当前位置:文档之家› 陶瓷谐振器基本参数

陶瓷谐振器基本参数

陶瓷谐振器的工作原理

陶瓷谐振器等效电路如下图所示。虚线框内为两端型谐振器的等效电路。在fr<f<fa频率范围内呈感性,加上内

藏电容CL

1、CL

2

本谐振器可作为LC网络使用,在LC正反馈

振荡电路中使用一个Q

1=180°为反相器,加上LC反馈电路

又倒相Q

2

=180 °而形成振荡电路。

陶瓷谐振器的振荡条件

振荡条件:回路增益G=10log(α*β)≥0相移Q=Q 1+Q 2=360°×n (n=1、2、3……)

基本振荡电路回路增益测量电路

V10.01μF

R 1=50ΩT.G

Output=-20dBm

2PF 10MΩ

Rf=1MΩ

Ceramic

Resonator OUT

V 0IC:TC74HCU04

Vcc=5.0V

G=10Log(V 0/V 1)≥0~

陶瓷谐振器基本参数?我司陶瓷谐振器分为ZTA型(不带内置电容)和ZTT型(带内置

电容),相应等效电路和阻抗和

相位特性图如:

?(ZTA型)

?(ZTT型)

陶瓷谐振器基本参数

?C0:静电容;C1:动态电容;L1动态电感;

R1:动态电阻;CL1、CL2内置负载电容。

?Zr:谐振电阻,近似于R1;

?Fr:谐振频率,Fr=1/2π√L1C1;

?Fa:反谐振频率,Fa=1/2π√L1C1C0/(C1+C0)

=Fr√1+C1/C0;

?FOSC:振荡频率,FOSC=Fr√1+C1/(C0+CL);

石英晶体谐振器和石英晶体振荡器

石英晶体谐振器 一、术语解释 1、标称频率:晶体技术条件中规定的频率,通常标识在产品外壳上。 2、工作频率:晶体与工作电路共同产生的频率。 3、调整频差:在规定条件下,基准温度(25±2℃)时工作频率相对于标称频率所允许的偏差。 4、温度频差:在规定条件下,在工作温度范围内相对于基准温度 (25±2℃)时工作频率的允许偏差。 5、老化率:在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。 6、静电容:等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。 7、负载电容:与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。负载电容系列是:8PF、12PF、15PF、20PF、30PF、50PF、100PF。只要可能就应选推荐值:10PF、20PF、30PF、50PF、100PF。 8、负载谐振频率(fL):在规定条件下,晶体与一负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率中的一个频率。在串联负载电容时,负载谐振频率是两个频率中较低的一个,在并联负载电容时,则是两个频率中较高的一个。 9、动态电阻:串联谐振频率下的等效电阻。用R1表示。 10、负载谐振电阻:在负载谐振频率时呈现的等效电阻。用RL表示。

RL=R1(1+C0/CL)2 11、激励电平:晶体工作时所消耗功率的表征值。激励电平可选值有:2mW、1mW、、、、50μW、20μW、10μW、1μW、μW等 12、基频:在振动模式最低阶次的振动频率。 13、泛音:晶体振动的机械谐波。泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。 二、应用指南 石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、 HC-49U/S?SMD、UM- 1、UM-5及柱状晶体等。 HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。 HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。 HC-49U/S?SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。 柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。 UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。 石英晶体谐振器主要用于频率控制和频率选择电路。本指南有助于确保

电工电子元器件认识 - 石英晶体谐振器与集成稳压电路

石英晶体谐振器与集成稳压电路 任务目标; 单片机中晶振的作用以及稳压电路的特点、和在汽车电路中的应用。 学习目标; 了解单片机中晶振的作用以及稳压电路的特点、和在汽车电路中的应用。 二氧化硅(Si02)的单晶体,又称水晶。有天然和人造的两种。石英晶体是一种重要的电了材料。沿一定方向切割的石英晶片,若在石英晶片的两端加一电场,晶片就会产生机械变形,这种现象称为正压电效应。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为逆压电效应。正、逆两种效应合称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其它频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、儿何形状、尺 寸等有关。石英晶体不仅具有压电效应,而且还具有优良的机械特性、电学特性和温度特性。用它设计制作的谐振器、振荡器和滤波器等,在稳频和选频方面都有突出的优点。 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。金属外壳封装的石英晶体外形如图1所示。

石英晶体谐振器射频特性及模型推导

石英晶体谐振器射频特性及模型推导 石英晶体谐振器(英文:quartz crystal unit或quartz crystal resonator,常简写成Xtal),简称石英晶体或晶振,是利用石英晶体(又称水晶)的压电效应,用来产生高精度振荡频率的一种电子元件,属于被动元件。该元件主要由石英晶片、基座、外壳、银胶、银等成分组成。根据引线状况可分为直插(有引线)与表面贴装(无引线)两种类型。现在常见的主要封装型号有HC-49U、HC-49/S、UM-1、UM-4、UM-5与SMD。 历史 压电效应是由雅克·居里与皮埃尔·居里于1880年发现。保罗·朗之万在第一次世界大战期间首先探讨了石英谐振器在声纳上的应用。第一个由晶体控制的电子式振荡器,则是在1917年使用罗谢尔盐所作成,并于1918年由贝尔电话实验室的Alexander M. Nicholson取得专利[1],虽然与同时申请专利的Walter Guyton Cady 曾有过争议[2]。 Cady 于1921年制作了第一个石英晶体振荡器[3]。对于石英晶体振荡器的其他早期创新有贡献的还有皮尔斯(G. W. Pierce)与 Louis Essen。 工作原理 晶体是指其中的原子、分子、或离子以规则、重复的模式朝各方向延伸的一种固体。 晶体与几乎所有的弹性物质都具有自然共振频率,透过适当的传感器可加以利用。例如钢铁具有良好弹性、音速快,在石英晶体大量应用以前,钢铁被用作机械式滤波器(英语:Mechanical filter)。共振频率取决于晶体的尺寸、形状、弹性、与物质内的音速。高频用的晶体通常是切成简单的形状,如方形片状。典型的低频用晶体则常切成音叉形,例如手表用的那种。如不需要太高的精确度,则也可以使用陶瓷谐振器(英语:Ceramic Resonator)取代石英晶体谐振器。运用石英晶体上的电极对一颗被适当切割并安置的石英晶体施以电场时,晶体会产生变形。这就是压电效应。当外加电场移除时,石英晶体会恢复原状并发出电场,因而在电极上产生电压。这样的特性造成石英晶体在电路中的行为,类似于某种电感器、电容器、与电阻器所组合成的RLC电路。组合中的电感电容谐振频率则反映了石英晶体的实体共振频率。 石英晶体的优点是在温度变化时,影响震荡频率的弹性系数与尺寸变化轻微,因而在频率特性上表现稳定。共振的特性还取决于振动模式与石英的切割角度(相对于晶轴而言),目前常用的是 AT 切割,它的振荡是厚度剪切(thickness shear)振荡模式。此外,在需要高精密度与稳定性的严格场合,石英晶体会放置于恒温箱(Crystal oven)与吸振容器内,以防止外部温度与震动的干扰。

介质谐振器与介质谐振器天线的建模与仿真分析汇总

第3章介质谐振器与介质谐振器天线的建模与仿真分析 3.1介质谐振器 介质谐振器的流程图: 设计单位 设置默认材 料 创建空气腔 创建介质 检查模型 保存工程 设置分析 仿真 查看计算结果 创建场覆盖图 参数扫描 参数扫描结

3.1.1介质谐振器的建模 介质谐振器的模型有很多中,本文主要是以圆柱形介质谐振器为参考,其中,介质谐振器的尺寸均是由本人视个人情况设定。 本模型由三部分组成:谐振腔、谐振介质和基片,如图所示: 3.1.2谐振器的设计与仿真分析 (1)开始前的准备工作 上网下载电磁波仿真系统HFSS 软件,进行安装。 打开HFSS 软件桌面快捷方式,启动HFSS 软件。新建一个工程,名称为yuancong.hfss ,然后设计解决方案类型。在HFSS 软件中,具有三种求解方法。分别是受驱模式求解、受驱终端求解和本征模求解。下面是三种求解方式的区别: 本征模求解:计算结构的本征模或谐振是一般采用本征模求解方式。本征模求解可算出结构的谐振频率和在这些谐振频率出对应的场,也可计算出品质因数。因为本征模问题不包含端口和源,所以介质谐振器运用的求解方式是本征模求解方式。 受驱模式求解:想用HFSS 计算基于微波传输带、波导、传输线等被动高频结构的基于模式的S 参数时,选用Driven Modal 。S 参数解决将用一系列波导模的入射和反射能量来表示。 受驱终端求解:想用HFSS 计算基于终端的多导体传输线端口的S 参数时,采用受驱终端求解。 (2)设计模型单位 选择软件的单位以毫米为单位。 (3)创建空气腔 选择菜单项创建空气腔,其圆柱体的基坐标为(x=0,y=0,z=0),并且键入半径为15mm ,高度为10mm 。并且勾选显示框架项。 谐振腔 谐振介质 谐振器基片

石英晶体谐振器应用

石英晶体谐振器应用 石英晶体谐振器的应用利用电信号频率等于石英晶片(或棒)固有频率时晶片因压电效应而产生谐振现象的原理制成的器件。它由石英晶片(或棒)、电极、支架和外壳等构成,在稳频、选频和精密计时等方面有突出的优点,是晶体振荡器和窄带滤波器等的关键元件。 石英晶体谐振器根据其外型结构不同可分为49U、49U/S、49U/S、1、5及柱状晶体等。 49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。 49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。 49U/S·SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。 柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。 UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。 石英晶体谐振器应用于频率控制和频率选择电路。本指南有助于确保不出现性能不满意、成本不合适及可用性不良等现象。 1、振动模式与频率关系:

基频1~35MHz 3次泛音10~75MHz 5次泛音50~150MHz 7次泛音100~200MHz 9次泛音150~250MHz 2、晶体电阻:对于同一频率,当工作在高次泛音振动时其电阻值将比工作在低次振动时大。 "信号源+电平表"功能由网络分析仪完成 Ri、R0:仪器内阻:一般为50Ω R1--滤波器输入端外接阻抗,阻抗值为匹配阻抗减去50Ω。 R2--滤波器输出端外接阻抗,阻抗值为匹配阻抗减去50Ω。 在滤波器条件的匹配阻抗中有时有并接电容要求,应按上图连接。 3、工作温度范围与温度频差:在提出温度频差时,应考虑设备工作引起的温升容限。当对温度频差要求很高,同时空间和功率都允许的情况下,应考虑恒温工作,恒温晶体振荡器就是为此而设计的。 4、负载电容与频率牵引:在许多应用中,都有用一负载电抗元件来牵引晶体频率的要求,这在锁相环回路及调频应用中非常必要,大多数情况下,这个负

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

微波介质谐振器的发展和应用前景

微波介质谐振器的发展 和应用前景 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

微波介质谐振器的发展和应用前景 成都微波技术支持工程师:郑国全 一、微波是什么 微波是指频率300MHz-3000GHz的电磁波,是无线电波中的一个频段,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”,微波作为一种电磁波具有波粒二象性。 二、微波的特性 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,物料内外加热均匀一致。 选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此对于食品,含水量的多少对微波加热效果影响很大。 热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。 似光性和似声性 微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此在微波频段工作,能使电路元件尺寸减小,系统更加紧凑。可以制成体

陶瓷封装对石英晶体谐振器的仿真研究_吴荣兴

- 6 - 陶瓷封装对石英晶体谐振器的仿真研究* 吴荣兴1,2,李继亮2,于兰珍1,2,李建中1,王 骥2 (1.宁波职业技术学院建筑工程系,浙江宁波 315800;2.宁波大学机械与力学学院,浙江宁波 315211) 摘 要:基于三维压电理论,利用有限元软件ANSYS对考虑封装结构的石英晶体谐振器进行了研究。在添加导电胶、封装基座和封盖后,获得了清晰的石英晶体板厚度剪切振动的位移云图和在长度、宽度方向的位移图。数值分析结果表明与自由振动相比,封装基座和封盖对石英晶体板厚度剪切振动的影响不大。结果验证了Mindlin板理论在分析石英晶体板高频振动的有效性。 关键词:封装结构;谐振器;厚度剪切;位移;振动;有限元 中图分类号:O343 文献标识码:A 文章编号:1681-1070(2014)07-0006-03 The Simulation Study of Quartz Crystal Resonator with Consideration of the Ceramic Package Structures WU Rongxing1, 2, LI Jiliang2, YU Lanzhen1, LI Jianzhong1, WANG Ji2 (1. Department of Architectural Engineering, Ningbo Polytechnic, Ningbo 315800, China; 2. School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China) Abstract: Based on the three-dimensional theory of piezoelectricity, the quartz crystal resonator with consideration of package structures have been investigated by the finite element software ANSYS. With adding conductive adhesive support, sealing base and cover, the paper obtained clear cloud pictures of displacement of the thickness-shear vibrations of quartz crystal plate and displacement pictures on the length and width direction. Numerical results showed that compared with free vibration, the effect of sealing base and cover on the thickness-shear vibration of quartz crystal plate is little. In the paper, the obtained results have verified efficiency of Mindlin plate theory on analysis of high frequency vibration of quartz crystal plate. Key words: package structure; resonator; thickness-shear; displacement; vibration; finite element 收稿日期:2014-04-11 *基金项目:国家自然科学基金(10932004 & 11072116);浙江省教育厅高校科研项目(Y201327293);浙江省重中之重学科开放基金(zj1202);宁波职业技术学院青年博士创新基金项目(2013001) 1 引言 作为频率控制器件的石英晶体谐振器是整个电子行业必不可少的关键元件[1~3]。石英晶体谐振器生产工艺要经过分选、研磨、抛光、镀膜、调频以及封装等工序[4, 5]。其中封装是石英晶体谐振器制造的关键步骤,将直接影响谐振器工作的稳定性、抗冲击性和寿命等[6, 7]。石英晶体谐振器通过石英晶体板的厚度剪切振动来产生稳定的频率源或以频率的改变来检测各种影响因素的变化。石英晶体板的高频振动可以用近似的Mindlin板理论进行解析求解。但是解析法无法分析复杂封装结构对石英晶体板高频振动的影响[8, 9]。 随着计算机技术和性能的不断提升,过去认为无法实现的石英晶体谐振器高频振动的三维有限元分析正变得可行[10]。利用有限元软件ANSYS已经能够对石英晶体板进行三维建模并计算获得了厚度剪切振动的振动频率和清晰的位移云图,接着进一步考虑了

晶体振荡原理

石英晶体、晶振介绍 文摘2010-10-25 23:36:39 阅读50 评论0 字号:大中小订阅 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。一:认识晶体、晶振 常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。 无源晶体外形如下图: (HC-49S 插脚) (HC-49S/SMD 贴片) 无源晶体以以上两种封装的晶体最为常用,广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图: (XG5032 贴片)(XS3225 贴片1,3脚有效,2,4脚为空脚) 当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。具体关于晶体的封装及参数信息,请参考国内最大的高端晶体晶振厂家:浙江省东晶电子股份有限公司网站提供的信息:https://www.doczj.com/doc/5a9457486.html,/product.aspx/23 无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振

荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。如下图: (OS3225 与XS3225外形一样,只是脚位定义不同1:EN控制脚,2:GND地,3:OUT信号输出,4:VCC电源,一般为3.3V 或者5V)。 晶振内部振荡电路等效图如下: 非门5404的输出脚2就是信号输出脚。 二:晶体振荡电路原理分析(本篇由东晶电子网上独家代理创易电子提供技术文档https://www.doczj.com/doc/5a9457486.html,) 我们以最常见得MCU振荡电路为例,参考电路如下:

晶振和陶瓷谐振器技术条件

空调事业部企业标准晶振和陶瓷谐振器 空调事业部发布

空调事业部企业标准 晶振和陶瓷谐振器 1范围 本标准规定了晶振和陶瓷谐振器(以下统一简称振荡器)的技术要求、试验方法、检验规则、标志、包装、贮存和运输等。 本标准适用于空调控制器用晶振和压电陶瓷谐振器。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T2828.1-2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 12274-1990 石英晶体振荡器总规范 GB/T 12275-1990 石英晶体振荡器型号命名方法 GB/T 12859-1991 电子设备用压电陶瓷谐振器总规范 GB/T 12862-1991 电子设备用压电陶瓷谐振器分规范——高频压电陶瓷谐振器 GB/T 12863-1991 电子设备用压电陶瓷谐振器空白详细规范高频压电陶瓷谐振器评定水平E GB/T 15020-1994 电子设备用石英晶体元件空白详细规范电阻焊石英晶体元件评定水平E QJ/MK01.003-2000a 逐批检查计数抽样程序及抽样表进货检验 3术语和定义 3.1振荡频率 从使用振荡器的振荡回路馈给的输出信号频率。 3.2谐振电阻 基频或泛音振动模式的最小谐振阻抗。其值等于等效电路串联谐振臂的电阻,并与机械Q值有关。 3.3室温频差 指其他条件不变,室温25℃±2℃下,振荡器输出频率相对于标称值的最大允许偏离。 3.4总频差 指其他条件不变,在工作温度范围内,振荡器输出频率相对于标称值的最大允许偏离。 3.5类别温度范围 空调事业部 1

陶瓷谐振器25M规格书

CMRS-MS008March.05.2004 CERAMIC RESONATOR S-Cera CO.LTD. 384-14,SHIN-DONG,PALDAL-GU,SUWON, KYUNGGI-DO,KOREA442-390

1.SCOPE This specification is applied to the ceramic resonator in IC oscillation circuit. 2.PART NUMBER 3.ELECTRICAL CHARACTERISTICS The MHz ceramic resonator must meet the following performance when tested in the circuit indicated in figure 1and figure 2. ●Measuring Condition :Temperature (+15~35℃), Humidity (45~85%RH) 22:Internal Code E :Embossed Plastic Reel &Reel Taping 0S :SMD Type T :Ceramic Matrial Type 25P0:Oscillating Frequency(25MHz)R :Resonator IF : Intermediate Frequency

Figure1.Test Circuit for Oscillating Frequency Figure2.Measurement for Resonant Impedance

介质谐振器

305 8 DRD型 o TE 01δ模式谐振器 (圆板型/柱型) 的有效范围 可提供附支撑架的TE模式谐振器和调好频率的谐振器。 DRR060型铜电极DRR040型铜电极 DRR020型铜电极 DRR030型铜电极o TEM模式谐振器有效范围 in mm L:取决于频率 高频元件/组件 !注意事项? 本产品目录所记载的产品规格,因受篇幅的限制,只提供了主要产品资料。在您订购前,必须确认规格表内容,或者互换协商定案图。 尤其,有些产品请务必阅读其品级,或!注意事项 (保管、使用环境、品级上的注意事项、装配时的注意事项、使用时的注意事项),否则有可能出现冒烟、起火等情况。 ? 产品检索引擎 (http://search.murata.co.jp/) 或产品目录数据库 (https://www.doczj.com/doc/5a9457486.html,/cn/catalog/) 上登载有详细规格,因此,在索取规格表,或互换协商定案图之前可阅览其详细规格。

306 8 1) 频率温度系数。 2) 谐振频率的公差 (P: ±0.7%最大值; K: ±0.7%最大值)。3) Qu的值取决于频率范围的下限。 接上页。 高频元件/组件 !注意事项? 本产品目录所记载的产品规格,因受篇幅的限制,只提供了主要产品资料。在您订购前,必须确认规格表内容,或者互换协商定案图。 尤其,有些产品请务必阅读其品级,或!注意事项 (保管、使用环境、品级上的注意事项、装配时的注意事项、使用时的注意事项),否则有可能出现冒烟、起火等情况。 ? 产品检索引擎 (http://search.murata.co.jp/) 或产品目录数据库 (https://www.doczj.com/doc/5a9457486.html,/cn/catalog/) 上登载有详细规格,因此,在索取规格表,或互换协商定案图之前可阅览其详细规格。

石英晶体谐振器基本知识介绍

石英晶体谐振器基本知识介绍 1、石英晶体谐振器简介 石英晶体谐振器是一种用于稳定频率和选择频率的重要电子元件。在有线通讯、无线通讯、广播电视、卫星通讯、电子测量仪器、微机处理、数字仪表、钟表等各种军用和民用产品中得到了日益广泛的应用。我公司的石英晶体谐振器不仅广泛应用于国家重点军事及航天工程中,也为“神舟”系列飞船及其运载火箭进行了多次成功配套。 2、石英晶体谐振器名词术语 1) 标称频率:晶体元件技术规范中规定的频率,通常标识在产品外壳上,它与晶体元件的实际工作频率有一定的差值。 2) 工作频率:晶体元件与其电路一起产生的振荡频率。 3) 调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的最大偏差。 4) 温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃±2℃)时工作频率的允许最大偏差。 5) 温度总频差:在规定条件下,在工作温度范围内相对于标称频率的允许最大偏差。 6) 等效电阻(ESR,Rr,R1):又称谐振电阻。在规定条件下,石英晶体谐振器不串联负载电容在谐振频率时的电阻。 7) 负载谐振电阻(RL):在规定条件下,石英晶体谐振器和负载电容串联后在谐振频率时的电阻。 8) 静电容(C0):等效电路中与串联臂并接的电容,也叫并电容。 9) 负载电容(C L):从石英晶体谐振器插脚两端向振荡电路方向看进去的全部有效电容为该振荡器加给石英晶体谐振器的负载电容。负载电容系列是:8pF、12pF、15pF、20pF、30pF、50pF、100pF。负载电容与石英谐振器一起决定振荡器的工作频率,通过调整负载电容,一般可以将振荡器的工作频率调到标称值。产品说明书中规定的负载电容既是一个测试条件,也是一个使用条件,这个值可以根据具体情况作适当调整,负载电容太大时杂散电容影响减少,但微调率下降;负载电容小时、微调率增加,但杂散电容影响增加,负载电阻增加,甚至起振困难。负载电容标为∞即为串联谐振。10) 频率牵引灵敏度(Ts):为相对频率牵引范围对负载电容的变化率,即负载电容变化1pF时频率的相对变化值,它反映改变负载电容时引起频率变化的灵敏度,也称频率可调性。 11) 激励电平:为石英晶体谐振器工作时消耗的有效功率。常用标准有0.1、0.3、0.5、1、2mW,产品说明书中每种产品规定的激励电平值是一个测试条件,也是一个使用条件,实际使用中激励电平可以适当调整。激励强,容易起振,但频率老化加大。激励太强甚至使石英片破裂,降低激励,频率老化可以改善,但激励太弱时频率瞬间变差,甚至不易起振。

石英谐振器的原理与应用

目录 一、石英谐振器概述 二、石英谐振器的工作原理 2、1石英晶体材料 2、2 石英晶体的压电效应 2、3 石英晶体的切型 2、4 石英片的基本振动模式(常见) 2、5 各种切型的频率温度特性 2、6 石英谐振器的组成和特性 2、7 石英谐振器的稳频条件及应用须知 2、8 石英谐振器的常用电参数的符号和意义 2.9 石英谐振器的常用测量方法 2.10 石英晶片的制造流程 2.11 石英晶体谐振器的制造流程 三、选择石英谐振器应考虑的问题 3、1 频率的选择 3、2 使用环境条件的考虑 3、3 根据用途合理选用石英谐振器 3、4 正确选择负载电容 3、5 激励电平的选择和控制 3、6 使用石英谐振器应注意的事项 四、石英振荡电路的应用 4、1 石英振荡电路的组成 4、2 振荡电路的Cg/Cd的选择要点和相关外围元件的注意事项4、3 根据选定的Cg/Cd 值计算XTAL的负载电容CL值。4、4 Rf 值选取 4、5 Rd的选取 4、6 其它注意事项 五、石英产品的性赖性试验 六、失效原因分析 七、今后发展方向

一、概述: 压电效应是一八八零年由法国物理学家居里兄弟(皮埃尔居里和杰克居里)发现的。早期一战利用石英的压力效应制成强力超声波辐射器。二战时期利用石英晶体具有稳定的物理和化学性能,制成的元器件在稳频方面比其它元件显出突出的优越性,而广泛使用于通讯领域。 石英谐振器的稳频特性也不断提高,二战时可在10-6/周,19世纪50年代初10-8 /周,19世纪50年代末已可达10-9/周~10-10/周。 随着通信发展和制造技术的发展,石英谐振器的频率范围也逐渐向上发展从100KHZ ~10MHZ ,以后发展到数百MHz ,3RD 发展到1G 以上,5th 发展到2GHz 以上。 石英谐振器的使用范围也从军事领域发展民用各使用频标或时标领域如:电子表,电子玩具,彩电,收发讯机,家用电器,PC 机等各领域。 石英谐振器的产品体积也不断地缩小,从传统的大尺寸发展到J1,49U ,49S ;直到近年来发展SMD 表面贴装,尺寸进一步缩小,从7050,6035,5032,发展到4025,3225,2520,2016,已能够适应安装于更小型、微型的产品中去。 二、石英谐振器的工作原理: 2.1 石英晶体材料 石英是人造的二氧化硅(SiO 2 )结晶体,因其形态晶莹透明如水,所以也称“水晶”。由 于天然水晶矿藏稀少,且常见的疵病较多,如:裂痕,气泡,包裹体,蓝针,双晶等。而制造石英谐振器的材料必须保证内部没有缺陷,否则会严重影响石英谐振器的性能。在人工合成水晶工业生产成功后,大部分石英谐振器都用人造水晶制造,从而降低成本,满足电子发展的需要。 (A ) 石英晶体的晶面和轴向 一个理想的石英晶体的外形,中间是个六面棱柱体,二端为两个六面棱锥体。石英晶体有六个柱面(M 面),六个大柱面(R 面),六个小棱面(r 面),六个X 面和六个S 面,总共有30个晶面。 石英晶体分左旋和右旋, 互称镜面对称,左右旋石英在物理上也呈镜象对称关系。 晶体按其结构对称,可分为七大晶系和32种对称类型(也称晶群),其中有十二类因其对称程度太高而无压电效应,另外二十类具有压电效应。石英晶体属于三角晶系32点群。 石英晶体的轴向,按其物理特性把X 轴称为电轴,因为该方向具有压电效应;把Y 轴称为机械轴,因为在Y 轴方向只产生形变而无压电效应;把Z 轴称为光轴,因为光线沿Z 轴方向不产生双折射现象。 (B ) 石英晶体的物理化学特性 石英晶体是各向异性结构晶体,轴向不同,物理化学性质也不同。石英晶体的主要物理特性,当温度为20℃时,它的密度为2.65g/cm 3,一级密度温度系数为-36.4×10-6/℃,硬度 是

石英晶体元器件概述

石英晶体元器件概述 一、前言 石英晶体俗称水晶,成分是SiO2,是一种重要的压电材料,可用于制造压电元器件。例如:石英晶体谐振器、石英晶体滤波器、石英晶体振荡器、石英晶体传感器等。 二、石英晶体元器件的内容

三、晶振分类 根据晶振的不同使用要求及特点,通常分为以下几类:普通晶振、温补晶振、压控晶振、温控晶振等。 1、普通晶振(PXO或SPXO):是一种没有采取温度补偿措施的晶体振荡器,在整个温度范围内,晶振的频率稳定度取决于其内部所用晶体的性能。 特点: ●频率精度(准确度):10-5~10-4量级 ●标准频率:1~100MHZ ●频率稳定度是±100ppm。 ●用途:通常用作微处理器的时钟器件、本振源或中间信号。 ●封装尺寸: DIP14(21×14×6mm),SMD 7050、5032、3225、2520。 ●价格:是晶振中最廉价的产品, 2、温补晶振(TCXO):是在晶振内部采取了对晶体频率温度特性进行补偿,以达到在宽温温度范围内满足稳定度要求的晶体振荡器。一般模拟式温补晶振采用热敏补偿网络。 特点: ●频率精度(准确度):10-7~10-6量级 ●频率范围:1~60MHz ●频率稳定度:±1~±2.5ppm ●封装尺寸: DIP14(21×14×6mm),11.4×9.6mm,SMD 7050、5032、3225、2520 ●用途:通常用于手持电话、蜂窝电话、双向无线通信设备等。 ●由于其良好的开机特性、优越的性能价格比及功耗低、体积小、环境适应性较强等多方面 优点,因而获行了广泛应用。 3、压控晶振(VCXO):是一种可通过调整外加电压使晶振输出频率随之改变的晶体振荡器,主要用于锁相环路或频率微调。压控晶振的频率控制范围及线性度主要取决于电路所用变容二极管及晶体参数两者的组合 特点: ●频率精度(准确度):是10-6~10-5量级 ●频率范围:1~30MHz ●频率稳定度:±50ppm ●用途:通常用于锁相环路 ●封装尺寸:14×10×3mm或更小,SMD 7050、5032、3225、2520

介质谐振器的工作原理

介质谐振器的工作原理 我们目前所接触到的最基本的介质器件是介质谐振器。要想了解介质谐振器的工作原理首先要了解金属波导与谐振腔。 一、 金属波导的一般特性 传输电磁能量或电磁信号的途径可分为两类,一类是电磁波在空间或大气中的传播,另一类是电磁波沿波导系统的传播。人类最初应用的电磁波导波系统是双线传输线,双线传输线主要用在频率较低的场合,当使用频率逐步提高时,双线传输线的传输损耗以及辐射损耗急剧的增加,为了克服辐射损耗,采用了同轴线结构。但是同轴线中所采用的模式仍然是TEM模,必须有内外两根导体,到了频率更高时内导体的损耗变得很严重。在微波频段即分米波段和厘米波段人们发现,用一根中空的金属管来传输电磁波是可行的和方便的。在空管中不可能传播TEM模式,因此采用TE模或TM模,这就是金属波导或称为波导管。到了短毫米波段及亚微毫米波段金属波导的截面积尺寸太小,加工不易,因此采用介质波导作为传输系统。在光波段使用光学纤维和光波导也是介质波导。光学纤维简称光纤现在已成为传输电磁信号的主要手段。 为了近似地实现短路面的边界条件可以用具有高导电率的导体即金属构成的边界面,这样就形成金属波导或称波导管。金属波导可以由一根波导管构成,也可以由多根波导管构成。略去导体表面损耗时,可将边界看作短路面。 波导波的特点是存在一个截止频率,当工作频率高于截止频率时,纵方向为快行波,横方向为驻波,工作频率低于截止频率时,纵方向成为衰减场或渐消场,横方向仍然为驻波。 金属波导的传播特性为ωc=T/(με)1/2 =cT/(με) 1/2或Fc= cT/2∏(με) 1/2临界状态下,电磁波在介质中的波长就是横向波长,即λT=2∏/T=1/fc(με)1/2相应的临界状态下真空中的波长称为临界波长。 当电磁波的角频率大于波长的临界角频率时,电磁波可在波导中传播,反之,波导是截止的。临界角波数决定于波导的截面形状和尺寸。 二、 金属波导的波阻抗 金属壁是由良导体构成而非理想导体,因此电磁波在波导中传播时一定会有功率损耗,从而造成电磁波沿传播方向上的衰减。其衰减常数为: а=1/4σδ*H2dL/P; 式中,L为波导的横截面的闭合边界线;P为波导中传输的功率流,σ为波导壁的导电

实验 石英晶体振荡器(严选材料)

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响

基于石英晶体的正弦波振荡器设计报告

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:信息工程学院 题目一:高频石英晶体正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、采用晶体三极管构成一个多功能正弦波振荡器; 2、额定电源电压5.0V ,电流1~3mA; 输出频率 10 MHz; 3、通过跳线可构成串、并联晶体振荡器; 4、有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 二十周一周,其中4天硬件设计与制作,3天调试及答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要...................................................................... I Abstract ................................................................... II 1 绪论 (1) 2 设计内容及要求 (1) 2.1设计目的及主要任务 (1) 2.1.1设计目的 (1) 2.1.2 设计任务及要求 (1) 2.2设计思想 (2) 3 石英晶体特性简介 (2) 3.1物理特性 (2) 3.2等效电路及阻抗特性 (2) 3.3晶体谐振器的应用 (3) 4 晶体正弦波振荡器的设计 (3) 4.1串联型晶体振荡器 (4) 4.2并联型晶体振荡器 (5) 4.2.1 c-b型并联晶体振荡器 (5) 4.2.2 b-e型并联晶体振荡器 (5) 4.3输出缓冲级设计 (7) 4.4晶体振荡器设计总原理图 (7) 4.4.1电路原理图的设计 (7) 4.4.2 元件参数的计算 (8) 5 电路仿真与硬件调试 (9) 5.1电路仿真 (9) 5.1.1静态工作点的测试 (9) 5.1.2串联型振荡器输出测试 (10) 5.1.3并联型振荡器输出测试 (10) 5.2硬件调试 (11) 6 元器件清单 (13) 7 总结与心得体会 (14) 参考文献 (15)

介质振荡器

根据介质谐振器稳频机理,采用介质谐振器稳频的FET振荡器(简称介质振荡器)可分为以下4种类型,即反射型、带阻型、传输型和反馈型。 1反射型 在此种介质振荡器中,介质谐振器通常置于FET栅极的微带线上。介质谐振器DR在FET栅极上,与栅极微带传输线一起构成一个带阻滤波器。当振荡器的振荡频率与介质谐振器的谐振频率相同时,这一带阻滤波器便将信号能量反射到FET栅极,使振荡得以维持下去,而对于其他频率,介质谐振器不起作用,振荡信号能量被栅极终端电阻RG吸收,无法维持振荡条件。 2 带阻型介质振荡器电路(略) 3传输型 这种介质振荡器的介质谐振器置于FET漏极与振荡器输出的两条平行微带线之间。介质谐振器与两平行微带线在振荡器的输出端构成一个带通滤波器,将振荡器与负载相连接。只有振荡器的振荡频率与介质谐振器的谐振频率相同时,振荡器的负载才是纯电阻;当振荡频率偏离时,振荡器的输出端等效于一个电抗,该电抗便将振荡频率牵引回到工作频率上。 4反馈型 上述3种介质振荡器实质上存在两个决定振荡频率的谐振回路,即振荡回路和稳频谐振回路,因此振荡器可能存在多种振荡模式。在实际使用中,由于温度、电压等因素的改变,很容易产生跳模、停振等问题,同时调试也较复杂。 4.1反馈型振荡器原理 反馈型振荡器将介质谐振器作为FET振荡器唯一的选频反馈回路,可以有效地克服上述问题。介质谐振器置于FET栅极和漏极之间,这样,只有当振荡频率等于DR谐振频率时,由DR构成的反馈回路才起作用,使之满足振荡条件,振荡器能正常工作,否则不满足振荡条件,电路不起振。因此,这种振荡器不存在多模振荡因素,且结构简单,调试方便,因而应用最为广泛。 4.2反馈型振荡器实际电路 C频段反馈型介质振荡器的实际电路,场效应管FET接成共源电路,通过源极电阻产生自给栅偏压。振荡信号从FET漏极取出,通过C3分两路输出:一路通过微带带通滤波器BPF 送给负载,另一路通过一段微带线耦合到介质谐振器DR。DR同时又与FET的栅极微带线耦合,从而形成一个正反馈回路。 4.3具有反馈型振荡器的FET混频器 振荡器在稳态时,其振荡管往往处于非线性工作区,此时若将信号馈入FET的栅极,

相关主题
文本预览
相关文档 最新文档