 3 不 从微观角度来看: 反应前后,溶液的组成改变

氨碱法纯碱生产的主要原料概述讲课教案

氨碱法纯碱生产的主要原料概述

氨碱法纯碱生产的主要原料概述 一、原盐(食盐) 1、原盐的物化性质及成份规格: 原盐是氨碱法纯碱生产的主要原料。原盐的主要成份为氯化钠,化学分子式为NaCL,纯氯化钠为无色等轴晶体,但是由于原盐是由许多晶体机和而成,晶体之间的缝隙中往往含有卤水或者空气,因而变成白色而且不透明体,同时又因含有泥沙等杂质,使原盐常呈现灰褐色,氯化钠晶体通常是正六面体。 (1)食盐的物化性质: 氯化钠的分子量 58.45 熔点 800℃ 沸点 1440℃ 20℃时比热 0.867(J/g℃) 25℃时密度 2.161t/m3 原盐中因为含有氯化镁等杂质,容易吸收空气中的水分而潮解。氯化钠易溶于水,其溶解热为——4.9KJ/mol,溶解过程为吸热反应,当制成饱和盐水时,可使溶液温度降低6℃多。氯化钠的溶解度随温度升高没有明显的变化,这一性质与绝大多数易溶物质溶解度随着温度升高而增加的性质不同,所以其水溶液(卤水)在冷冻工业中被用作载冷体。 (2)食盐的质量标准: 作为制碱工业的原料,要求原盐中的主要成份NaCL含量尽可能高,而泥沙及其他杂质,特别是钙、镁杂质越低越好。因为食盐中的氯化镁、硫酸镁、硫酸钙等杂质,在盐水精制、吸氨、碳化过程中,会生成炭酸镁、碳酸钙及其他

复盐等,使塔器与管道堵塞,这些杂质如不能在碳化以前清除掉,就会较多地混入纯碱中,使产品的品位降低,因此用于氨碱法的食盐一般需要符合以下标准: NaCL% ≥ 90%;水分% ≤ 4.2%;Mg2+% ≤0.8%;SO 4 2-%≤ 0.8%。 2、原盐的需要用量 氨碱法纯碱生产的全过程,可以归结为一个综合的化学反应方程式。即 CaCO 3+2NaCL= CaCL 2 +Na 2 CO 3 2×58.45 106 X 1000kg 按照上述反应方程式,可以计算出生产1t纯碱理论上所需要的氯化钠量 X=58.45×2×1000/106=1103kg 所求出的X 是指生产每吨纯碱(含Na 2CO 3 100%) 所需要的纯的氯化钠(折 NaCL100%) 的量。实际生产中,由于食盐中只有90%左右的氯化钠,而且又只能有70-75%的NaCL可以转化为Na2CO3, Na+离子至少损失27%以上,加之过程中跑、冒、滴、漏等各项损失,实际耗用食盐的量远远超过上述理论用量,这样使每生产1吨工业纯碱所需耗用的原盐实物量高达1.6—1.7t之多。氨碱法制碱的食盐消耗量是很大的,纯碱工业从来就是用盐大户,因此必须保证有大量、廉价的原盐供应,才能维持生产并在经济上获益。就其纯度而言,矿盐多数要比海盐为高,并可以采用注入高压水压裂地下化盐方法进行开采,得到接近饱和的卤水,节省设备和人力,降低成本。十分适用于由湿法精制盐水的氨碱法生产,不过要铺设卤水输送管道或久盐矿附近建厂均存在其他制约因素,而我国又以盛产海盐为主,尽管其质量不如矿盐,也仍然是氨碱厂原料的天然宝库,所以我国大多数碱厂是以海盐为原料,临海发展纯碱生产。

纯碱生产工艺简介审批稿

纯碱生产工艺简介 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

纯碱生产工艺简介 纯碱生产工艺主要分天然碱法和合成碱法,而合成碱法又分氨碱法和联碱法。 1.天然碱 目前全世界发现天然碱矿的仅有美国、中国、土耳其、肯尼亚等少数国家,其中以美国的绿河天然碱矿最有名。绿河地区的天然碱矿床,有42个含倍半碳酸钠的矿层。已知矿层厚度在1.2m以上(最厚达11m),含矿面积在670km2(最大达2007km2)的有25层,位于地表以下198~914m,,计算倍半碳酸钠储量为613亿t,即使全世界所有碱厂全部停产,美国天然碱也可供世界1300年纯碱用量。绿河地区各公司主要采用机械化开采。地面加工装置,主要采用一水碱流程生产重质纯碱。美国各天然碱厂目前的市场运作方法是:国内,各厂进行有序竞争;国外出口,各厂联合,成立一个专营出口的组织“ANSAC”(美国天然碱公司),美国天然碱不但质量好,而且生产成本仅为60美元/吨左右,远低于我国合成纯碱成本90美元/吨-100美元/吨左右,因此它具有很强的竞争力。 而位于河南省桐柏县的天然碱矿,总储量达1.5亿吨,远景储量3亿~5亿吨,占全国天然碱储量的80%,位居亚洲第一、世界第二位。内蒙古伊化集团在桐柏建立了以天然碱为主的化工园区,其优质的低盐重质纯碱设计年产量达100万吨。 天然碱生产工艺主要有三种:

a. 倍半碱流程 矿石开采-溶解-澄清除去杂质-循环母液-三效真空结晶-240度煅烧 b. 卤水碳化流程 天然卤水-碳化塔碳化为重碱-干燥-煅烧为粗碱-用硝酸钠在155度漂白-煅烧,煅烧用二氧化碳由自备电厂提供 c. 一水碱流程 矿石开采-破碎到7厘米以下-200度停留30分钟-粗碱-溶解、澄清-三效真空结晶-240度煅烧 天然碱法的主要优点是: a.成本低,每吨约60美元左右,而合成碱为90-100美元,完 全可以抵消运输成本。 b.质量方面盐分非常低,往往小于%,产品粒度也非常好。 缺点是因为倍半碱矿容易和芒硝矿共生,产品中硫酸根含量比氨碱法要高,但现在用户对硫酸根的要求基本不高,所以这个缺点影响不大。 2.氨碱法(索尔维法) 我公司使用的就是氨碱法,中国的大碱厂中,潍坊、唐山、连云港,大化和天碱的一部分,青海,吉兰泰都是采用氨碱法。 a.氨碱法主要优点是产品质量好,可以生产低盐碱,硫酸盐的 含量也非常低。缺点是:a.有石灰和蒸馏工序,原材料消耗 高,原盐的利用率低,而氨碱法只能达到73-76%(就是转

初中化学_海水制碱第一课时氨碱法制纯碱教学设计学情分析教材分析课后反思

海水制碱第一课时教学设计 学习目标: 1.能说出工业制纯碱的原料,进一步树立元素守恒观。 2.认识氨碱法制纯碱的反应原理,能说出碳酸钠的主要用途。 3.了解侯德榜的事迹,激发爱国热情。 学习过程: 【情境引入】 1、展示一袋食用碱 问题:这袋食用碱是老师在厨房中找到的,你们家里有没有? 师:那你知道它的成分和用途吗? 师:纯碱不只在生活中用途多,也是衡量一个国家化学工业发展水平的重要指标。图片展示:纯碱的工业用途 师:纯碱在工业上广泛应用于石油精炼,造纸,冶金,纺织印染,生产人造纤维、玻璃、洗涤剂等等,(随着图片的展示教师逐一说出纯碱的用途。)一个国家生产和使用纯碱的量,在一定的程度上反映了这个国家的工业水平。 过渡:这么重要物质,我们如何获得呢?有没有同学知道? (引导学生联系前面学过冬天捞碱,夏天晒盐,猜测纯碱可以从碱湖中捞) 师:非常好,自然界中有一定量的纯碱。正如这位同学所说的,18世纪以前,纯碱都是取自于植物和碱湖碱矿。展示相关图。这是利用什么方法来来获取物质?(物理方法。) 师过渡:但是天然碱的含量远远不能满足工业生产的需要。怎么办呢?(可以想办法通过化学变化来制取) 师:太棒了,化学变化可以为我们制备所需的物质,那我们在工业上如何通过化学变化来制取纯碱的呢?相信通过今天的学习,你一定能找到答案,请阅读本节课的学习目标。(展示目标,学生读目标,教师板书课题,在碱旁标注明化学式) 【板书课题】第三节海水“制碱” 投影:本节课的学习目标。 【探究新知】 氨碱法制纯碱 (一)探究原料

(工业制纯碱需要哪些原料呢?) 从元素守恒的角度,我们要用化学方法制取纯碱,应该选用含哪些元素的物质呢?(钠、碳、氧) 师:你会选择哪种含钠元素的物质?理由是什么? (氯化钠,因为海水晒盐可以得到大量的氯化钠,价格便宜,来源广簹。) 师:碳、氧元素可由哪种物质提供? (二氧化碳) 师:工业上怎么制二氧化碳的?(高温锻烧石灰石) 很好,工业上,我们可以以食盐,二氧化碳为原料,以氨为媒介采用氨碱法生产纯碱。(二)了解流程和原理(观看微视频) 师:利用这些原料如何制得纯碱呢,一起看一段微视频,了解工业制纯碱的流程和原理。请先阅读学案上的问题,看视频时要边看边记边思考。请看大屏幕。 播放微视频:海水制纯碱探秘 视频看完了,请根据视频内容完成学案上的问题。 学生自主完成,小组内订正,师巡视。交流展示,师点拨。 1.将导学案上的流程图补充完整并根据提示写出反应原理。 提示:氨气、水、二氧化碳、食盐反应生成碳酸氢钠和氯化铵; 碳酸氢钠受热分解为碳酸钠、水、二氧化碳。 2.根据视频内容和课本71页最后一自然段,试着归纳碳酸氢钠有哪些性质和用途。 3.生产中要先向饱和的食盐水中通入氨气,制成饱和的氨盐水后,再通入二氧化碳。可以增加对二氧化碳的吸收,这是为什么呢?(提示:氨气溶于水形成氨水,可从食盐水和氨盐水的组成上分析) (食盐水由氯化钠和水组成,氨盐水由氯化钠、水和氨水组成,可能是氨水促进了对二氧化碳的吸收) 师:氨水为什么能促进对二氧化碳的吸收呢? 师:氨水是哪类物质呢? 师:现在有没有同学知道为什么氨水能促进对二氧化碳的吸收了?

课题3 纯碱的生产

课题3 纯碱的生产 [目标导航] 1.了解纯碱的生产及发展过程。2.了解天然碱的生产与化工生产之间的联系及生产纯碱技术的发展过程。 3.掌握路布兰法—索尔维法—联合制碱法(侯氏制碱)。 一、氨碱法生产纯碱 1.纯碱的存在和用途 (1)存在 一些生长于盐碱地和海岸附近的植物中含有碳酸钠,可以从植物的灰烬中提取。大量的碳酸钠主要来自一些地表碱湖。 (2)用途 碳酸钠,俗名纯碱,是一种重要的化学基本工业产品。很多工业都要用到碳酸钠,如玻璃、制皂、造纸、纺织和漂染等。碳酸钠作为原料还可以用于生产其他含钠的化合物;碳酸钠也被大量地应用于生活中。 2.路布兰制碱 原料:硫酸、食盐、石灰石、木炭; 缺点:原料利用不充分、成本较高、设备腐蚀严重等。 3.氨碱法生产纯碱 (1)原料:食盐、氨(来自炼焦副产品)和二氧化碳(来自碳酸钙)。 (2)主要反应原理(写方程式): ①将CO 2通入含氨的饱和食盐水中:NH 3+CO 2+H 2O===NH 4HCO 3,NaCl +NH 4HCO 3===NaHCO 3↓+NH 4Cl 。 ②碳酸钠的获取:2NaHCO 3=====△ Na 2CO 3+CO 2↑+H 2O ↑。 [议一议] 1.索尔维法生产纯碱的过程,经过了哪几个阶段,简述氨碱法的优缺点。 答案 索尔维法制碱的主要过程可分为以下几个阶段: (1)盐水的精制:在配制的饱和食盐水中,加入熟石灰和纯碱,以除去食盐水中的Mg 2+ 和Ca 2 + 。 (2)盐水氨化:在精制盐水中,通入氨气制成氨盐水。 (3)氨盐水碳酸化:使氨盐水吸收二氧化碳,生成碳酸氢钠和氯化铵。

NaCl +NH 3+CO 2+H 2O===NaHCO 3↓+NH 4Cl (4)碳酸氢钠的转化:滤出碳酸氢钠后煅烧得到纯碱,同时回收二氧化碳再利用。 2NaHCO 3=====△ Na 2CO 3+CO 2↑+H 2O ↑ (5)氨的循环:将氯化铵加石灰乳分解,回收氨循环利用。 2NH 4Cl +Ca(OH)2=====△ 2NH 3↑+CaCl 2+2H 2O 氨碱法生产纯碱的优缺点: (1)优点:氨碱法生产纯碱具有原料(食盐和石灰石)价廉易得、产品纯度高、氨和部分二氧化碳可循环使用、制造步骤简单、生产过程连续且规模大等。 (2)缺点:大量CaCl 2用途不大,NaCl 利用率只有70%,约30%的NaCl 留在母液中。 2.根据氨碱法的原理,首先配制氨化饱和食盐水,即向饱和食盐水中加入氨水(体积比1∶1)并充分搅拌;再将二氧化碳通入氨化饱和食盐水中,控制一定的温度,直至有碳酸氢钠析出。 请思考回答下列问题 (1)在析出NaHCO 3的过程中涉及哪些化学平衡? ________________________________________________________________________ ________________________________________________________________________ (2)向饱和食盐水中加入氨水和通入二氧化碳的先后顺序是先加氨水后通二氧化碳。是否可以先通二氧化碳后加氨水?为什么?_____________________________________________ ________________________________________________________________________。 答案 (1)NH 3+H 2O NH 3·H 2O NH +4+OH - ,CO 2+H 2O H 2CO 3H ++HCO - 3, H + 与OH - 中和生成水,使上述两个平衡向右移动,NH + 4,HCO - 3浓度增大,HCO - 3和Na + 浓度的乘积超过NaHCO 3的溶度积,析出NaHCO 3晶体,Na + (aq)+HCO - 3(aq) NaHCO 3(s) (2)不可以。在常温下,氨在饱和食盐水中的溶解度很大,二氧化碳在饱和食盐水中的溶解度较小。若先通二氧化碳后加氨水,溶液里只能产生很小浓度的HCO - 3,不利于生成NaHCO 3沉淀 二、联合制碱法 联合制碱法,即将氨碱法与合成氨联合生产的改进工艺。 1.原料 原料为食盐、氨气和CO 2,其中氨气和CO 2来自于合成氨。 2.反应原理 联合制碱法的主要反应化学方程式是NaCl +NH 3+CO 2+H 2O===NaHCO 3↓+NH 4Cl ,2NaHCO 3=====△ Na 2CO 3+CO 2↑+H 2O ↑。 [议一议] 简述联合制碱法的过程,获取副产品NH 4Cl 晶体的方法是什么?主要优点有哪些? 答案 (1)盐水精制:加入熟石灰和纯碱除去Ca 2+ 、Mg 2+ 。

氨碱法制取纯碱与侯氏制碱法

氨碱法制取纯碱与侯氏制碱法 2008-10-13 15:17 索尔维制碱法与侯氏制碱法(也叫做氨碱法与联碱法) 郭永斌发表于 2006-8-10 19:15:28 无水碳酸钠,俗名纯碱、苏打。它是玻璃、造纸、肥皂、洗涤剂、纺织、制革等工业的重要原料,还常用作硬水的软化剂,也用于制造钠的化合物。它的工业制法主要有氨碱法和联合制碱法两种。 一、氨碱法(又称索尔维法) 它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。CaO+H2O= Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O 氨碱法的优点是:原料(食盐和石灰石)便宜;产品纯碱的纯度高;副产品氨和二氧化碳都可以回收循环使用;制造步骤简单,适合于大规模生产。但氨碱法也有许多缺点:首先是两种原料的成分里都只利用了一半——食盐成分里的钠离子(Na+)和石灰石成分里的碳酸根离子(CO32-)结合成了碳酸钠,可是食盐的另一成分氯离子(Cl-)和石灰石的另一成分钙离子(Ca2+)却结合成了没有多大用途的氯化钙(CaCl2),因此如何处理氯化钙成为一个很大的负担。氨碱法的最大缺点还在于原料食盐的利用率只有72%~74%,其余的食盐都随着氯化钙溶液作为废液被抛弃了,这是一个很大的损失。 二、联合制碱法(又称侯氏制碱法) 它是我国化学工程专家侯德榜(1890~1974)于1943年创立的。是将氨碱法和合成氨法两种工艺联合起来,同时生产纯碱和氯化铵两种产品的方法。原料是食盐、氨和二氧化碳——合成氨厂用水煤气制取氢气时的废气。其化学反应原理是:C+H2O=CO+H2 CO+H2O=CO2+H2 联合制碱法包括两个过程:第一个过程与氨碱法相同,将氨通入饱和食盐水而成氨盐水,再通入二氧化碳生成碳酸氢钠沉淀,经过滤、洗涤得NaHCO3微小晶体,再煅烧制得纯碱产品,其滤液是含有氯化铵和氯化钠的溶液。第二个过程是从含有氯化铵和氯化钠的滤液中结晶沉淀出氯化铵晶体。由于氯化铵在常温下的溶解度比氯化钠要大,低温时的溶解度则比氯化钠小,而且氯化铵在氯化钠的浓溶液里的溶解度要比在水里的溶解度小得多。所以在低温条件下,向滤液中加

微专题-化工生产-纯碱工业(侯氏制碱法和索氏制碱法)

【纯碱工业】 索尔维制碱法与侯氏制碱法(也叫做氨碱法与联碱法) 氨碱法:先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是:NaCl+NH3+H2O+CO2→NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。2NaHCO3???→ 煅烧Na 2CO3+H2O+CO2↑放出的CO2气体可回收循环使用。含有NH4Cl的滤液与石灰乳[Ca(OH)2]混合加热,所放出的NH3可回收循环使用。CaO+H2O→Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O 氨碱法的优点是:原料(食盐和石灰石)便宜;产品纯碱的纯度高;副产品氨和二氧化碳都可以回收循环使用;制造步骤简单,适合于大规模生产。 但氨碱法也有许多缺点:首先是两种原料的成分里都只利用了一半—食盐成分里的Na+和石灰石成分里的CO32 -结合成了Na 2CO3,可是食盐的另一成分Cl -和石灰石的另一成分Ca2+却结合成了没有多大用途的CaCl 2,因此如何处理CaCl2成为一个很大的负担。氨碱法的最大缺点还在于原料食盐的利用率只有72%~74%,其余的食盐都随着CaCl2溶液作为废液被抛弃了,这是一个很大的损失。 联合制碱法(又称侯氏制碱法):它是我国化学工程专家侯德榜(1890~1974)于1943年创立的。是将氨碱法和合成氨法两种工艺联合起来,同时生产纯碱和氯化铵两种产品的方法。原料是食盐、氨和二氧化碳(合成氨厂用水煤气制取氢气时的废气,其化学反应原理是:C+H2O→CO+H2 CO+H2O→CO2+H2) 联合制碱法包括两个过程:第一个过程与氨碱法相同,将氨通入饱和食盐水而成氨盐水,再通入二氧化碳生成碳酸氢钠沉淀,经过滤、洗涤得NaHCO3微小晶体,再煅烧制得纯碱产品,其滤液是含有氯化铵和氯化钠的溶液。第二个过程是从含有氯化铵和氯化钠的滤液中结晶沉淀出氯化铵晶体。由于氯化铵在常温下的溶解度比氯化钠要大,低温时的溶解度则比氯化钠小,而且氯化铵在氯化钠的浓溶液里的溶解度要比在水里的溶解度小得多。所以在低温条件下,向滤液中加入细粉状的氯化钠,并通入氨气,可以使氯化铵单独结晶沉淀析出,经过滤、洗涤和干燥即得氯化铵产品。此时滤出氯化铵沉淀后所得的滤液,已基本上被氯化钠饱和,可回收循环使用。

氨碱法纯碱生产地主要原料概述

氨碱法纯碱生产的主要原料概述 一、原盐(食盐) 1、原盐的物化性质及成份规格: 原盐是氨碱法纯碱生产的主要原料。原盐的主要成份为氯化钠,化学分子式为NaCL,纯氯化钠为无色等轴晶体,但是由于原盐是由许多晶体机和而成,晶体之间的缝隙中往往含有卤水或者空气,因而变成白色而且不透明体,同时又因含有泥沙等杂质,使原盐常呈现灰褐色,氯化钠晶体通常是正六面体。 (1)食盐的物化性质: 氯化钠的分子量 58.45 熔点 800℃ 沸点 1440℃ 20℃时比热 0.867(J/g℃) 25℃时密度 2.161t/m3 原盐中因为含有氯化镁等杂质,容易吸收空气中的水分而潮解。氯化钠易溶于水,其溶解热为——4.9KJ/mol,溶解过程为吸热反应,当制成饱和盐水时,可使溶液温度降低6℃多。氯化钠的溶解度随温度升高没有明显的变化,这一性质与绝大多数易溶物质溶解度随着温度升高而增加的性质不同,所以其水溶液(卤水)在冷冻工业中被用作载冷体。 (2)食盐的质量标准: 作为制碱工业的原料,要求原盐中的主要成份NaCL含量尽可能高,而泥沙及其他杂质,特别是钙、镁杂质越低越好。因为食盐中的氯化镁、硫酸镁、硫酸钙等杂质,在盐水精制、吸氨、碳化过程中,会生成炭酸镁、碳酸钙及其他复盐等,使塔器与管道堵塞,这些杂质如不能在碳化以前清除掉,就会较多地混入纯碱中,使产品的品位降低,因此用于氨碱法的食盐一般需要符合以下标准: NaCL% ≥ 90%;水分% ≤ 4.2%;Mg2+% ≤0.8%;SO42-%≤ 0.8%。 2、原盐的需要用量 氨碱法纯碱生产的全过程,可以归结为一个综合的化学反应方程式。即 CaCO3+2NaCL= CaCL2 +Na2CO3 2×58.45 106 X 1000kg 按照上述反应方程式,可以计算出生产1t纯碱理论上所需要的氯化钠量

第二章--氨碱法纯碱生产工艺概述资料

第二章氨碱法纯碱生产工艺概述 第一节氨碱法基本生产原理及总流程简述 一、氨碱法生产纯碱的特点及总流程 氨碱法生产纯碱的技术成熟,设备基本定型,原料易得,价格低廉,过程中的NH3循环使用,损失较少。能大规模连续化生产,机械化自动化程度高,产品的质量好,纯度高。 该法的突出缺点是:原料利用率低,主要是指NaCl的利用率低,废渣排放量大。严重污染环境,厂址选择有很大局限性,石灰制备和氨回收系统设备庞大,能耗较高,流程较长。 针对上述不足和合成氨厂副产CO2的特点,提出了氨碱两大生产系统组成同一条连续的生产线,用NaCl,NH3和CO2同时生产出纯碱和氯化铵两种产品——即联碱法。 氨碱法生产纯碱的总流程见图5-19。 二、氨碱法制纯碱的生产工艺流程 1、氨碱法生产纯碱的流程示意如图5-1所示。其过程大致如下:

2、氨碱法纯碱生产工艺流程框图: 3、氨碱法纯碱生产工序的基本划分: (1)石灰工序:CO 2和石灰乳的制备,石灰石经煅烧制得石灰和CO 2,石灰经消化得石灰乳; (2)盐水工序:盐水的制备和精制; (3)蒸吸工序: 盐水氨化制氨盐水及母液中氨的蒸发与回收; 原盐 石灰石 无烟煤 CO 2 NH 3 废液 重质纯碱 轻质纯碱 盐水精制 盐水吸氨 氨盐水碳化 石灰煅烧 石灰乳制备 母液蒸馏 重碱过滤 重碱煅烧 水合

(4)碳滤工序: 氨盐水碳化制得重碱及其重碱过滤和洗涤; (5)煅烧工序:重碱煅烧得纯碱成品及CO2;和重质纯碱的生产; (6)CO2压缩工序:窑气CO2、炉气CO2的压缩工碳酸化制碱。 三、氨碱法纯碱生产原理及工艺流程叙述 氨碱法生产纯碱的原料是食盐和石灰石,燃料为焦炭(煤)。氨作为催化剂在系统中循环使用。原料盐(海盐、岩盐、天然盐水)经精制吸氨、碳化、结晶、过滤,再煅烧即为成品。母液经石灰乳中和后,氨蒸发并回收使用,氯化钙则排放。其化学反应为: 氨碱法具有原料来源丰富和方便,生产过程均在气液相间进行,可以大规模连续化生产及产品质量好、成本低等优点。但排出的氯化钙(CaCl2)废渣没有应用出路,造成大量堆积。因此,该生产方法在厂址选择方面相对较为苛求,否则引起公害。另外盐的总利用率低(<30%),工艺流程较长且复杂。 (1)、氨碱法纯碱生产的基本原理及总流程叙述:氨碱法是当今世界大规模制造纯碱的工业方法之一。是以食盐、石灰石为主要原料,以氨作为中间辅助材料制取纯碱。总的化学反应方程式为:CaCO3+2NaCL=Na2CO3+CaCL2 这个化学反应实际上是不能直接进行的,它只是一系列中间反应的总和。这个反应的实际过程是由右向左进行的,因此要实现由左至右的反应,就必须通过复杂的中间途径,还必须导入氨,在系统中不断循环再用,这就使得氨碱法制碱成为一种很复杂的化学反应过程,其全过程需范围若干个步骤,各主要步骤及其主要化学反应如下: 1、石灰石煅烧以制取CO2及生石灰 CaCO3(s)===CaO(s)+CO2(g)—178.27KJ/mol 燃料中的碳在空气流中燃烧生成CO2并放热 C(s)+O2=CO2(g)+395.4KJ/mol 氧化钙(生石灰)消化制成熟石灰 CaO(s)+H2O(l)=Ca(OH)2(s)+65.65KJ/mol 2、饱和盐水吸氨、碳酸化制成NaHCO3,叫做重碳酸钠(碳酸氢钠),或简称重碱。综合反应如下所示: NaCL(aq)+NH3(g)+CO2(g)+H2O(l)=NH4CL(aq)+NaHCO3(s)+114.5KJ/mol 或分布反应如下:

纯碱工艺及控制方案

纯碱碳化过程的DCS控制方案 纯碱生产的方法主要有三种:天然碱加工、氨碱法、联合制碱法(侯氏制碱法)。而氨碱法(即索尔维制碱)是当今世界大规模制造纯碱的通用工业方法之一其生产工艺经过百多年的生产实践考验,工艺包的技术成熟,稳定可靠。 一.氨碱法纯碱生产流程概述: 氨碱法是一种复杂的化学制造工艺,它主要包括一系列的化工单元操作,共 分九个工序:盐水精制工序、盐水吸氨工序、碳化工序、过滤工序、蒸馏工序、压缩工序、石灰工序、煅烧工序、包装工序。氨碱法生产纯碱的主要原料:石灰石、食盐、焦碳、氨等。 氨碱法生产工艺流程: 首先用水将原盐溶解制成饱和粗盐水,再用石灰—纯碱法除去杂质得精盐水。 精盐水吸氨得氨盐水,冷却在吸收塔内与由蒸馏塔蒸出的氨逆流吸收制成氨盐水,冷却后氨盐水在碳化塔内与二氧化碳作用生成碳酸氢钠,带有结晶的悬浮液由塔低压出,经出碱液槽送往真空过滤机分离出重碱。 过滤得到的NaHCO3滤饼在煅烧工序经加热分解,制得轻质纯碱和炉气,轻质 纯碱通过运输设备送往水合机,采用固相水合法或液相水合法制得重质纯碱, 经干燥、包装得商品重质纯碱(重灰);轻质纯碱经凉碱塔冷却,包装即为商 品轻质纯碱(轻灰)。 分解过程逸出的二氧化碳经分离、冷却、净化后,由压缩机抽吸和压缩返回碳化过程。 由真空过滤机抽出的过滤母液,被送往蒸馏塔与由石灰石煅烧分解和消化 所得的石灰乳兑和反应蒸出氨,返回吸收塔循环使用。 蒸馏废液则排入渣场。 石灰石用焦炭在石灰窑内煅烧制得生石灰,再通过化灰机与水反应制成石灰乳,分别送至蒸馏工序和盐水工序使用。 石灰窑产生含40%CO2的窑气与煅烧炉产生的含80%以上CO2的炉气通过压缩机 送碳化工序使用。 二系统配制 1系统配制图

实验三氨碱法制纯碱

实验三:模拟氨碱法制纯碱 一、实验目的 1、了解氨碱法制纯碱的化学反应原理 2、模拟练习氨碱法制纯碱的操作方法 3、增强将化学知识应用与生活实践的意识,提高参与化学科技活动的热情,强化对化 学学习的学习兴趣 二、中学教学中存在的问题 1、实验操作步骤复杂繁琐,实验耗时长 2、教学资源的短缺,学生不能亲自操作实验 3、不能把握对氨的通入率,过多减低氨的利用率,过少饱和食盐水分解不够完全 三、实验原理 氨碱法(又称索尔维法) 以食盐(氯化钠)、石灰石(经过高温煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。CaO+H2O=Ca(OH)2,2NH4Cl +Ca(OH)2=CaCl2+2NH3↑+2H2O 四、实验任务 1、查阅文献,了解氨碱法制取纯碱的实验装置和工作原理 2、对比联合制碱法,改进实验装置,采取实际可行的实验方案,减少实验原料的应用 3、结合本实验室的实验情况与本人情况,控制反应的条件。 4、明确本实验的注意事项与成功关键 五、影响实验的因素及影响规律 1、反应的温度控制:在30~40°C下通入氨气形成氨盐水,后加入二氧化碳形成碳酸 氢钠,温度过高会使碳酸氢钠分解,过低反应速率低 2、溶液达到饱和态,降温到10°C以下,因为氯化铵的溶解度比氯化钠小,析出晶体 氯化铵,是一种化肥,节约药品 3、氯化钠6g(0.1mol)、氨水4g(NH30.1mol)、碳酸钙10g(CO20.1mol),盐酸约0.2mol 六、实验设计过程 1、本实验采取盐酸与石灰石反应生成0.1molCO2,加热浓氨水收集0.1mol氨气,加入食 盐水,水浴控制反应温度,使之反应充分,节约药品 2、仪器选择与装置的思考:本实验选用带有三个导管口的集气瓶作为反应装置,装有 冰水的大烧杯(便于控制反应温度),用分液漏斗和圆底烧瓶以及集气瓶制取并收 集二氧化碳。 七、药品物理参数

氨碱法制纯碱

第三节海水“制碱”——氨碱法制取纯碱 【学习目标】: 1、通过对氨碱法制碱原理的分析,树立元素守恒观, 形成人类从自然界中获取所需物质的思维; 2、能够记住制碱流程,会写反应原理方程式。 3、通过了解侯德榜的事迹,激发爱国热情,树立正确的科学观和人生价值观 4、知道纯碱在日常生活和工农业生产中的应用 【学习重难点】:氨碱法制纯碱的原理 【学习过程】 1、纯碱的制取 ⑴、原料:、,以。 ⑵、工艺流程: 饱和食盐水———饱和氨盐水———NaHCO3———Na2CO3 先向饱和食盐水中通入,制成饱和氨盐水,在加压并不断通入的条件下,使NaHCO3 晶体析出,过滤后将NaHCO3 加热分解即得纯碱。 ⑶、反应原理:; 。 ⑷、优缺点: 优点: 缺点: 2、纯碱的用途 纯碱在化学工业中的用途极广,如、、、等均需要大量的纯碱,纯碱还广泛应用于、、、等领域。 3、碳酸氢钠 ⑴碳酸氢钠是的主要成分,又称,化学式为。 ⑵碳酸氢钠是一种色晶体,溶于水,受热易分解,化学方程式为。 ⑶碳酸氢钠在生产和生活中有许多重要用途,你都知道哪一些? 【当堂检测】: 1、实验室用食盐制纯碱的操作步骤是:(1)向浓氨水中加入足量食盐晶体制取饱和氨盐水;

(2)向饱和氨盐水中通入足量的二氧化碳气体至有大量晶体析出;(3)将操作(2)中产生的晶体过滤出来;(4)将滤纸上的晶体转移至坩埚中,加热至不再有水蒸气产生,所得固体即为碳酸钠。对上述信息的有关理解中,正确的是() A.用食盐制纯碱还需要含碳元素的物质B.食盐水比氨盐水更易吸收二氧化碳 C.室温下碳酸氢钠的溶解度比氯化铵的溶解度小,所以先结晶析出 D.在氨盐水中如果没有未溶解的食盐晶体存在,说明溶液一定不饱和 2、利用海水制碱,是因为海水中含有大量的() A.CaCl2 B. MgCl2 C.NaCl D.ZnCl2 3、下列不属于氨碱法制纯碱所需的原料是() A .二氧化碳 B .氯化钠 C. 氢氧化钠 D .水 4、下列科学家中,为我国化学工业做出重大贡献的是() A.邓稼先B.李四光C.华罗庚D.侯德榜. 5、工业上采用氨碱法生产纯碱的的工艺是先向饱和食盐水中通入较多NH3(溶液显碱性),再通入足量的CO2的原因是() A.使CO2更易被吸收 B.NH3比CO2更易制取 C.CO2的密度比NH3大 D.为了增大NaHCO3的溶解度 6、除去混在碳酸钠中的少量碳酸氢钠的方法是()。 A.加热B.加NaOH溶液 C.加盐酸D.加CaCl2溶液 【能力提高】我国化工专家侯德榜发明的“侯氏制碱法”的基本原理是:在浓氨水中通入足量的CO2,然后在此溶液中加入细小的食盐粉末,由于NaHCO3 在该状态下溶解度很小,呈晶体析出,同时由于NaHCO3 不稳定,加热后分解。根据以上叙述回答下列问题: ⑴用上述方法进行生产时,所用的起始原料是 (填化学式),最终产品是。 ⑵有关反应的化学方程式为 、 。 ⑶有人认为侯氏制碱法的优点有四:A、生产过程中部分产品可选为起始原料使用;B 副产品是一种可利用的氮肥;C反应不需要加热;D副产品不会造成环境污染,你认为其中正确的是(用代号回答)。

纯碱生产工艺简介

纯碱生产工艺简介 纯碱生产工艺主要分天然碱法和合成碱法,而合成碱法又分氨碱法和联碱法。 1.天然碱 目前全世界发现天然碱矿的仅有美国、中国、土耳其、肯尼亚等少数国家,其中以美国的绿河天然碱矿最有名。绿河地区的天然碱矿床,有42个含倍半碳酸钠的矿层。已知矿层厚度在1.2m以上(最厚达11m),含矿面积在670km2(最大达2007km2)的有25层,位于地表以下198~914m,,计算倍半碳酸钠(Na2CO3.NaHCO3.2H2O)储量为613亿t,即使全世界所有碱厂全部停产,美国天然碱也可供世界1300年纯碱用量。绿河地区各公司主要采用机械化开采。地面加工装置,主要采用一水碱流程生产重质纯碱。美国各天然碱厂目前的市场运作方法是:国内,各厂进行有序竞争;国外出口,各厂联合,成立一个专营出口的组织“ANSAC”(美国天然碱公司), 美国天然碱不但质量好,而且生产成本仅为60美元/吨左右,远低于我国合成纯碱成本90美元/吨-100美元/吨左右,因此它具有很强的竞争力。 而位于河南省桐柏县的天然碱矿,总储量达1.5亿吨,远景储量3亿~5亿吨,占全国天然碱储量的80%,位居亚洲第一、世界第二位。内蒙古伊化集团在桐柏建立了以天然碱为主的化工园区,其优质的低盐重质纯碱设计年产量达100万吨。 天然碱生产工艺主要有三种:

a. 倍半碱流程 矿石开采-溶解-澄清除去杂质-循环母液-三效真空结晶-240度煅烧 b. 卤水碳化流程 天然卤水-碳化塔碳化为重碱-干燥-煅烧为粗碱-用硝酸钠在155度漂白-煅烧,煅烧用二氧化碳由自备电厂提供 c. 一水碱流程 矿石开采-破碎到7厘米以下-200度停留30分钟-粗碱-溶解、澄清-三效真空结晶-240度煅烧 天然碱法的主要优点是: a.成本低,每吨约60美元左右,而合成碱为90-100美元, 完全可以抵消运输成本。 b.质量方面盐分非常低,往往小于0.10%,产品粒度也非常好。 缺点是因为倍半碱矿容易和芒硝矿共生,产品中硫酸根含量比氨碱法要高,但现在用户对硫酸根的要求基本不高,所以这个缺点影响不大。 2.氨碱法(索尔维法) 我公司使用的就是氨碱法,中国的大碱厂中,潍坊、唐山、连云港,大化和天碱的一部分,青海,吉兰泰都是采用氨碱法。 a.氨碱法主要优点是产品质量好,可以生产低盐碱,硫酸盐的含 量也非常低。缺点是:a.有石灰和蒸馏工序,原材料消耗高, 原盐的利用率低,而氨碱法只能达到73-76%(就是转化率),

海水制碱——氨碱法制纯碱讲课稿

海水制碱——氨碱法 制纯碱

2009年烟台市优质课评选参评教学设计 §2.3海水“制碱” ——氨碱法制纯碱 牟平区观水镇第一初级中学 陈健

海水制碱 课题:海水“制碱”(第一课时) 教学目标:1、了解氨碱法制纯碱的原料和步骤 2、知道氨碱法制纯碱的化学反应原理 3、了解纯碱在日常生活和工农业生产中的应用 4、通过了解侯德榜的事迹,激发爱国热情,树立正确的科学观和人生价 值观。 教学重点:氨碱法制纯碱的化学反应原理 教学难点:树立元素守恒观 教学过程: 一、组织教学:师生问好! 二、情境创设: 很高兴有机会跟同学们一起合作交流! 首先我们来观察一个小实验,请同学们仔细观察思考: 小烧杯中有一支燃着的蜡烛,这是一种白色粉末,这是稀盐酸…… 咦?是什么使蜡烛熄灭了?它来自哪儿?你猜测一下,这种白色粉末是什么? 谁想起来说说?……大家都认同吗?……你来说说…… 我再为大家提供几条该物质的关键词: 【多媒体出示】 加工面条经常会用到它,它不是食盐,却与食盐有着千丝万缕的关系;

做馒头发酵面团时产生乳酸, 加入它不仅可以去除酸味还可以使馒头松软可口; 叫碱不是碱; 它到底是什么呢? 是的,它就是碳酸钠! 三、新知探究: (一)纯碱的用途: 碳酸钠,俗称纯碱,又称苏打。在化学工业中用途很多!下面我们来赛一赛,看谁记得多又快: 【多媒体出示】一分钟速记。 纯碱被誉为“化工之母”,工业生产需求量极大,自然界中存有量却很少。 虽然人们曾先后从盐碱地和盐湖中获得碳酸钠,但远远不能满足日益增长的工业生产的需要。 请你想一想,用什么方法能制得纯碱呢?(稍停顿) 海水中蕴含着大量的氯化钠,能否用氯化钠为原料制取碳酸钠呢? 【板书】:NaCl→Na2CO3 想一想,需要补充哪些元素?可由哪些原料提供?(可以讨论一下) 谁想起来说说?(C、O——CO2) 【小实验】向饱和的食盐水中吹CO2 【提问】你看到有什么现象呢? 【演示实验】向饱和的食盐水中通入氨气,然后通入二氧化碳. 【提问】你看到了什么?氨气在这里起什么作用呢?工业上需要大量二氧化碳如何制取呢?

氨碱法纯碱生产工艺概述上课讲义

氨碱法纯碱生产工艺 概述

第二章氨碱法纯碱生产工艺概述 第一节氨碱法基本生产原理及总流程简述 一、氨碱法生产纯碱的特点及总流程 氨碱法生产纯碱的技术成熟,设备基本定型,原料易得,价格低廉,过程中的NH3循环使用,损失较少。能大规模连续化生产,机械化自动化程度高,产品的质量好,纯度高。 该法的突出缺点是:原料利用率低,主要是指NaCl的利用率低,废渣排放量大。严重污染环境,厂址选择有很大局限性,石灰制备和氨回收系统设备庞大,能耗较高,流程较长。 针对上述不足和合成氨厂副产CO2的特点,提出了氨碱两大生产系统组成同一条连续的生产线,用NaCl,NH3和CO2同时生产出纯碱和氯化铵两种产品——即联碱法。 氨碱法生产纯碱的总流程见图5-19。

二、氨碱法制纯碱的生产工艺流程 1、氨碱法生产纯碱的流程示意如图5-1所示。其过程大致如下: 2、氨碱法纯碱生产工艺流程框图:

3、氨碱法纯碱生产工序的基本划分: (1)石灰工序:CO2和石灰乳的制备,石灰石经煅烧制得石灰和CO2,石灰经消化得石灰乳; (2)盐水工序:盐水的制备和精制; (3)蒸吸工序: 盐水氨化制氨盐水及母液中氨的蒸发与回收; (4)碳滤工序: 氨盐水碳化制得重碱及其重碱过滤和洗涤; (5)煅烧工序:重碱煅烧得纯碱成品及CO2;和重质纯碱的生产; (6)CO2压缩工序:窑气CO2、炉气CO2的压缩工碳酸化制碱。 三、氨碱法纯碱生产原理及工艺流程叙述 氨碱法生产纯碱的原料是食盐和石灰石,燃料为焦炭(煤)。氨作为催化剂在系统中循环使用。原料盐(海盐、岩盐、天然盐水)经精制吸氨、碳化、结晶、

氨碱法生产纯碱的过程

纯碱(Sodium Carbonate),学名碳酸钠,俗名苏打、石碱、碱灰、碱粉、洗 涤碱,化学式Na 2CO 3。 纯碱外观为白色粉末或细粒结晶、味涩。其水溶液水解呈 碱性,有一定的腐蚀性,能与酸进行中和反应,生成相应的盐,并放出二氧化碳。高温下可分解,生成氧化钠和二氧化碳。纯碱在潮湿的空气里会潮解,慢 慢吸收二氧化碳和水,部分变为碳酸氢钠,所以包装要严,否则会吸潮结块。 氨碱法使生产实现了连续性生产,食盐的利用率得到提高,产品质量纯净,因而被称为纯碱,但最大的优点还在于成本低廉。1867年索尔维设厂制造的产 品在巴黎世界博览会上获得铜制奖章,此法被正式命名为索尔维法。此时,纯 碱的价格大大下降。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司 取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立 了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。这些国家发起组 织索尔维公会,设计图纸只向会员国公开,对外绝对保守秘密。凡有改良或新 发现,会员国之间彼此通气,并相约不申请专利,以防泄露。除了技术之外, 营业也有限制,他们采取分区售货的办法,例如中国市场由英国卜内门公司独占。由于如此严密的组织方式,凡是不得索尔维公会特许权者,根本无从问津 氨碱法生产详情。多少年来,许多国家要想探索索尔维法奥秘的厂商,无不以 失败而告终。直到1933年侯德榜著书《纯碱制造》,将索尔维制碱法公之于众。再到后来被更为先进的侯氏制碱法取代。 它是以食盐、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制 取纯碱。先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳,使其生成 溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是: NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。 2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。而含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。 CaO+H2O=Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O。 氨碱法制纯碱的优点: 1、原料:使用氨碱法制纯碱,用的原料来源广。 2、纯度:使用氨碱法制纯碱,研制出的产品纯度高。 3、生产能力:使用氨碱法制纯碱,可以连续生产,生产能力强大。 缺点: 1、NaCl利用率低。 2、需要丰富的原盐、石灰石、焦炭、水等资源供应,且要排放大量废渣、废液

相关主题
文本预览
相关文档 最新文档