当前位置:文档之家› 异步电机直接转矩控制系统研究 开题报告

异步电机直接转矩控制系统研究 开题报告

异步电机直接转矩控制系统研究   开题报告
异步电机直接转矩控制系统研究   开题报告

天津科技大学本科生毕业设计(论文)开题报告

学院电子信息与自动化学院

专业 2007电气工程及其自动化

题目异步电机直接转矩控制系统研究

姓名杨乐

指导教师(签名)

年月日

拟选题目异步电机直接转矩控制系统研究

选题依据及研究意义

直接转矩控制技术是继矢量控制技术之后发展起来的一种新型、高性能变频调速技术。它利用空间矢量分析方法,直接在定子坐标系下计算和控制交流电机的转矩,采用定子磁场定向,通过对转矩和磁链的滞环控制产生PWM信号,直接对逆变器的开关状态进行最佳控制,以获得系统的高动态性能。它不像矢量控制那样,将交流电动机与直流电动机作比较、等效和转化,更不需要模仿直流电动机的控制而要求利用解耦后的简化交流电动机数学模型来实现对转矩的间接控制,具有转矩响应快、控制结构简单、易于实现全数字化的特点,得到广泛应用。

随着经济的发展,在诸多领域里利用高性能的交流调速逐步替代价格较高的直流调速是一个趋势。而直接转矩控制是高性能交流调速技术中潜力最大的一种,而且其控制方法本身非常适合全数字化实现,这一点正和现在飞速发展的电子技术相适应,所以对其进行深入的研究具有良好的现实意义。

文献综述(对已有相关代表性研究成果的综合介绍与评价)

1985年德国学者Depenbrock和日本学者Takahashi相继提出异步电机的直接转矩控制(DTC)思想。DTC是继矢量控制之后发展起来的一种高性能交流调速技术。DTC直接在定子坐标下计算和控制转矩,并采用定子磁链定向控制,产生最佳PWM信号,从而对逆变器开关状态进行最优控制,以获得高动态性能的转矩控制。DTC摒弃了复杂的矢量变换与计算,大大减少矢量控制性能易受参数变化影响的问题,结构简单,易于数字化控制。DTC的研究虽然已取得了很大进展,但是它在理论和实践上还不够成熟,如低速性能差、脉动转矩大、限制了系统的调速范围。矢量控制和直接转矩控制都属于磁场定向控制,前者是转子磁场定向控制,而后者是一种特殊的定子磁场定向控制。

直接转矩控制技术一诞生,就以自己新颖的控制思想,简洁明了的系统结构,优良的静态性能受到了普遍的关注和得到了迅速的发展。DTC在德国经过10多年的发展,其低速性能和高速域的谐波处理,都有明显的改善,并进入实用阶段。目前DTC己经成功地应用于大功率高速电力机车、地铁、城市有轨电车的传动控制系统,例如穿越英吉利海峡的高速列车采用的就是DTC系统。德国、日本、瑞典、美国等都投入了大量的人力、物力和资金来开发和发展此项新技术。我国对DTC仍处于仿真和实验阶段,仍有不少控制性能问题和应用问题有待解决。

研究内容(包括基本思路、框架、主要研究方式、方法等)

1.直接转矩控制框图

直接转矩控制系统结构如下图所示,主要包括转矩计算、磁链计算、转矩、磁链滞环调节器及转速PI调节等,通过转矩和磁链环选择合适的电压矢量,调节电机转矩和定子磁链快速跟踪给定值,以达到通过电机定子磁链控制电磁转矩的目的。

直接转矩控制框图

2.内容步骤

(1)建立了三相异步电机的数学模型,通过所介绍的变换矩阵得到了一部电机在二相静止和两相旋转坐标系下的数学模型。在分析空间电压矢量的基础上,结合一种经典的直接转矩控制系统阐述DTC的基本控制策略及如何构成开关模式表以实现对转矩和磁链的控制。

(2)对直接转矩控制进行的系统的分析,然后对定子磁链滞环和转矩滞环进行详细的分析。最后利用Matlab/Simulink仿真软件,设计出直接转矩控制模型。结合Simulink中逆变器和电机模型库中的三相鼠笼式异步电动机模块,加上对某些模块进行S函数编写,提高仿真的速度及精度。

(3)给出仿真结果,并对仿真结果做出分析,从仿真结果来看,系统的动、静态效果较好,动态响应迅速,系统稳定。

研究进程安排

3.1-3.21 毕业实习,收集、查阅有关资料,完成实习报告及开题报告。

3.22-3.28 调查研究、分析课题,完成英文资料翻译。

3.29-

4.18 分析异步电机直接转矩控制系统。

4.19-

5.2 提出异步电机直接转矩控制系统的性能指标、控制原则和控制要求,

制定控制系统的控制策略和方法。

5.3-5.30 建立系统的数学模型及仿真模型,系统运行性能仿真分析。

5.31-

6.27 组织材料,撰写论文,审阅修改,最后论文定稿。

6.28-

7.4 答辩,装订整理论文文件。

主要参阅文献

[1] 别红波,徐中.基于MATLAB的异步电机无速度传感器直接转矩控制的仿真研究[J],

机电工程技术,2004,33(9):67–70.

[2] 李永东.交流电机数字控制系统[M],北京:机械工业出版社,2002.

[3] 薛定宇,陈阳泉.基于MA TLAB/Simulink的系统仿真技术与应用[M],北京:清华大

学出版社,2002.

[4]张雄伟.DSP 芯片的原理与开发应用[M].电子工业出版社,,1997,9.

[5]杨甫,许伯强,杨桂兰.变频器供电下异步电动机转子断条故障仿真研究[J].机电工

程技术,2009,38(1):67–69.

[6]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1994: 1–110.

[7]孟庆春,叶锦娇,郭凤仪.异步电动机直接转矩控制系统的改进方案[J].中国电机工

程学报,2005,25(13):118–122.

[8]何萍,郭军.基于Matlab/Simulink的异步电机直接转矩控制系统仿真.电气应用,2007,

(1):84–87.

[9]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,2003.

[10] 袁登科,陶生桂.一种感应电机直接转矩控制系统性能改善方案[J].中国电机工程学

报,2005,25(8):151–155.

[11] 刘和平.TMS320LF240x DSP结构、原理及应用[M].北京:北京航空航天大学出版

社,2002.

[12] 张旭等.一种低速下磁链观测补偿的新方法[M].电工电能新技术.2003,22(3):

50–54.

[13] Isao. Takahashi A New Quick-Response and High-Efficiency Control Strategy of an

Induction Motor [J]. IEEE Trans Ind. Application,1986, 22 (5) : 820–827.

[14] M. Depenbrock. Direct Self-control (DSC) of Inverter-Fed Induction Machine [J]. IEEE trans

On PE, Vol. PE-3, 1988, 4: 420–429.

[15] TM S320C3X User’s Guide [M]. Texas Instruments,1995.

其它说明

指导教师是否同意开题

签名:

年月日

教研室教学负责人签署

签名:

年月日

说明:

1、开题报告工作从第七学期学生确定毕业设计(论文)题目后开始,在

教师指导下,学生通过调研、收资后,于第八学期第四周前完成。

2、纸张填写不够可另加附页。

异步电机矢量控制仿真

2.5异步电机基于磁场定向的矢量控制系统仿真 学号:S16085207020 姓名:李端凯 图1 矢量控制仿真模型整体结构图 图2 id*求解模块 图3 iq*求解模块

图4 DQ到ABC坐标转换模块 图5 求解转子磁链角模块 图6-1 ABC到DQ坐标转换模块 在这一部分转换中包含两种变换——3/2变换和旋转变换。在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:

()233332333cos60cos6011 ()22 sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+ 写成矩阵形式: 图6-2 ABC 和αβ两个坐标系中的磁动势矢量 111220a b c i i i i i αβ???-- ?????=??????????? 再就是旋转变换,两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。其变换关系为: cos sin sin cos d q i i i i αβφφφφ-??????=???????????? 由此整理得到: 111cos sin 22sin cos 0a d b q c i i i i i φφφφ????-- ????????=?????-?????????? 同理可得:DQ 到ABC 坐标转换则是其逆变换。 图7 求解磁链模块

关于电机功率和转矩、转速之间的关系

电机功率和转矩、转速之间的关系 功率: 物理意义 物理意义:表示物体做功快慢的物理量。 物理定义:单位时间内所做的功叫功率。说:“功率是做功快慢的物理量 公式 功率可分为电功率,力的功率等。故计算公式也有所不同。 电功率计算公式:P=W/t =UI;在纯电阻电路中,根据欧姆定律U=IR代入P=UI中还可以得到:P=I*IR=(U*U)/R 在动力学中:功率计算公式:P=W/t(平均功率);P=Fvcosa(瞬时功率) 因为W=F(f力)×S(s位移)(功的定义式),所以求功率的公式也可推导出P=F·v:P=W /t=F*S/t=F*V(此公式适用于物体做匀速直线运动) 单位 P表示功率,单位是“瓦特”,简称“瓦”,符号是“W”。W表示功,单位是“焦耳”,简称“焦”,符号是“J”。“t”表示时间,单位是“秒”,符号是“s”。 功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能。最大功率一般用马力(PS)或千瓦(kW)来表示,1马力等于0.735千瓦。1W=1J/s 功率=力*速度 P=F*V---公式-------------------------------------------------1 转矩(T)=扭力(F)*作用半径(R) ------推出F=T/R---公式-------------------------------------2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n分/30---公式-------------------3 将公式2、3代入公式1得: P=F*V=(T/R)*(πR*n分/30)= (T*π* n分)/30 (单位W) -----P=功率单位W, T=转矩单位Nm,

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

异步电机直接转矩控制的ISR方法研究

异步电机直接转矩控制的ISR方法研究 直接转矩控制转矩脉动 1引言 目前,矢量控制(VC)和直接转矩控制(DTC)已经被人们公认为是高性能的交流变频调速技术。矢量控制系统采用转子磁链定向,实现了定子电流转矩分量与磁链分量的解耦,可以按线性理论分别设计转速与磁链调节器(一般采用PI调节器),实行连续控制,从而获得较宽的调速范围,但系统易受转子参数变化的影响。直接转矩控制系统则舍去比较复杂的旋转坐标变换,直接在定子静止坐标系上,计算电磁转矩和定子磁链,并用双位式bang-bang控制对转矩和磁链进行调解,受电机参数影响较小,转矩响应快,但由于bang-bang控制本身属于P控制,不可避免地产生转矩脉动,影响系统低速性能。本文介绍的ISR(Indirekte Selbst Regelung)控制策略能有效地减小直接转矩控制中转矩的脉动,具有良好的低速性能及动、静态特性。 2异步电动机动态模型 在定子两相静止坐标系(α,β)中的异步电动机电压方程及电磁转矩方程可表示为: uαs=Rsiαs+PΨαs(1) uβs=Rsiβs+PΨβs(2) (3) 其中:uαs,uβs,iαs,iβs,Ψαs,Ψβs分别是α,β坐标系下定子侧电压,电流,磁链的α,β轴分量:Rs为定子电阻;np为电机极对数;p为微分算子;为电机漏电感为常数;θ为定子磁链与转子磁链的夹角。 由式(1)、(2)式我们可以得到定子两相静止坐标系下定子磁链可表示为: (4) (5) 直接转矩控制的主电路图如图1所示。

图1 直接转矩控制主电路图 其中逆变器的8种开关状态对应了8组电压矢量,如表1所示[1]。 表1 电压矢量表 表2 逆变器电压矢量选择表 为了方便控制定子磁链和电磁转矩,我们把磁链空间矢量划分为6个均等的区域,划分原则是:

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

电机转速转矩计算公式

针对你的问题有公式可参照分析: 电机功率:P=1.732X UX I x cos 4 电机转矩:T=9549X P/n ; 电机功率转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R)推出 F=T/R ---公式2 线速度(V)=2兀R*每秒转速(n秒)=2兀R*每分转速(n 分)/60 =兀R*n分/30--- 公式3 将公式2、3代入公式1得: P=F*V=T/R* 兀R*n 分/30 =兀/30*T*n 分 ---- P=功率单位W T=转矩单位Nm n分=每分钟转速单位转/分钟 如果将P的单位换成KW/那么就是如下公式: P*1000=兀/30*T*n 30000/ 兀*P=T*n 30000/3.1415926*P=T*n 9549.297*P = T * n

电机转速:n=60f/p , p为电机极对数,例如四级电机的p=2 ; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电 机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输 1 人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。 转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关丁电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I R (I为电流,R为电子电阻,E为感应电势); 而:E = k f旅(k:常数,f:频率,X:磁通); 对异步电机来说:T=W I X (K:常数,I:电流,X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是包V/f比变频方式。这三个式子也可用丁前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比丁电压的,但是一定是在电机达到额定输出转矩前。 电机的扭矩”,单位是N?m (牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦( KW) 分母是额定转速n单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。

异步电机直接转矩控制系统及其仿真_曾国树

收稿日期:2005-04-281 曾国树 男 1952年生;毕业于华侨大学电气工程与自动化专业,实验室主任,现从事电机与控制专业实验教学工作1 异步电机直接转矩控制系统及其仿真 曾国树 方瑞明 华侨大学信息科学与工程学院,福建泉州(362021) 摘 要 阐述了直接转矩控制的基本数学关系,直接转矩的控制系统构成,并在M ATLA B 环境下进行了仿真。仿真结果表明该技术具有优异的静、动态性能,非常适合电力牵引,并阐述了直接转矩控制的发展前景。 关键词 电机 直接转矩 仿真 中图分类号TM 343 文献标识码A 文章编号1008-7281(2005)04-0023-03 Si m ulation of D irect -Torque Control Syste m of A synchronousM otor Zeng G uoshu and Fang Rui m ing Abstract Th is paper i n tr oduces t h e basic m athe m atic re lationsh i p of direc-t torque contro l(DTC ),t h e constructi o n o f direc-t tor que .s contr o l syste m.The si m ulati o n results by usi n g Si m u li n k o fMA tlab i n d icates that this techno logy has pre m i u m dyna m ic and stati c properties and is app licab le to e lectric tracti o n .The fut u re of d irec-t to r que contro l is de -scri b ed . K ey w ords A synchronousM otor ,d irec-t torque contro,l si m u lation . 1 引言 近年来随着交流控制技术的发展,以定子磁链为控制对象的异步电机直接转矩控制技术正受 到人们的广泛重视。直接转矩控制(DTC)的基本思想是同时控制异步电机的定子磁链和电磁转矩。与普通的矢量控制不同,在直接转矩控制闭环中没有电流环。由于直接转矩控制不象矢量控制那样需要进行旋转3/2变换,所以与矢量控制相比大大地简化了控制算法。对于一般的直接转矩控制而言,其逆变器开关状态的选择是通过查开关表得到的,因此它不需要进行脉宽调制也能保证转矩的快速响应,同时也能很简便地得到各相输出电压。而且对于直接转矩控制而言,在高速运行段,除了电机的定子电阻外不需要知道电机的其它参数,所以直接转矩控制对电机参数的依赖度要比矢量控制低。 本文讨论了异步电机直接转矩控制系统,就所遇到的几个问题提出了相应的解决方法。 2 直接转矩控制原理 2.1 异步电机转矩观测模型 在静止两相坐标系下(其直轴A 轴在定子A 相轴线上),异步电机的定、转子磁链如下 定子磁链:7s =(L m +L R s )i s +L m i r (1) 转子磁链:7r =(L m +L R r )i r +L m i s (2) 气隙磁链:7m =L m i s +L m i r (3) 式中,L m )互感;L R s )定子漏感;L R r )转子漏感;i s )定子电流;i r )转子电流。 不同于矢量控制系统,直接转矩控制方法是以定子磁链矢量为基准,并维持其幅值为恒定,其电磁转矩T e 模型可以表示为 T e =K m (7s A i s B -7s B i s A ) (4) 式中,K m )转矩系数;7s A 、7s B 、i s A 、i s B )7s 、i s 在A 、B 轴系上的分量。 根据式(4)构成的转矩观测模型框图如图1所示。 以定子磁链7s 为基准,在定子坐标系中计算定子磁链,受电机参数影响最小,只需知道定子 23 2005年第4期 第40卷(总第125期) (EXPLOSI ON -PROOF ELECTR I C MAC H I N E ) 防爆电机

异步电机控制系统PI参数计算

异步电机控制系统PI 参数计算 对于一个控制系统,在设计PI 调节器的参数时,应该先根据系统的传递函数计算出PI 参数的数量级,然后根据系统的响应性能进一步优化PI 参数值。 下面以异步电机控制系统电流环PI 参数推导为例,讲解异步电机控制器PI 参数的设计方法。 1. 异步电机的矢量控制电流环和转速环 异步电机的矢量控制电流环和转速环如上图所示。 上述控制量的传递过程是:给定转速与反馈转速进行转速PI 调节输出sq *i ,给定电流与反馈电流经过电流控制器的PI 调节后生成给定电压信号sq *U ,此电压信号用于产生转子磁链,要计算控制器的PI 参数值,首先要计算出相关的传递函数,再利用PI 调节器对系统进行校正,根据给定的ξ和n ω计算出K P 和K i 值。 下面推导电流环sq *U 与rd ?的传递函数。 矢量控制系统已有几种方案获得成功应用,包括转子磁场定向矢量控制、气隙磁场矢量控制、定子磁场矢量控制,所谓磁场定向就是规定d 轴与磁场方向的关系,当取d 轴与转子磁场方向重合时,就是转子磁场定向当取dq 坐标系的旋转速度与定子磁场同步旋转速度相同时,此时转子磁通在q 轴的分量为零,目前应用最广泛的就是按转子磁场定向的矢量控制。 此时: r rm rd ???== 2.38 0rt rq ==?? 2.39

ωωω-=1s 2.40 磁链方程:rd m sd s i L i L +=sd ? rq m sq s i L i L +=sq ? 2.41 rd r sd m i L i L +=rd ? 0sq =+=rq r sq m i L i L ? 由以上四式解出rd i 、rq i 与sd i 、sq i 的关系: r sq m rq L i L i - = 2.42 )(1 sd m rd r rd i L L i -=? 2.43 根据文件上《异步电机dq 坐标系上的数学模型推导》得出: sq dqs sd sd s sd P i R u ?ω?-+= sd dqs sq sq s sq P i R u ?ω?-+= 0=+=rd rd r rd P i R u ? 2.44 0=+=rd dqr rq r rq i R u ?ω 在鼠笼式异步电机中rd u 、rq u 为0。 下面把转子磁链用sd i 表示。 sd r m rd i P T L 1 +=? 2.46 转差频率为: rd r sq m dqr dqs s T i L ?ωωωωω= -=-=1 2.45 式中r T 为转子时间常数,r r r R L T = 将(2.38)、(2.39)、(2.41)代入(2.44)化简后可得:

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

异步电动机的直接转矩控制系统

异步电动机直接转矩控制系统 1 直接转矩控制简介 直接转矩控制(Direct Torque Control—DTC),国外的原文有的也称为Direct self-control—DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。直接转矩控制系统的主要特点有: (1)直接转矩控制是直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。 (2)直接转矩控制的磁场定向采用的是定子磁链轴,只要知道定子电阻就可以把它观测出来。 (3)直接转矩控制采用空间矢量的概念来分析三相交流电动机的数学模型和控制各物理量,使问题变得简单明了。 (4)直接转矩控制强调的是转矩的直接控制效果。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。 为了让读者更好的理解直接转矩控制,在正式介绍三相异步电机的直接转矩控制系统前,先从直接转矩控制的基本物理概念讲起。 2 直接转矩控制的基本物理概念 2.1 直接转矩控制中磁通和转矩的测量 在几种用于控制感应电机的方法中,直接转矩控制(DTC)占有很重要的地位。DTC 将转矩和定子磁通分别控制在两个滞环内,这就意味着转矩和磁通各自被限制在最大值和最小值的范围内。

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

三相异步电动机直接转矩控制系统仿真报告

三相异步电动机直接转 矩控制系统仿真报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

三相异步电动机直接转矩控制系统仿真报告 摘要:利用直接转矩控制( DTC )理论,研究异步电动机直接转矩控制调速系统的基本组成 和工作原理,建立了异步电动机直接转矩控制系统的仿真模型。利用MATLAB /Simulink软件对异步电动机直接转矩控制系统进行建模和仿真。结果表明: DTC系统具有动态响应速度快、精度高、易于实现的优点。仿真结果验证了该模型的正确性和该控制系统的有效性。 关键词:异步电机;直接转矩控制; MATLAB仿真 1 引言 自从20世纪70年代矢量控制技术发展以来,交流拖动技术就从理论上解决了交流调速系统在静动态性能上与直流调速系统相媲美的问题。所谓矢量控制,就是将交流电动机模拟成直流电动机来控制,通过坐标变换实现电机定子电流的励磁分量和转矩分量的解耦,然后分别独立控制,从而获得高性能的转矩和转速响应特性。 直接转矩控制(Direct Torque Control DTC)是在矢量控制基础之上发展起来的,是继矢量控制以后提出的又一种异步电动机控制方法。其思路是把异步电动机和逆变器看成是一个整体,采用电压矢量分析方法直接在静止坐标系下分析和计算电动机的转矩和磁链,通过磁链跟踪得出PWM逆变器的开关状态切换的依据从而直接控制电动机转矩"与矢量控制相比,直接转矩控制的主要优点是:在定子坐标系下对电动机进行控制,摒弃了矢量控制中的解藕思想,直接控制电动机的磁链和转矩,并用定子磁链的定向代替转子磁链的定向,避开了电动机中不易确定的参数(转子电阻)"由于定子磁链的估算只与相对比较容易测量的定子电阻有关,所以使得磁链的估算更容易、更精确,受电动机参数变化的影响也更小"此外,直接转矩控制通过直接输出转矩和磁链的偏差来确定电压矢量,与以往的调速方法相比,它具有控制直接!计算过程简化的优点"因此,直接转矩控制一问世便受到广泛关注,目前国内外围绕直接转矩控制的研究十分活跃。 2 三相异步电机的直接转矩控制系统组成 三相异步电动机直接转矩控制系统模块图标如图1所示,其仿真模型如图2所示,模型由7个主要模块组成:三相不控整流器

基于MTPA的永磁同步电动机矢量控制系统分解

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

异步电动机综合控制系统设计

摘要:本文设计了一种基于PLC的异步电动机调速与定位综合控制系统 ,应用模糊-PI复合控制算法实现了异步电动机的速度控制,应用比例因子自调整模糊控制算法实现了异步电动机的位置控制。该系统集异步电动机速度控制和位置控制为一体,达到了一定的控制精度。 1 引言 随着变频调速技术的不断发展,交流传动系统的性能突飞猛进。交流异步电动机以其低廉的造价、坚固的结构得到了越来越广泛的应用。在交流传动的许多应用场合中,均对电机的调速性能和定位性能提出了较高的要求。例如在加工设备和机床的主轴伺服系统中,主轴应兼备速度和位置控制的功能;在住宅小区和高层建筑的恒压供水系统中,要求电机有较高的调速性能;在炼钢转炉的准确定位、堆垛机械的位置控制系统中,要求电机有精确的定位功能。在上述应用场合中,异步电动机以其大功率、高性价比的独特优势而占有一席之地,但同时其调速性能和定位性能却不甚完美,尚需完善。 本文提出了一种基于可编程控制器(PLC)硬件平台的异步电动机综合控制系统。该系统在没有增加硬件投资的情况下集异步电动机速度控制和位置控制为一体,应用模糊控制策略,达到了一定的控制精度。 2 硬件设计 异步电动机综合控制系统硬件如图1所示。图1中,上位计算机和PLC通过变频器对异步电动机进行速度和位置控制。通过旋转编码器的脉冲计数值可以获得异步电动机的速度和位置信息。脉冲计数由PLC完成,并不断与上位机通讯,将计数值传送给上位机。上位机根据PLC 传送过来的脉冲计数值得到速度和位置信息,根据不同的控制策略,得到输出控制量——速度给定值,再传送给PLC,经过PLC的A/D转换模块,将速度给定值的模拟量送到变频器的模拟控制端进行控制,形成闭环控制。

电机转矩与功率的关系

电机功率与转矩的关系 在一定功率的条件下,转速转速越高,扭矩就越低,反之就越高。 比如同样1.5kw电机,6级输出转矩就比4级高也可用公式M=9550P/n粗算对于交流电机:额定转矩=9550×额定功率/额定转速;对于直流电机比较麻烦因为种类太多。大概是转速与电枢电压成正比,与励磁电压成反比。 转矩与励磁磁通和电枢电流成正比。 在直流调速中调节电枢电压属于恒转矩调速(电机输出转矩基本不变) 调节励磁电压属于恒功率调速(电机输出功率基本不变) 电机的选择 电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选择时应注意以下两点: ①如果电动机功率选得过小.就会出现“小马拉大车”现象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动机被烧毁。 ②如果电动机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 要正确选择电动机的功率,必须经过以下计算或比较:P=F×V /1000 (P=计算功率KW,F=所需拉力N,工作机线速度m/s) 对于恒定负载连续工作方式,可按下式计算所需电动机的功率:P1(kw):P=P/n1n2 式中n1为生产机械的效率;n2为电动机的效率,即传动效率。按上式求出的功率P1,不一定与产品功率相同。因此.所选电动机的额定功率应等于或稍大于计算所得的功率。

此外.最常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电动机的功率进行对比。具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电动机铭牌上标出的额定电流进行对比。如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大.则表明所选电动机的功率合适。如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电动机的功率选得过大,应调换功率较小的电动机。如果测得的电动机工作电流比铭牌上标出的额定电流大40%以上.则表明电动机的功率选得过小,应调换功率较大的电动机。 实际上应该是考虑扭矩(转矩)、电机功率和转矩是有计算公式的。即T = 9550P/n 式中:P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。 关于功率、转矩、转速之间关系的推导如下: 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R)------推出F=T/R---公式2 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30=π/30*T*n分-----P=功率单位W,T=转矩单位Nm,n分=每分钟转速单位转/分钟

相关主题
文本预览
相关文档 最新文档