当前位置:文档之家› 带传动实验台设计

带传动实验台设计

带传动实验台设计
带传动实验台设计

选题背景

带传动实验台设计

1 选题背景

1.1 选题背景,意义极其应用前景

1.1.1 选题背景

现代科学技术飞速发展,为高校的教学提出了更高,更新的要求。适应于现代

科学技术发展的高校教学改革势在必行,而作为实践环节的实验教学的教学内容,仪

器设备,手段方法的改革理应首当其冲。本研究课题正是顺应这一形式要求而提出的。传统的带传动性能实验设备大而笨,数据测试方法落后,测试数据耗时,实验过程烦琐,不能完全达到实验的教学目标。更为严重的是这种落伍于现代科技发展的实验手段对于学生和了解现代工程技术意识是一个严重的障碍。

本论文拥有资料:目录、中英文摘要、正文、设计图纸

查看地址:https://www.doczj.com/doc/5a7116775.html,

国内许多院校和科研机构比如重庆大学,山东大学,湖北汽车工业学院等已经进行了带传动的改革研究,基本上实现了数据的自动检测,处理和曲线显示,并能进行计算机辅助教学。但是,带传动实验中的控制部分不尽人意,目前绝大多数实验台只能进行恒定加载或简单的程序控制阶梯加载,实验结果与现场测试依然有较大的差距;恒速控制也主要通过手动调节,自动化程度低。

(1)随着社会对知识面的掌握要求越来越广,学生学习的课程也在增多,除了传统的必修课程,又增加了一些适应时代科技发展和社会要求的选修课。作为工科类学生还需要掌握一定的人文,艺术类的知识,。此外,学生还必须利用课余时间加强计算机,外语方面的知识,或从事一些科技创新活动等。传动的实验教学模式要求全班集体占用一定实验课时来完成实验,缺乏机动性。

(2)随着高校生员的扩张。实验设备和实验教学师资出现紧缺趋势,传统的实验教学模式面临着可能出现质量打折的问题

(3)如果有更多的实验仪器,那么学生可以根据自己的业余时间自主,机动地,通过适当的预约登记的方式,分批地完成实验。既加强了机动性又缓和了实验设备和实验师资紧张的问题。小批量的,自主为主的实验还可大大提高实验教学效果。

带传动实验台设计

1.1.2 题目的主要内容和应用前景

本论文题旨在能够设计出一种更好的带传动实验装置,能准确地测量出实验数据,让学生更好的掌握带传动的一些知识。

通过本论文的研究,可以克服传统实验的一些缺陷,使整个实验水平和教学效果上一个新的台阶。本课题完成后,可以考虑在其它高校进行推广,在经济价值方面有一定的前景。此外,本课题研究也将为其它的带传动实验系统的改造奠定一个坚实的基础,并提供一个十分有参考价值的先进的模式

1.2 带传动在机械工程中的应用

带传动在机械工程中的应用是十分广泛的传动形式之一。作为一种带有中间挠性件的摩擦传动,它有一种突出的优点:(1)能缓和载荷冲击;(2)运行平稳,无噪声;(3)制造和安装精度要求不像啮合传动那样严格;(4)出现过载时将引起带在带轮上打滑,从而可防止其他零件发生过载损坏;(5)通过增加带长可适应传动中心距要求较大的工作条件(可达15米)。

根据带截面形状的不同,带传动可分为平带传动,V带传动,同步带传动和多楔带传动等;根据到的结构和材料的不同,平带有包括最常用的胶帆布平带,编织带,高速胶带,强力锦纶带等,V带包括帘布芯结构带和绳芯结构带。交叉传动,半交叉传动,张紧轮传动等传动形式。

作为工程应用最为广泛的开口传动形式,平带传动的传动比可达5,V带传动比可达7。带的工作转速可达50m/s,使用锦纶布复合平带时,带速可达80m/s,胶帆布带的最大传动功率为50KW,普通V带的最大传动功率为700KW

1.3 带传动工作原理及运动特征性

工程中应用最广泛的开口传动示意图如图1.1 所示。

选题背景

1.1带传动示意图

当主动轮以1ω转速转动时,由于带以一定的张紧力张紧在带轮上而使主动轮与带之间产生摩擦力F ,从而驱动带一起转动,同理因带与从动轮之间的摩擦而随即驱动从动轮以一定的角度1ω同向回转。

由于带传动工作多依赖的有效拉力——即摩擦力F 的存在使带传动两边的带内部拉力产生差值。紧边拉力1F 大于松边拉力2F 。而包在带轮上的,紧松边过度部分的带的内部拉力则是随带传动而逐渐变的。由于带是弹性体,这种带内部拉力逐渐变又引起带伸长量的渐变,从而引起带传动正常工作中一种特有的固有的副效应——弹性滑动。

弹性滑动发生在包在带轮上的,紧松边的过度部分带上,但并不在整个包角范围都发生。因而这部分又分为静弧和滑动弧两部分,各部分所占的比例又随传递的不同而不同。

弹性滑动大小的定量指标为滑动率ε,它的大小直接影响带传动工作的传动比的设计个从动轮直径的设计。

带传动工作中可能发生的另一种现象是打滑,它的弹性滑动扩展到整个包角范围内是一种质的变化,此时的工作状态已为失效。

1.3.1 带传动实验的意义

前一节简单叙述了带传动工作的基本原理及工作过程中特有的运动特性:弹性滑动莫打滑现象,弹性滑动的定量指标——滑动率及弹性滑动的后果。课堂的讲述只能是理论的,抽象的,定性的,如何让学生透彻地,感性地认识这些现象,了解负载的变化对弹性滑动程度的影响,定量地了解弹性滑动引起的效率的下降,以及弹性滑动

率大小对设计时传动比的计算以及从动轮直径的计算的影响,则必须通过带传动性能实验教学过程得以实现。

本论文拥有资料:目录、中英文摘要、正文、设计图纸

查看地址:https://www.doczj.com/doc/5a7116775.html,

几乎所有的工科类的高校在讲授《机械设计》,《机械设计基础》课程中都含有带传动性能实验的教学内容。通过实验,可测出不同负载下主,从动轮的转速,从而计算出转速差,滑动率;可测出不同负载下主,从动轮的转矩,结合转速可计算出主,从动轮的功率,从而进一步计算出传动效率。这样,增加了学生对弹性滑动的定量的认识。此外,通过从动轮上的反映弹性滑动引起的转速差的发光二极管的闪光的逆向转动,可以让学生感性直观地观察弹性滑动现象。

由此可见,为全面,深入地认识,理解和掌握工程中广泛应用的带传动形式的知识极其设计技能,带传动性能实验具有重要的意义,是不可缺少的一个环节。

2 带传动基本理论知识

2.1 带传动的分类

带传动是通过中间挠性拽引元件传递运动和动力的一种机械传动。她使用的挠性拽引元件是各种较大弹性传动带。

按工作原理,带传动分为摩擦型普通带传动和啮合型同步带传动。普通带传动的主要优点是:有缓冲和吸振作用;运行平稳.噪声小;结构简单,制造成本低;可通过增减带长适应不同的中心距要求。普通带传动过载时会在带轮上打滑,对其他机件有保护作用。它的缺点是:传动带的寿命较短:传递相同圆周力时,外廓尺寸和作用在轴上的载荷比啮合传动大;带与带轮之间接触面间有相对滑动,不能保证准确的传动比。因而普通带传动一般仅用来传递动力。

同步带传动中带和带轮是靠啮合传动的,因而无相对滑动,能克服上述缺点,用来传递动力。但是同步带传动对制造安装要求较高。

根据横截面形状,摩擦型普通带传动可分为平带传动,V带传动和特殊截面带(如多楔带,圆带等)传动三大类,见图2-1

图2-1 带横截面形状

平带的横截面为扁平矩形,其工作面是与轮面相接触的内表面。V 带的横截面为等腰梯形,其工作面是与轮槽相接触的两侧面,带与轮槽底面不接触。由于轮槽的楔形效应,预拉力相同时,V 带传动较平带传动能产生更大的摩擦力,故具有较大的牵引能力,在一般机械传动中应用最广泛。多楔带是贫乏带和V 带的组合结构,其楔形部分嵌入带轮上的楔形槽内,靠楔形摩擦工作,摩擦力和横向刚度较大,兼有平带和V 带的优点,常用于传递功率较大而又要求结构紧凑的场合,也可以用于载荷变动较大或有冲击载荷的传动。圆带的牵引能力小,一般用于轻,小型机械,如缝纫机等。

根据带的布置形式可分为开口传动(两轴平行,同向回转),交叉传动(两轴平行,反向回转)和半交叉传动(两轴交错,不能逆转)。见图2-2

图2-2 带传动形式

考虑到制造和安装的要求,本实验采用普通V 带传动。

2.2 带传动中的作用力

带出动有主动轮,从动轮和传动带组成。安装时,应该给传动带施加一定的初拉力,靠带与带轮之间的摩擦力来传递运动和动力。

带在工作亲张紧,其两边拉力均为0F , 0F 称为初拉力。工作时,由于要克服工作阻力,带在绕上主动轮的一边被进一步拉紧,其拉力0F 增大到1F ,1F 称为紧边拉

力;带的另一边被放松,其拉力由0F 减小到2F ,2F 称为松边拉力(图2-3)。

图2-3 带的两边受力分析

带的两边拉力之差,称为带传动的有效拉力F ,即

F=1F -2F (2-1)

有效拉力)(N F 与带传动传递的功率)(KW p 以及带速)/(s m v 的关系为

1000

Fv P = (2-2) 该式说明,带速一定时,有效拉力越大,则带传动传递的功率也越大,即带传动的工作能力越强。

带的有效拉力等于带轮接触弧上摩擦力的总和。在一定条件下,摩擦离有一极限值,当需要传递的有效拉力超越该值时,带就会在轮面上打滑。打滑是带传动的主要形式之一。

带工作时松,紧边拉力不等,但总长度不变,故紧边增加的长度与松边减少的长度相等,假设带的材料服从胡克定律,则紧边增加的拉力与松边减少的拉力相等,即

1F -0F =0F -2F

1F +2F =20F (2-3) 取一微带段dl (图2-4),带上各力的平衡条件为垂直方向

R

v qdl dF da dF F da F N 2

2sin )(2sin =-++ 中,dF 是紧边拉力增量;N dF 为带轮上一微段的正压力;q 为带的线质量。

取dl =Rda ,sin 2

2da da ≈,略去二阶无穷小,上式为 Fda -N dF =q 2v

图2-4 带的受力分析

水平方向 02

cos 2cos )(=--+N dF da F da dF F μ 中,μ为带与带轮之间的摩擦因子。 取12

cos ≈da 得 dF =N dF μ

da qv F Df )(2-=μ

在摩擦力的极限状态即将要打滑时,积分上式,得

??=-a F F da qv

F dF 021

2μ a e qv

F qv F μ=--2221 (2-4) 中,a 为包角,即带与带轮接触弧所对应的中心角:e 为自然对数的底。若带速v<10m/s,则通常可忽略离心力2qv ,此时上式简化为1F /2F =a e μ

即为著名的欧拉公式。 )1

21)((220max +-

-=a e qv F F μ 该式说明:

1) 最大的有效拉力与初拉力0F 成正比。控制初拉力对带传动的设计和使用是重

要的。0F 过小不能传递所需载荷,而且容易颤动;0F 过大使带的摩擦增

加,寿命减短。

2) 最大的有效拉力随包角a,摩擦因子μ(与带,带轮的材料及工况有关)的增

大而增大,通常设计时要求a 0120≥,本系统0180=a 。

3) 离心力2qv 使最大有效拉力减小,本系统由于带速v<10m/s ,故可忽略力离

心力的影响。

2.3 弹性滑动和打滑

本论文拥有资料:目录、中英文摘要、正文、设计图纸

查看地址:https://www.doczj.com/doc/5a7116775.html,

带是弹性体,在拉力的作用下会产生弹性伸长。由于紧边拉力大于松边拉力,所以紧边的弹性伸长量必然大于松边的弹性伸长量。如图2-5所示,带在1A 点绕上主动轮到1B 点离开的过程中,带所受拉力由1F 逐渐降至2F ,其弹性伸长量也随之减小,带在带轮上微微向后收缩,而主动轮的圆周速度1v 保持不变,所以带的速度逐渐落后于主动轮的圆周速度,从绕上主动轮时的速度1v 逐渐降至2v ,在带和主动轮之间局部出现相对滑动。这种现象亦发生在从动轮上,当带在2A 点绕上从动轮到2B 点离开的过程中,带以速度2v 绕上从动轮时,使从动轮以圆周速度2v 转动,由于带从松边过度到紧边,弹性伸长量逐渐增大,使带微微向前拉伸,即带的速度超前于从动轮的圆周速度,带个从动轮之间局部出现相对滑动。这种因带的两边拉力不等而使带弹性变形量不等,引起带与带轮之间局部微小的相对滑动称为弹性滑动。

由于带传动工作时,紧边和松边的拉力不等,所以弹性滑动是不可避免的。

弹性滑动除造成功率损失和带的磨损外,还导致从动轮的圆周速度2v 低于主动轮的圆周速度1v ,其降低程度用滑动率ε 1

21v v v -=ε (2-6)

考虑弹性滑动影响的传动比为i=)

1(1221ε-==d d n n v (2-7) 其中,1n 、2n 为主,从动轮的转速:1d 、2d 为主,从动轮直径。

滑动率ε反映了弹性滑动的大小,而弹性滑动的大小与传递载荷的大小及带的结构,材料等因素有关,通常不能得到恒定的ε值,一般可取1%~2%,粗略计算时可忽略不计。实际传动比不是常数。

弹性滑动和打滑是两个截然不同的概念。弹性滑动是由带工作时紧边存在拉力差,使带的两边弹性变形量不相等,从而引起的带与带轮之间局部而微小的相对滑动,这是带传动在正常工作时固有的特性,因而是不可避免的。打滑是由于过载引起的带在带轮上的全面滑动。打滑时带的磨损加剧,从动轮转速急剧降低甚至停止失效。打滑是不希望产生的。

2.4 带传动实验的主要功用

在带传动实验中,当负载达到或超过临界承载能力时,则带与带轮之间就会发生相对滑动,即产生打滑。打滑将使带的磨损加剧,从动轮转速急剧下降,甚至失效。因此,在实际生产中,必须明确带传动在什么情况下会产生打滑。那么,通过带传动实验系统准确测出打滑时的速度及载荷,则是关键所在。本实验系统就是分析带传动过程中的弹性滑动和打滑现象;掌握滑动率和机械效率的测试原理和方法;了解改变预紧力对带传动能力的影响。

其中滑动率由(2-6)式得出

%100)1(%1001

212211?-=?-=n n n D n D n ε (2-8) 为了方便制造安装和计算,取主,从动轮直径相等

传动效率 %1001

12212?==n T n T P P η (2-9) 1P ,2P —主动轮,从动轮的功率:1T ,2T —主。从动轮的转矩:1n ,2n 为主,从动轮的转速。

因此,只需要测试主,从动轮的转速,转矩就可以计算出滑动率ε和传动效率η。事实上,带传动的滑动率和传动效率不是常数,而是随传递功率的大小变化而变化。为

寻求变化规律,通常在保持主动轮转速和带预紧力不变的前提下,用逐渐加载的方法,不断增加带传动的有效拉力,使带在轮上的弹性滑动不断增加,从动轮的转速不断降低,传动效率也随之变化。

本论文拥有资料:目录、中英文摘要、正文、设计图纸

查看地址:https://www.doczj.com/doc/5a7116775.html,

3 带传动实验台方案的选择

3.1 模糊综合评判带传动实验台方案

在机械传动中,带传动适合较大中心距的传动,并具有运行平稳无噪音、能缓和载荷冲击、过载时打滑的自我保护等优点因而被广泛地应用于各行各业。为了安全、有效的利用带传动.需通过带传动实验台测试各种类型带传动时的工作特性在带传动试验台上,当负载达到或超过临界承载能力时.则带与带轮间就发生显著的相对滑动,即产生打滑。打滑将使带的磨损加剧,从动轮转速急剧降低,甚至使带传动失效。因此。在实际生产中,必须明确带传动在什么状况下会打滑,那么。通过带传动实验要准确测出打滑时的速度及载荷。原有的带传动实验台采用手持转速表测量转速,转矩作用力采用台秤测量,人工读数并进行计算,致使实验精度和效率较低,已不适合实验教学和研究的需要。为此,我们采用JC转速转矩传感器来测量,提高了带传动的实验机的稳定性。测试的准确性,操作性。方案设计包含综合与评价两个基本过程。综合是指由设计要求推理而生成的多个方案,评价则从方案集中择出最优的设计方案[1]。设计理论主要是考虑对设备的操作性、经济性、动载性,使用性等方面的要求,这是属于多层级多目标决策问题。多数评价因素往往难以用精确的指标进行描述,设计要求的含义是模糊的,设计方案对设计要求的满意程度也是模糊的,因而设计方案的评价决策具有模糊性。传统的评价方法带有较大的主观性和盲目性,基于模糊理论的模糊综合评价方法是一种用于涉及模糊因素的对象系统的评价方法,采用该方法可以较好地解决综合评价中的模糊性问题本文将模糊多目标决策方法带传动实验台设计方案的评价,使设计方案的优选更趋于合理。

3.2 模糊多目标决策的数学模型

模糊多目标决策又称为“模糊综合评价”,其核心是应用模糊变换原理,将不

188 机械传动多功能试验台(含全套说明书和CAD图纸)解析

摘要 实验设备对于加深学生对理论知识的理解,锻炼学生的实践、创新能力具有十分重要的意义,在教学体系中占有举足轻重的地位。目前,我国大部分高校的实验设备存在陈旧、落后的问题,而实验设备开发与实验教学应用严重脱节,导致实验设备无法满足教学发展的要求。因此,迫切地需要通过新型实验设备的自主设计研制,来改进实验设备现状、提高实验教学水平。 关键词:机械传动,运动学,动力学,实验台,仿真,测试

ABSTRACT The experimental facilities have the very important function for the understanding of the academic knowledge, exercises student's practice, ability of creation. At present, problems of obsolete and backward facilities exist in majority of the universities.Because of the disjoint between the development of the experimental facilities and the experimental teaching application, the experimental facilities can not suit for the development of teaching. Therefore, it is urgent to develop the new experimental facilities, to improve the test installation present situation, the enhancement experiment teaching level. Keyword: Mechanical Transmission , Kinematics, Dynamics, Laboratory Bench, Simulation, Test

机床主传动系统设计

机床主传动系统设计 多轴箱是组合机床的重要专用部件。它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。其动力来自通用的动力箱,与动力箱一起安装于进给滑台,可完成钻扩铰镗孔等加工工序。 通用主轴箱采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。 5.1大型主轴箱的组成 大型通用主轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等 组成。有箱体、前盖、后盖、上盖、侧盖等为箱体类零件;主轴、传动 轴、手柄轴、传动齿轮、动力箱或电动机齿轮等为传动类零件;叶片泵、 分油器、注油标、排油塞、油盘和防油套等为润滑及防油元件。 5.2多轴箱通用零件 1.通用箱体类零件箱体材料为HT200,前、后、侧盖等材料为HT150。 多轴箱的标准厚度为180mm,前盖厚度为55mm,后盖厚度为90mm。 2.通用主轴 1)滚锥轴承主轴 2)滚针轴承主轴 3)滚珠轴承主轴:前支承为推力球轴承、后支承为向心球轴承或圆锥滚子 轴承。因推力球轴承设置在前端,能承受单方向的轴向力,适用于钻孔 主轴。 3.通用传动轴 通用传动轴一般用45#钢,调质T235;滚针轴承传动轴用20Cr钢, 热处理S0.5~C59。 4.通用齿轮和套 多轴箱用通用齿轮有:传动齿轮、动力箱齿轮和电机齿轮。 5.3通用多轴箱设计 1.多轴箱设计原始依据图

1) 多轴箱设计原始依据图 图5-1.原始依据图 2) 主轴外伸及切削用量 表5-1.主轴参数表 3) 被加工零件:箱体类零件,材料及硬度,HT200,HB20~400 2. 主轴、齿轮的确定及动力的计算 1) 主轴型式和直径、齿轮模数的确定 主轴的型式和直径,主要取决于工艺方法、刀具主轴联结结构、刀具的进给抗力和切削转矩。钻孔采用滚珠轴承主轴。主轴直径按加工示意图所示主轴类型及外伸尺寸可初步确定。传动轴的直径也可参考主轴直径大小初步选定。 齿轮模数m (单位为mm )按下列公式估算: (30~m ≥=≈1.9(《组合机床设计简明手册》p62)

带式输送机传动系统的设计方案

湖南工业大学 机械设计 设计题目:带式输送机传动系统设计 班级:机设1101 学号:11405701213 姓名:黄桂明 2018 年12 月 设计任务书错误!未定义书签

第一章电动机的选择错误!未定义书签。 1.1 传动方案的拟定错误!未定义书签。 1.2 电动机的选择错误!未定义书 签。 1.3 传动比的分配错误!未定义书签。 1.4 传动装置的运动和动力参数计算:错误!未定义书 签 。 第二章斜齿圆柱齿轮减速器的设8 2.1 高速轴上的大小齿轮传动设计8 2.2 低速轴上的大小齿轮传动设计11 第三章轴的结构设计和计算16 3.1 轴的选择与结构设计16 3.2 中间轴的校核:20 4.1. 联轴器的选择和结构设计27 4.2 联轴器的校核27 第五章键联接的选择及计算28 5.1 键的选择与结构设计28 第六章滚动轴承的选择及计算29 6.1 轴承的选择与结构设计29 第七章润滑和密封方式的选择 32 7.1 齿轮润滑32 7.2 滚动轴承的润滑32 8.1 减速器箱体的结构设计33

8.2减速度器的附件33 专业:机械设计班级:机设1101姓名:黄桂明 设计题目:带式输送机传动系统设计 设计参数: 工作条件: 带式输送机在常温下连续工作、单向运转、空载起动、工作载荷平 稳。输送带工作速度V的允许误差为士5%二班制<每班工作8h>要求减速器设计寿命为8年。大修期为2?3年,大批量生产,三相交流电源的电压为380/220V 设计内容: 1)装配图1张 2)零件图3张 3)设计说明书一份 设计任务:设计带式输送机的传动系统,要求传动系统中含有两级 圆柱斜齿轮减速器 日期:2018-12 1、传动方案分析

机械设计实验报告带传动

实验一 带传动性能分析实验 一、实验目的 1、了解带传动试验台的结构和工作原理。 2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。 3、观察带传动的弹性滑动及打滑现象。 4、了解改变预紧力对带传动能力的影响。 二、实验内容与要求 1、测试带传动转速n 1、n 2和扭矩T 1、T 2。 2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。 3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。 三、带传动实验台的结构及工作原理 传动实验台是由机械部分、负载和测量系统三部分组成。如图1-1所示。 1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡 8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图 1、机械部分 带传动实验台是一个装有平带的传动装置。主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。 2、测量系统 测量系统由转速测定装置和扭矩测量装置两部分组成。 (1)转速测定装置 用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。 (2)扭矩测量装置 电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩1T 、2T 相等。

机床主传动系统设计说明

机械工程学院 课程设计说明书 专业机械设计制造及其自动化 班级 XXXXXXXXXXX 姓名 XXXXXXXX 学号 XXXXXXXXXXXX 课题普通车床主传动系统设计 指导教师 XXXXXXXXXX 年月日

普通车床主传动系统设计说明书 一、 设计题目:设计一台普通车床的主传动系统,设计参数: (选择第三组参数作为设计数据) 二、运动设计 (1)传动方案设计(选择集中传动方案) (2)转速调速围2000 max 44.4445 min n Rn n == = (3)根据《机械制造装备设计》78P 公式(3-2)因为已知 1 -=z n R ? ∴ Z=?lg lg n R +1 ∴?=)1(-Z n R =114.44=1.411 根据《机械制造装备设计》77P 表3-5 标准公比?。这里我们取标准公比系列 ?=1.41,因为?=1.41=1.066,根据《机械制造装备设计》77P 表3-6标准数列。首先找到最小极限转速25,再每跳过5个数(1.26~1.066)取一个转速,即可得到公比为1.41的数列:45、63、90、125、180、250、355、500、710、1000、1400、 2000。 (4)结构式采用:13612322=??

1)确定系数' 0x ' 0ln 1111210ln n R x Z ? = -+=-+= 2)确定结构网和结构式: 确定基本组传动副数,一般取 02 P =,在这里取 03 P = 3)基型传动系统的结构式应为:12612232=g g 4)变型传动系统的结构式,应在原结构式的基础上,将元基本组基比指数 加上' x 而成,应为' 0x 为0,故不发生改变。 根据“前多后少”,“前密后疏”的原则,取13612322=?? 5)验算原基本组变形后的变速围 () 2213(21)32 1.41 1.41 2.88x P R ? -?-====< 6)验算最末变速的组变速围 () 3316(21)63 1.41 1.417.8588x P R ? -?-====< 根据中间变速轴变速围小的原则选择结构网。从而确定结构网如下: 传动系的结构网

带式输送机的传动系统设计 机械设计课程设计

带式输送机的传动系统设计机械设计课程设计

机 机械设计课程设计 设计说明书 设计“带式输送机的传动系统” 起止日期:2013 年12月16日至2013年12 月28 日学生姓名 班级 学号 成绩 指导教师(签字) 机械工程学院 2013年12月28日

机械设计课程设计计算说明书 一、传动方案拟定 (2) 二、电动机的选择 (2) 三、运动、动力学参数计算 (4) 四、传动零件的设计计算 (5) 五、轴的设计 (13) 六、轴承的寿命校核 (26) 七、键联接强度校核计算 (28) 八、润滑方式,润滑剂以及密封方式的选择 (29) 九、减速箱体结构尺寸 (30) 十、设计小结 (31) 十一、参考文献 (32)

计算过程及计算说明 一、传动方案拟定 设计二级圆锥-圆柱齿轮减速器 工作条件: 带式输送机在常温下连续工作、单向运转;空载启动,工作载荷较平稳;输送带工作速度v 的允许误差为±5%;二班制(每班工作8h ),要求减速器设计寿命为8年,大修为2~3年,大批生产;三相交流电源的电压为380/220 V 。 (1) 原始数据:运输机工作周转矩F=3100N ;带速n=45r/min 滚筒直径D=340mm 二、电动机选择 1、电动机类型的选择: Y 系列三相异步电动机 2、电动机功率选择: (1)工作机所需功率: P W =FV/1000 因为60/D V n π= ,把数据带入式子中得n=45r/min,所以 P W =3100×0.8/1000=2.48kW (2) 1)传动装置的总效率: 注释及说明 F=3100N n=45r/min D=340mm P W =2.48kW

齿轮传动效率综合试验台

型齿轮传动效率综合试验台 一、功能简介 型试验台为小型台式封闭功率回流式齿轮试验台,采用悬挂式齿轮箱不停机加载方式,加载方便、操作简单安全,耗能少。在数据处理方面,既可直接用抄录数据手工计算方法,也可以和计算机接口组成具有数据采集处理,结果曲线显示,信息储存、打印输出等多种功能的自动化处理系统。该系统具有结构简单、操作方便、机电一体化相结合等特点。 本试验台用于机械设计等课程的教学实验。可进行齿轮传动效率试验,小模数齿轮的承载能力试验。通过试验,使学生能了解封闭功率回流式齿轮试验台的基本原理特点及齿轮传动效率的测试方法。 二、实验目的及内容 1、了解封闭功率流式齿轮实验台的结构特点和实验基本原理 2、掌握齿轮传动效率的测定方法 3、了解实验台封闭系统中各部件的名称和作用 三、性能特点: 1、在数据处理方面,既可直接用抄录数据手工计算方法,也可以和计算机接口 组成具有数据采集处理,结果曲线显示,信息储存,打印输出等多种功能的自动化处理系统。 2、该系统具有机构简单、操作方便、机电一体化 3、加载方便、操作简单安全,耗能少。 四、试验台结构特点 1、机械结构 试验台的结构如图1(a)所示,由定轴齿轮副、悬挂齿轮箱、扭力轴、双万向联轴器等组成一个封闭机械系统。结构如下图所示

图1(a) 1-底座 2-电机支承座 3-压力传感器支撑罩 4-压力传感器 5-压力杠杆6-电机悬臂套 7-直流调速电机 8-电机连接轴 9-光电测速盘 10-弹性柱销联轴器 11-齿轮箱体 12-斜齿轮 13-浮动联轴器 14-扭力轴 15-箱体支撑座16-悬挂箱体 17-加载杠杆 18-万向节联轴器 19-万向节传动轴 2、测试系统 实验台测试系统的结构框图如图2所示。

数控机床主传动系统及主轴设计.

新疆工程学院机械工程系毕业设计(论文)任务书 学生姓名专业班级机电一体化09-11(1)班设计(论文)题目数控机床主传动系统及主轴设计 接受任务日期2012年2月29日完成任务日期2012年4月9日指导教师指导教师单位机械工程系 设 计(论文)内容目标 培养学生综合应用所学的基本理论,基础知识和基本技能进行科学研究能力的初步训练;培养和提高学生分析问题,解决问题能力。通过毕业设计,使学生对学过的基础理论和专业知识进行一次全面地系统地回顾和总结。通过对具体题目的分析和设计,使理论与实践结合,巩固和发展所学理论知识,掌握正确的思维方法和基本技能。 设计(论文)要求 1.论文格式要正确。 2.题目要求:设计题目尽可能选择与生产、实验室建设等任务相结合的实际题目,完成一个真实的小型课题或大课题中的一个完整的部分。 3.设计要求学生整个课题由学生独立完成。 4.学生在写论文期间至少要和指导老师见面5次以上并且和指导教师随时联系,以便掌握最新论文的书写情况。 论文指导记录 2012年3月1号早上9:30-12:00在教室和XX老师确定题目。2012年3月6日早上10:00-12:00在教室确定论文大纲与大纲审核。2012年3月13日早上10:00-12:00在教室确定论文格式。 2012年3月20日早上9:30-12:00在教室对论文一次修改。 2012年3月27日早上9:30-12:00在教室对论文二次修改。 2012年4月6日早上9:30-12:30在教室对论文三次修改。 2012年4月9日早上9:30-12:00在教室老师对论文进行总评。 参考资料[1]成大先.机械设计手册-轴承[M].化学工业出版社 2004.1 [2]濮良贵纪名刚.机械设计[M].高等教育出版社 2006.5 [3]李晓沛张琳娜赵凤霞. 简明公差标准应用手册[M].上海科学技术出版社 2005.5 [4]文怀兴夏田.数控机床设计实践指南[M].化学工业出版社 2008.1 [5][日]刚野修一(著). 杨晓辉白彦华(译) .机械公式应用手册[M].科学出版社 2004

带式运输机传动装置的设计

机械设计课程设计说明书 设计题目:带式输送机传动系统设计系(院)别:纺织服装学院 专业班级:纺织工程083班 学生姓名:方第超 指导老师:孙桐生老师 完成日期:2010年12月

机械课程设计 目录 一课程设计书 2 二设计要求2三设计步骤2 1. 传动装置总体设计方案 3 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 5 5. 设计V带和带轮 6 6. 齿轮的设计 8 7. 滚动轴承和传动轴的设计 19 8. 键联接设计 26 9. 箱体结构的设计 27 10.润滑密封设计 30 11.联轴器设计 30 四设计小结31 五参考资料32 第一章设计任务书

1、设计的目的 《械设计课程设计》是为机械类专业和近机械类专业的学生在学完机械设计及同类课程以后所设置的实践性教学环节,也是第一次对学生进行全面的,规范的机械设计训练。其主要目的是:(1)培养学生理论联系实际的设计思想,训练学生综合运用机械设计课程和其他选修课程的基础理论并结合实际进行分析和 解决工程实际问题的能力,巩固、深化和扩展学生有关机械 设计方面的知识。 (2)通过对通用机械零件、常用机械传动或简单机械设计,使学生掌握一般机械设计的程序和方法,树立正面的工程大合集 思想,培养独立、全面、科学的工程设计能力。 (3)课程设计的实践中对学生进行设计基础技能的训练,培养学生查阅和使用标准规范、手册、图册及相关技术资料的能力 以及计算、绘图、数据处理、计算机辅助设计等方面的能力。 2、设计任务 设计一用于带式输送机传动系统中的减速器。要求传动系统中含有单级圆柱齿轮减速器及V带传动。 在课程设计中,一般要求每个学生完成以下内容: 1)减速器装配图一张(A1号图纸) 2)零件工作图2~3张(如齿轮、轴或箱体等 3)设计计算说明书一份(8000字左右) 3、设计内容

齿轮传动测试实验标准报告

《齿轮传动效率测试实验》参考实验报告 实验目的 1.了解机械传动效率测试的意义,内容和方法。 2.了解封闭功率流式齿轮试验台的基本结构、特点及测定齿轮传动效率的方法。 3.通过改变载荷,测出不同载荷下的传动效率和功率。输出 — 关系曲线 及η— 曲线。其中 为轮系输入扭矩(即电机输出 扭矩), 为封闭扭矩(也即载荷扭矩 ),η为齿轮传 动效率。 实验仪器 CLS-Ⅱ传动实验台、实验仪。 实验步骤 (1) 在接通电源前,先将实验台上的转速、转矩输出信号线分别插入电测箱后面的对应输入插口,将随机携带的通讯线一端接到实验机构 RS232 插座,另一端接到计算机串行输出口(串行口1号或串行口2号均可,但无论连线或拆线,都应先关闭计算机和实验机构电源,以免烧坏接口元件)。 (2)将实验台调速电位器逆时针转到底, 使开关断开,。打开实验机构电源,按“清零”键,几秒钟后数码管显示“0”,自动校零完成。 (3)打开计算机,运

行齿轮传动实验系统,首先选择端口,然后用鼠标点击采集“数据采集”菜单,等待数据输入。 (4)顺时针转动调速将电机转速调高到700至800转/分,此时输出转矩显示应为0.3至0.4(Nm)之间。在实验台处于稳定运转后(若有较大振动,可按一下加载砝码钓钩或适当调节一下电机转速),然后在钓钩上加一块砝码,等显示值稳定后,按一下“保持”键,然后记录测量数据,记完后再按一下“加载”键使第一个加载指示灯亮,并脱离保持状态,此时第一次加载结束。然后重复上述步骤,直至加完八个砝码,等转速、转矩显示都为“8888”表明所采数据已全部送至计算机。 (5)当实验机构全部显“8888”时,计算机屏幕将显示所采集的全部八组电动机输入转矩和封闭力矩。此时应将电机调速电位器逆时针转到底,使“开关”断开。 (6)移动鼠标,选择“数据分析”功能,屏幕将显示本次实验的曲线和数据。如果在此次采集过程中采集的数据有问题,或者采不到数据, 请点击串口选择下拉菜单, 选择较高级的机型,或者选择另一端口。 (7)一次实验结束后如需继续实验, 应“关断”调速电位器,并按下实验机构的“清零”键, 进行“自

主传动系统运动设计[1]

1. 机床主要技术参数: (1) 尺寸参数: 床身上最大回转直径: 400mm 刀架上的最大回转直径: 200mm 主轴通孔直径: 40mm 主轴前锥孔: 莫式6号 最大加工工件长度: 1000mm (2) 运动参数: 根据工况,确定主轴最高转速有采用YT15硬质合金刀车削碳钢工件获得,主 轴最低转速有采用W 16Cr 4V 高速钢刀车削铸铁件获得。 n max =min 1000max d v π= 23.8r/min n min = max min 1000d v π =1214r/min 根据标准数列数值表,选择机床的最高转速为1180r/min ,最低转速为26.5/min 公比?取1.41,转速级数Z=12。 (3) 动力参数: 电动机功率4KW 选用Y112M-4型电动机 2. 确定结构方案: (1) 主轴传动系统采用V 带、齿轮传动; (2) 传动形式采用集中式传动; (3) 主轴换向制动采用双向片式摩擦离合器和带式制动器; (4) 变速系统采用多联滑移齿轮变速。 3. 主传动系统运动设计: (1) 拟订结构式: 1) 确定变速组传动副数目: 实现12级主轴转速变化的传动系统可以写成多种传动副组合: A .12=3*4 B. 12=4*3 C 。12=3*2*2 D .12=2*3*2 E 。12=2*2*3 方案A 、B 可节省一根传动轴。但是,其中一个传动组内有四个变速传动 副,增大了该轴的轴向尺寸。这种方案不宜采用。 根据传动副数目分配应“前多后少”的原则,方案C 是可取的。但是,由

于主轴换向采用双向离合器结构,致使Ⅰ轴尺寸加大,此方案也不宜采用,而应选用方案D 2)确定变速组扩大顺序: 12=2*3*2的传动副组合,其传动组的扩大顺序又可以有以下6种形式:A.12=21*32*26B。12=21*34*22 C.12 =23*31*26D。12=26*31*23 E.22*34*21F。12=26*32*21 根据级比指数非陪要“前疏后密”的原则,应选用第一种方案。然而,对于所设计的机构,将会出现两个问题: ①第一变速组采用降速传动(图1a)时,由于摩擦离合器径向结构尺寸限制, 使得Ⅰ轴上的齿轮直径不能太小,Ⅱ轴上的齿轮则会成倍增大。这样,不仅使Ⅰ-Ⅱ轴间中心距加大,而且Ⅱ-Ⅲ轴间的中心距也会加大,从而使整个传动系统结构尺寸增大。这种传动不宜采用。 ②如果第一变速组采用升速传动(图1b),则Ⅰ轴至主轴间的降速传动只能由 后两个变速组承担。为了避免出现降速比小于允许的极限值,常常需要增加一个定比降速传动组,使系统结构复杂。这种传动也不是理想的。 如果采用方案C,即12 =23*31*26,则可解决上述存在的问题(见图1c)。其结构网如图2所示。

机械设计带传动实验心得体会

机械设计带传动实验心得体会篇一:机械设计实验报告带传动 实验一带传动性能分析实验 一、实验目的 1、了解带传动试验台的结构和工作原理。 2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。 3、观察带传动的弹性滑动及打滑现象。 4、了解改变预紧力对带传动能力的影响。 二、实验内容与要求 1、测试带传动转速n1、n2和扭矩T1、T2。 2、计算输入功率P1、输出功率P2、滑动率?、效率?。 3、绘制滑动率曲线?—P2和效率曲线?—P2。 三、带传动实验台的结构及工作原理 传动实验台是由机械部分、负载和测量系统三部分组成。如图1-1所示。 1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡 8从动轮 9 直流发电机 10皮带图1-1 带传动实验台结构图 1、机械部分 带传动实验台是一个装有平带的传动装置。主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有

主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。 2、测量系统 测量系统由转速测定装置和扭矩测量装置两部分组成。(1)转速测定装置 用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n1、n2。(2)扭矩测量装置 电动机输出转矩T1 (主动轮转矩)、和发电机输入转矩T2 (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转

带传动及齿轮传动效率实验

实验三带传动及齿轮传动效率实验 一、实验目的 1、观察带传动弹性滑动与打滑现象; 2、了解带的初拉力、带速等参数的改变对带传动能力的影响; 3、掌握摆动式电机的转矩、扭矩、转速差及带传动效率的基本测量方法。 4、了解封闭功率流式齿轮试验台的基本原理、特点及测定齿轮传动效率的方法。 5、通过改变载荷,测出不同载荷下的传动效率和功率。 二、实验内容 1、测定不同初拉力下实验带的弹性滑动曲线(ε-F曲线)和效率曲线(η-F曲线)。 2、测定齿轮传动效率,输出T1-T9 关系曲线及η-T9 曲线。 其中:T1 为轮系输入扭矩(即电机输出扭矩);T9为封闭扭矩(即载荷扭矩);η为齿轮传动效率。 三、实验仪器 DCSⅡ型带传动测试系统 CLS-II型齿轮传动效率测试系统 四、实验原理 1、带传动测试系统原理 (1)调速和加载 主动电机的直流电源由可控硅整流装置供给,转动电位器可改变可控硅控制角,提供给主动电机电枢不同的端电压,以实现无级调节电机转速。本实验台中设计了粗调和细调两个电位器。可精确的调节主动电机的转速值。 加载是通过改变发电机激磁电压实现的。逐个按动实验台操作面上的“加载”按扭(即逐个并上发电机负载电阻),使发电机激磁电压加大,电枢电流增大,随之电磁转矩增大。由于电动机与发电机产生相反的电磁转矩,发电机的电磁转矩对电动机而言,即为负载转矩。所以改变发电机的激磁电压,也就实现了负载的改变。 本实验台由两台直流电机组成,左边一台是直流电动机,产生主动转矩,通过皮带,带动右边的直流发电机。直流发电机的输出电压通过面板的“加载”按键控制电子开关,逐级接通并联的负载电阻(采用电烙铁的内芯电阻),使发电机的输出功率逐级增加,也即改变了皮带传送的功率大小,使主动直流电动机的负载功率逐级增加。

车床主传动系统设计

陕西理工学院 车床主传动系统设计 设计题目 系别 专业 学生姓名 班级学号 设计日期

目录 第一章概述--------------------------------------------------------------4 1、车床主传动系统课程设计的目的----------------------------4 2、设计参数----------------------------------------------------------4 第二章参数的拟定-----------------------------------------------------4 1、确定极限转速----------------------------------------------------4 2、主电机选择-------------------------------------------------------5第三章传动设计--------------------------------------------------------5 1、主传动方案拟定-------------------------------------------------5 2、传动结构式、结构网的选择----------------------------------5 3、转速图的拟定----------------------------------------------------6第四章传动件的估算---------------------------------------------------7 1、三角带传动的计算----------------------------------------------7 2、传动轴的估算----------------------------------------------------9 3、齿轮齿数的确定和模数的计算-------------------------------11 4、齿宽确定----------------------------------------------------------15 5、齿轮结构设计----------------------------------------------------16 6、带轮结构设计----------------------------------------------------16 7、传动轴间的中心距----------------------------------------------16 8、轴承的选择-------------------------------------------------------17第五章动力设计---------------------------------------------------------17

金属带式汽车无级变速器传动机构设计

摘要 在具有广阔的发展前景和市场空间的汽车行业中,车辆技术也得到较快的发展。金属带式无级变速器是一种新型的机械摩擦式无级变速器,具有承载能力强、效率高、平稳性好、环保节能等优良的传动特性,特别适用于需要传递中大功率而又需无级调速的场合。 本设计是基于现代人们对汽车性能的更高要求,鉴于国内外专家对无级变速器的研究与分析,结合金属带式无级变速器的现状和发展趋势、基本结构、传动原理、性能特点,主要以其在轿车中的应用,设计金属带式无级变速器的传动机构,根据对设计参数的分析,对整个无级变速器的各级传动部分的传动方式进行详细的设计,包括主、从动带轮;主、从动锥盘;中间减速机构,使其与传统的变速器相比,耐用性能、加速性能、燃油性能以及排放性能都得到改善。 关键词:金属带;无级变速器;传动机构;机械摩擦式;主、从动锥盘;中间减速机构

ABSTRACT In a broad development prospects and market space in the auto industry, vehicle technology has also been developed quickly. Metal belt type variator is a new type of mechanical friction type variator, high bearing ability, high efficiency, energy saving and steadiness, good environment protection fine transmission characteristics, especially suitable for high power and in need to pass to stepless speed regulation occasion. This design is based on the modern people to an automobile performance higher request, in view of the fact that the domestic and foreign experts to variator's research and the analysis,combined with the metal belt type continuously variable transmission of the status and development trends, the basic structure, transmission principle, performance characteristics.According to its application in cars, completed the design of metal belt CVT transmission, based on the design variable's analysis, the transmission part at all levels of detail design transmission mode, , including master, driven pulleys; Lord, driven cone-disk; intermediate deceleration institutions and compared with the traditional transmission, durable performance, and accelerating performance, fuel performance and emission performance is improved. Keywords:Metal belt;Contiuously Variable Transmission;transmission;a type of mechanical friction; lord, driven cone-disk; ntermediate deceleration institutions

带传动及其特性实验报告(精)

南昌大学实验报告 学生姓名 : 学号专业班级 : 实验类型:□ 验证■ 综合□ 设计□ 创新实验日期 : 2013年 10月 11日实验成绩 : 一、实验项目名称 :带传动及其特性实验二、实验目的 1. 了解带传动的预紧和加载方式; 2. 了解带传的的弹性滑动和打滑的区别; 3.了解带传动的拉力与滑动率、与效率之间的关系 4. 了解转速、转速差以及扭曲的测量方法。 三、实验基本原理 ? 滑动率 主、从动轮圆周速度分别为 V1 = πdd1n160000(m/s V2 = πdd2n2 60000 (m/s 由于带的弹性滑动引起的从动圆周速度的降低率称为滑动率ε,即 ε= v1 - v2v1*100% = d1n1 - d2n2d1n1*100% = n1 - n2

n1 *100% (d1 =d2 ? 传动效率 η= P2P1= T2n2 T1n1 *100% (1P 、 2P 分别为主动轮的输入功率和从动轮的输出功率 随着负载的改变, 1n 、 2n 和 1T 、 2T 值也将随之改变。这样,可以获得不同负载下的 ε和η值,由此可以得出带传动的滑动率曲线和效率曲线。改变带的预紧力 0F ,又可以 得到在不同预紧拉力下的一组测试数据。 显然, 实验条件相同且预紧力 0F 一定时, 滑动率的大小取决于负载的大小, 1F 与 2F 之间的差值越大,则产生弹性滑动的范围也随之增大。当带在整个接触弧上都产生滑动时,就会沿带轮表面出现打滑现象,这时,带传动已不能正常工作。所以打滑现象是应该避免的。滑动曲线上临界点(A 和 B 所对应的有效拉力即不产生打滑现象时带所能传递的最大有效拉力。通常,我们以临界点为界,将降曲线分为两个区,即弹性滑动区和打滑区(见图 1-3所示

实验四、齿轮传动效率测试实验

实验四、齿轮传动效率测试实验 一、实验目的 1. 了解齿轮传动实验台结构及其工作原理; 2. 通过本实验加深理解齿轮传动效率与转速和载荷的关系; 3. 通过齿轮传动装置的实验,进一步了解齿轮传动性能; 4. 掌握转矩、转速、功率、效率的测量方法。 二、实验台结构及其工作原理 齿轮传动效率测试实验台结构如图1所示: 图1 齿轮传动效率测试实验台结构简图 1. 底座 2. 传感器 3. 电机 4. 轴承支架 5. 联轴器 6. 磁粉制动器 7. 齿轮传动减速器 实验台的动力自一台直流调速电机3,电机的转轴由一对固定在底座1上的轴承支架4托起,因而电机的定子连同外壳可以绕转轴摆动。转子的轴头通过联轴器5与齿轮减速器的输入轴相连,直接驱动输入轴转动。电机机壳上装有测矩杠杆,通过输入测矩传感器2,可测出电机工作时的输出转矩(即齿轮减速器的输入转矩)。 6 7 4 5 3

被测减速器的箱体固定在实验台底座上,齿轮减速器传动比i =5,其动力输出轴上装有磁粉制动器6,改变制动器输入电流的大小即改变负载制动力矩的大小。实验台面板上布置或装有电机转速调节旋钮和加载按钮,以及转速和加载显示器件等,电机转速、输入及输出力矩等信号通过单片机数据采集系统输入上位机数据处理后即可显示并打印出实验结果和曲线。实验台原理框图如图2所示: 图2 齿轮传动效率测试实验台原理框图 实验测试的内容与方法: 1. 当齿轮传动系统工作在一定转速时,改变输出负载的大小,测定齿轮传动系统输入功率 P 1和相应的输出功率P 2,从而得出其传动效率2 1 p P η= 。功率是通过测定其转矩及转速获得的。 2. 当齿轮传动系统工作在一定负载时,改变输入轴的转速大小,测定齿轮传动系统输入功率P 1和相应的输出功率P 2,亦可得到其传动效率2 1 p P η= 。 3. 通过齿轮减速器传动效率测试实验,分析对齿轮传动性能的影响因素。 三、实验操作步骤 1. 准备工作 1) 将实验台与微机的串口连接线连好。 2) 用手转动联轴器,要求转动灵活。 3) 控制面板上的电源开关放到“关”的位置,调速旋钮旋在最低点。 2. 进行实验 1) 启动微机,进入实验软件主界面,并根据实验台上的配置选择齿轮减速器。 2)接通电源,打开电源开关,数码管灯亮。 3) 缓慢顺时针旋转调节电机调速旋钮,电机启动,使转速达1000r/min 左右。 4) 待转速稳定后,可按动加载按钮加载(第1档加载系统已默认)。 5) 点击软件主界面“数据采集”按钮,电机转速、电机转矩、负载力矩等实验数据发送 到实验界面。

传动系统设计指导书03

1.范围 适用于本研发中心所开发车型的发动机传动系统设计。 2.引用标准 GB 7086-87液力变矩器性能试验方法 GB/T465-1999汽车机械式变速器分类的术语及定义GB/T5333-1985汽车驱动桥术语及定义 GB/T5727-1985汽车液力变速器术语及定义 GB/T5728-1985汽车离合器术语及定义 QC/T27-1992汽车干摩擦片式离合器台架试验方法QC/T291-1999汽车机械式分动器性能要求 QC/T293-1999汽车半轴台架试验方法 QC/T294-1999汽车半轴技术条件 QC/T463-1999汽车用液力变矩器技术条件 QC/T470-1999汽车制动变速器操纵装置的要求 QC/T523-1999汽车传动轴台架试验方法 QC/T524-1999汽车发动机性能试验方法试验方法QC/T533-1999汽车驱动桥台架试验方法 QC/T534-1999汽车驱动桥台架试验评价指标 QC/T29033-1991汽车用液力变速器台架性能试验方法QC/T29063-1992汽车机械式变速器总成技术条件 QC/T29082-1992汽车传动轴总成技术条件 QC/T29101-1992汽车用操纵拉锁总成 结构如图19:

图 19 换挡连杆结构 操纵杆:操纵杆的结构一般为如图20所示结构较多,档位的位置要与结构相匹配,一般对换档操纵的行程比为:之间、换档操纵的行程比为之间,简单结构为: 图 20 操纵杆结构 10.传动轴的选用 传动轴及万向节的选型设计流程框图,如图 21所示:

图 21 传动轴及万向节的选型设计流程框图 传动轴概述 传动轴是汽车传动系重要组成部分,将发动机提供的动力由变速器传递至车桥的减速器。它主要由万向节、轴管及其伸缩花键等组成。对于长轴距汽车的分段传动轴,还需有中间支撑。 轴系是一个弹性体,当其回转时,一方面由于本身的质量(或转动惯量)和弹性产生自然振动;另一方面由于轴系各零件的材料组织不均匀、制造误差及安装误差等原因造成轴系重心偏移;导致回转时产生离心力、从而产生以离心力为周期性干扰外力所引起的强迫振动。当强迫振动的频率与轴的自振频率接近或相同时,就会产生共振现象,从而直接影响整车传动的平稳性和舒适性。产生共振现象时轴的转速称为轴的临界转速。传动轴的实际转速要低于临界转速的倍。在传动轴与万向节装配后必须满足动平衡要求。 万向传动轴的断面尺寸除应满足临界转速的要求外,还应保证有足够的扭转强度。轴管是传动轴的薄弱环节,按要求其极限扭矩应不低于最大工作转矩的倍。 传动轴滑动花键齿侧挤压应力不大于25~50N/mm2 ;对于不滑动花键,挤压应力不大于50~100 N/mm2 。 结构形式 汽车用万向节分为刚性的、饶性的、等速的和不等速的几种。 汽车除转向驱动桥及带有摆动半轴的驱动桥的分段式半轴多采用等速万

带式输送机传动系统设计

机械课程设计说明书 课题:带式输送机传动系统设计班级:A07机械(1)班 学号: 姓名: 指导老师:

目录 第一节设计任务-------------------------------------------------------(3) 第二节电动机的选择和计算---------------- --- ------ -------------- (4) 第三节传动零件的设计计算------------------------------------------ (7) 第四节具体二级齿轮减速器轴的方案设计--------- ----------- ----- (12) 第五节键的校核---------------------------------------------------- (15) 第六节轴承的润滑及密封---------- ------- -------- ----- ---------(16) 第七节箱体结构设计和计算------ ----- ----- ---- ----- ----------- (17) 第八节设计结果----------------------------------------------- (22) 第九节设计小结-------------------------------------------------- (24) 参考文献------ ----- ----- ---- ----- ------- ----- ----- ---- -----(25)

带式输送机传动系统设计 一.设计任务 传动装置中广泛采用减速器,它具有固定传动比、结构紧凑、机体封闭并有较大刚度、传动可靠等特点。设计带式输送机传动系统。采用V带传动及两级圆柱齿轮减速器。 1.原始数据 运输带的有效拉力F=7000N,运输带速度v=0. 5m/s(允许误差5%),卷筒直径D=450mm。减速器设计寿命为5年。 2.传动装置参考方案 带式输送机由电动机驱动。电动机1通过V带传动将动力传入两级圆柱齿轮减速器3,再通过联轴器4将动力传至输送机滚筒5,带动输送带6工作。 3.工作条件 两班制,常温下连续工作;空载起动,工作载荷平稳;三相交流电源,电压为380/220伏。 二、传动装置的总体设计

相关主题
文本预览
相关文档 最新文档