当前位置:文档之家› 四点共圆练习题

四点共圆练习题

四点共圆练习题
四点共圆练习题

C

F E

A

H B N M C A B 四点共圆练习题

1. 如图,ABC ?三边上的高交于H ,H 不于任一顶点重合,则以A 、B 、C 、D 、E 、F 、H

中某四个点可以确定的圆共有多少个?

2. 在梯形ABCD 中,AB ‖DC ,DC AB >,K 、M 分别在AD 、BC 上,CBK DAM ∠=∠,求证:CKB DMA ∠=∠

3. 正方形ABCD 的中心为O ,面积为2

1989cm ,P 为正方形内一点,?=∠45OPB ,

14:5:=PB PA ,求PB 。

4.如图8,△ABC 的高AD 的延长线交外接圆于H ,以AD 为直径作圆和AB 、AC 分别交于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.

5. 如图,在平行四边形ABCD 中,BC AM ⊥于M ,CD AN ⊥于N ,若13=AB ,5=BM ,9=MC ,求MN 的长度

6.如图所示,棱形ABCD 的对角线AC,BD 相交于点O,四条边AB,BC,CD,DA 的中点为E,F,G ,H.

求证:E,F,G ,H 四点共圆

7. 如图2,从⊙O 外一点P 引切线PA 、PB 和割线PDC ,从A 点作弦AE 平行于DC ,连结

BE 交DC 于F ,求证:FC =FD .

B

C M

K D

A C

B

O

P

D

A F

E

D

A

B

O

C

8.在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.

9.如图,△ABC为等边三角形,D,E分别为BC,AC边上的点,且BD=1

3

BC,CE=

1

3

AC

,AD与BE

相交于点P,求证:CP⊥AD

10.锐角△ABC中,BD,CE分别是AC,AB边上的高线,EM⊥BD于M,DN⊥CE于N.求证:MN//BC.

11.在△ABC中,,B C

∠∠的平分线相交于T, ,B C

∠∠的外角平分线相交于P.求证:

()

1

2

BPC ABC ACB

∠=∠+∠

12.如图所示,如果五边形ABCDE中,.

ABC ADE AEC ADB

∠=∠∠=∠

且求证:BAC DAE

∠=∠.

13.四边形ABCD内接于圆,通过M和N分别表示直线AB和CD,BC与AD的交点,设

1

B是已

知圆同过点B、M、N三点的圆的异于B的交点,求证:直线

1

B D平分线段MN.

九年级圆基础知识点,(圆讲义)

一对一授课教案 学员姓名:____何锦莹____ 年级:_____9_____ 所授科目:___数学__________ 上课时间:____ 年月日_ ___时分至__ __时_ __分共 ___小时 一、圆的定义: 1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随 之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径. 2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O ⊙”,读作“圆O”. 3 同圆、同心圆、等圆: 圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:同圆或等圆的半径相等. 1. 弦:连结圆上任意两点的线段叫做弦. 2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 3. 弦心距:从圆心到弦的距离叫做弦心距. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB,读作弧AB. 5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

8. 弓形:由弦及其所对的弧组成的图形叫做弓形. 1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心 角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. 一、圆的对称性 1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线. 2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心. 3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合. 二、垂径定理 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; ⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 3. 推论2:圆的两条平行弦所夹的弧相等. 练习题;

六年级上册圆的基础知识和练习

六年级上册圆的基础知识和练习 一、圆的知识梳理 1、圆是由一条_________ 围成的平面图形。(以前所学的图形如长方形、梯形等 都是由几条____ 围成的平面图形)(曲线、直线、线段) 2、画圆时,针尖固定的一点是 __ ,通常用字母_表示; 连接圆心和圆上任意一点的线段是 ______ ,通常用字母___ 表示; 通过圆心并且两端都在圆上的线段是 ______ ,通常用字母___ 表示。 在同一个圆里,有___ 条半径和直径。 在同一个圆里,所有半径的长度都_____ ,所有直径的长度都 __ 。(必须有的前提是____________ ) 3、用圆规画圆时,针尖是圆的_______ ,两脚间的距离是圆的 ____ 。 4、在同一个圆里,半径是直径的______ ,直径是半径的_____ 。(d=, ____ r = ____ ) 5、圆是___ 图形,有 __ 条对称轴,对称轴就是直径所在的_____ 。 6圆心决定圆的 ____ ,半径决定圆的__ 。要比较两圆的大小,就是比较两个圆的____ 或 _____ 。 7、正方形里最大的圆。两者联系:边长二_____ ;圆的面积=78.5%正方形的面 积 画法:(1)以 _________ 为圆心,以___ 为直径画圆。 8、长方形里最大的圆。两者联系:宽二 画法:(1)画以 ________ 为圆心,以____ 为直径画圆。 9、同一个圆内的所有线段中,圆的_____ 是最长的。 10、车轮滚动一周前进的路程就是车轮的______ 。每分前进米数(速度)= x ___ 11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做______ 。用字母—表示。n是一个________________ 小数。我们在 计算时,一般保留两位小数,取它的近似值3.14。n—3.14(大于、小于或等

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

数学人教版九年级上册24.探究四点共圆的条件

探究四点共圆 阜阳开发区一初王丽 2017/5/1 一、内容和内容解析 本节内容是探究四点共圆的条件。四点共圆是在学生学习了经过一个点的圆、经过两个点的圆、经过不在同一直线上三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆条件的探究。圆内接四边形对角互补,相应地,对角互补的四边形的四个顶点共圆。 在四点共圆条件的探究过程中,通过对特殊的四边形(矩形、等腰梯形)、有公共斜边的两个直角三角形的四个顶点组成的四边形等四边形的探究,发现一般的规律(过对角互补的四边形的四个顶点能做一个圆),体现了特殊到一般的思想。同时在研究过程中类比将四边形转化为三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想。另外,学生经历探究四点共圆的条件这一思想活动的全过程,在“做”的过程和“思考”的过程中有利于数学活动经验的积累。 二、学情分析 学生在发现问题的阶段可能会受到任意一个三角形的三个顶点做一个圆的影响,去判断第四个顶点是否在这个圆上,解决这一问题的关键是引导学生从特殊的四边形出发,从特殊到一般的探究问题。通过画图、观察、测量分析矩形、等腰梯形、有公共斜边的两个直角三角形的

四个顶点共圆与四边形的边长无关,由此联想圆内接四边形对角互补,获得猜想。另外,猜想的证明要用到反证法,学生可能不知如何入手,而且猜想的证明对学生来说是难点。 三、教学目标: (1)理解过某个四边形的四个顶点能作一个圆的条件。 (2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般转化的数学思想,积累数学活动的经验。 四、教学重难点: 重点:四点共圆条件的探究。 难点:对角互补的四边形四个顶点共圆的证明。 五、教学过程: I、创设情境、引入新课 同学们,我们的家乡阜阳是有着悠久历史的地方,如果给我们一天的时间参加阜阳一日游活动,你会选择哪里呢?那么,今天老师就带领大家一起参观阜阳生态园。 问题1:某市公园需要经过A、B、C三个旅游景点建一个圆形快车道,如图,假如我们把A、B、C三个旅游景点抽象成点,你能设计出这个圆形轨道吗? 设计意图:由学生熟知的参观阜阳生态园入手,让学生去设计不在同

初三数学圆的基础知识小练习

初三数学圆的基础知识小 练习 Prepared on 24 November 2020

圆的基本知识 一、知识点 5、圆与圆的位置关系:(内含、相交、外离) 例3:已知⊙O 1的半径为6厘米,⊙O 2 的半径为8厘米,圆心距为d, 则:R+r=,R-r=; (1)当d=14厘米时,因为dR+r,则⊙O1和⊙O2位置关系是: (2)当d=2厘米时,因为dR-r,则⊙O1和⊙O2位置关系是: (3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是: (4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是: (5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是: 6、切线性质: 例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO=度(2)如图,PA、PB是⊙O的切线,点A、B是切点, 则=,∠=∠; 7、圆中的有关计算 (1)弧长的计算公式: 例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少 解:因为扇形的弧长=() 180 所以l=() 180 =(答案保留π) (2)扇形的面积: 例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少

解:因为扇形的面积S= () 360 所以S= () 360 =(答案保留π) ②若扇形的弧长为12πcm ,半径为6㎝,则这个扇形的面积是多少 解:因为扇形的面积S= 所以S== (3)圆锥: 例7:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少 解:∵圆锥的侧面展开图是形,展开图的弧长等于 ∴圆锥的侧面积= 知识点 1、与圆有关的角——圆心角、圆周角 (1)图中的圆心角;圆周角; (2)如图,已知∠AOB=50度,则∠ACB=度; (3)在上图中,若AB 是圆O 的直径,则∠AOB=度; 2、圆的对称性: (1)圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为. (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 如图,∵CD 是圆O 的直径,CD ⊥AB 于E ∴=,= 3、点和圆的位置关系有三种:点在圆,点在圆,点在圆; 例1:已知圆的半径r 等于5厘米,点到圆心的距离为d , (1)当d =2厘米时,有dr ,点在圆(2)当d =7厘米时,有dr ,点在圆 (3)当d =5厘米时,有dr ,点在圆 4、三角形的外接圆的圆心——三角形的外心——三角形的交点; 三角形的内切圆的圆心——三角形的内心——三角形的交点;

四点共圆的判定与性质

四点共圆的判定与性质 一、四点共圆的判定 (一)判定方法 1、若四个点到一个定点的距离相等,则这四个点共圆。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。 5、同斜边的直角三角形的顶点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。 7、若AB、CD 两线段延长后相交于P。且PA×PB=PC×PD,则A、B、C、D 四点共圆(割线定理)。 8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。 (二)证明 1、若四个点到一个定点的距离相等,则这四个点共圆。 若可以判断出OA=OB=OC=OD,则A、B、C、D 四点在以O 为圆心OA 为半径的圆上。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 若∠A+∠C=180 °或∠B+∠D=180 °,则点A、B、C、D 四点共圆。

3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 若∠B=∠CDE,则A、B、C、D 四点共圆证法同上。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这 两个点和这条线的两个端点共圆。 若∠A=∠D 或∠ABD=∠ACD,则A、B、C、D 四点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。

初三《圆》基础知识复习专题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定 长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离 都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r

外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理 图1 图2 图4 图5 B D

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

探究四点共圆的条件--点评

《四点共圆的条件》课堂分析 本节课的主要内容为《四点共圆的条件》,是一节数学活动。认真感受了整个课堂后,我想从以下三个角度谈一下我对本节课的想法。 一、数学思考 首先,问题是思维的源泉,更是思维的主力。本节课在问题的设计上,层次清晰、目标明确。先后四个主要问题:“通过四边形四个顶点作圆的结果如何?”,“怎么判断这四个点共圆或不共圆?”,“如何证明你的猜想?”,“你能用所学知识判断四个点在圆上吗?”,能很好地调动学生思考层次;而且在大问题下的小问题串的设计,与学生的认知水平相持平,这点从学生的回答方式(齐答、举手回答的数量和音量)上体现出来,尤其是老师的提问策略,例如:每次提问的候答时间,和理答方式都为学生思考提供了准确的方向和思考的空间。 其次,在不同的环节设计了不同的思考方式。例如,集中型的思考方式,体现在问题二的讨论中。各种角度,集思广议,最后将问题转化到对角互补的四边形四点共圆;再如,发散型的思考方式,体现在问题情景的设计中。将抽象出的几何图形转化成四边形或者转化成共斜边的两个直角三角形时,可以为学生的多维思考提供一个新的思路,直至,共边三角形的变式问题的出现。 二、课堂参与

整堂课的课堂气氛流畅、民主。从学生角度,学生参与课堂讨论的人数;学生回答问题的数量及人员分布;学生回答问题的语言上都能感受到学生的学习过程是和谐的、勤勉的。从教师角度来看,教师的语速、语态,教师对学生的评价,都为学生的学习提供绝佳的软环境。最后从师生的互动交流来看;彼此的情感认同,情绪都是积极的。 也正是这种民主的课堂,才能使知识的生成不会只发生在表面,才会形成深层次学习的动力。 三、创新之举 创新之一:情景创设人文化、图形呈现动态化 本节课的情境导入是以修建农家乐,铺设圆形石子路为背景的。比较符合当地地区的经济发展趋势,比较贴近于学生们的生活,对学生应用意识的培养是非常有利的。此外,在整个课堂的推进过程中,多次运用到《几何画板》的动态呈现方式,让学生们充分感受数量关系到图形关系的这种衔接,体会到特殊到一般的转化过程,对培养学生直观意识和空间观念起到了积极的作用。 创新之二:课堂讨论多维度、奇思妙想创新意 在对第二大问题的讨论中,生成了多角度的结论。从定义角度;从四边形边的角度;从四边形对角线角度;从四边形角的角度。进而呈现了很多的思维过程,达到差异互补、资源共享的作用,同时为学生创新意识的培养积累了的基础。教师为这些有大胆猜想的学生点赞,更加鼓励了孩子们的新方法的创设。这些就

圆的相关知识

圆的复习 第一部分知识及方法 一、圆的基本概念 1、圆的基本元素 圆心:圆的中心。 半径:连接圆心和圆上任一点的线叫半径。 弦:连接圆上任意两点的线段叫弦。 直径:经过圆心的弦叫直径。 弧:圆上任意两点间的部分叫弧。弧分为半圆、优弧和劣弧。 圆心角:顶点在圆心的角叫圆心角。 注意:直径是圆最长的弦;同圆或等圆的直径是半径的两倍。 2、 (1)圆是旋转对称图形,圆心是对称中心。 在一个圆中,相等的圆心角所对的弧相等,所对的弦相等。 在一个圆中,相等的弧所对的圆心角相等,所对的弦相等。 在一个圆中,相等的弦所对的劣弧相等,所对的圆心角相等。 (2)圆是轴对称图形,任一条过圆心的直线都是它的对称轴。 (3)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 提示: 1)圆周可以看作360°的弧,圆心角的度数与它所对的弧的度数相等。 2)解决与弦有关的问题时,常常过圆心作弦的垂直线段作为辅助线。半径、弦的一半、弦心距构成一个直角三角形。利用勾股定理和三角函数可以解决与半径长、弦长、弦心距的长以及相关角度等有关计算的问题。 3)经过圆内一点,最长的弦是经过这点的直径,最短的弦是与过这点的直径垂直的弦。 4)圆内两条平行弦所夹的弧相等。 3、 (1)圆周角的定义:顶点在圆上,两边与圆相交的角叫圆周角。 (2)圆周角定理:半圆或直径所对的圆周角是直角,90°圆周角所对得弦是直径。在一个圆内,同弧或等弧所对的圆周角相等,都等于该弧所对圆心角的一半;相等的圆周角所对得弧也相等。圆的内接四边形的对角互补,并且任何一个外角等于它的内对角。 (3)相关链接:利用“半圆或直径所对圆周角是直角”可以在圆中得到直角三角形,我们可以解决很多与直角三角形有关的问题。圆周角定理、三角形内角和定理及推论、同角的余(补)角相等、平行线的性质定理等,都是与角度有关的定理,把它们进行综合运用,可以实现角度的灵活转换,从而解决很多与角相关的问题。 (4)注意: a.当给出90°圆周角时,弦AB是直径需要说明。 b.同弧所对的圆周角相等,但同弦所对的圆周角不一定相等,因为:一条弦对应着两个圆周角。

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

圆的基础知识

24.1《圆》教学设计 一、教学目标 知识技能: 1.了解圆和圆的相关概念,知道圆实轴对称图形,理解并掌握垂直于弦的直径有哪些性质. 2.了解弧、弦、圆心角、圆周角的定义,明确它们之间的联系. 数学思考: 1.在引入圆的定义过程中,明确与圆相关的定义,体会数学概念间的联系. 2.在探究弧、弦、圆心角、圆周角之间的联系的过程中,培养学生的观察、总结及概括能力. 问题解决: 1.在明确垂直于弦的直径的性质后,能根据这个性质解决一些简单的实际问题.2.能根据弧、弦、圆心角、圆周角的相关性质解决一些简单的实际问题. 情感态度:在引入圆的定义及运用相关性质解决实际问题的过程中,感悟数学源于生活又服务于生活.在探索过程中,形成实事求是的态度和勇于创新的精神. 二、重难点分析 教学重点:垂径定理及其推论;圆周角定理及其推论. 垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法.所以垂径定理及其推论、圆周角定理及其推论是本小节的重点. 对于垂径定理,可以结合圆的轴对称性和等腰三角形的轴对称性,引导学生去发现“思考”栏目图中相等的线段和弧,再利用叠合法推证出垂径定理.对于垂径定理的推论,可以按条件画出图形,让学生观察、思考,得出结论.要注意让学生区分它们的题设和结论,强调“弦不是直径”的条件. 圆周角定理的证明,分三种情况进行讨论.第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端点的直径为辅助线.这种由特殊到一般的思想方法,应当让学生掌握. 教学难点:垂径定理及其推论;圆周角定理的证明. 垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对于分类证明的必要性不易理解,所以这两部分内容是本节的难点.圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识. 三、学习者学习特征分析 圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识. 四、教学过程 (一)创设情境,引入新课 圆是一种和谐、美丽的图形,圆形物体在生活中随处可见.在小学我们已经认识了圆这种基本的几何图形,并能计算圆的周长和面积. 早在战国时期,《墨经》一书中就有关于“圆”的记载,原文为“圆,一中同长也”.这是给圆下的定义,意思是说圆上各点到圆心的距离都等于半径.

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

圆基础知识练习

圆基础知识练习 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-

初四周末圆部分练习巩固 1.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为() A.2 B.3 C.4 D.5 2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于 ()A.42°B.29°C.21°D.20° 3.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90° 4.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为() A.3 B.5 C.6 D.8 5.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是() A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1) 6.在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为() A.5分米B.6分米C.8分米D.10分米 7.如图,⊙O的直径AB=10,C是AB上一点,矩形ACND交⊙O于M,N两点,若DN=8,则AD的值为()A.4 B.6 C.2 D.3 8.如图,在⊙O中,弦CD垂直于直径AB,垂足为H,CD=2,BD=,则AB的长为()A.2 B.3 C.4 D.5 9.如图,AB是半圆O的直径,AC为弦,OD⊥AC 于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.4 10.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为() A.2B.3 C. D.3 11.若圆的一条弦把圆分成度数比例为2:7的两条弧,则弦所对的圆心角等于.12.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是. 13.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为 cm. 14.如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为.15.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的, AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是 cm. 16.如图,已知AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,则弦CB的长 为.

初中数学九年级《探究四点共圆的条件》公开课教学设计

第24章活动2 《探究四点共圆的条件》教学设计 班级姓名座号 一、课型:综合活动课 二、活动目标: 1、探究四边形四个顶点共圆的条件。 2、通过观察、比较、分析不同的四边形四个顶点能否共圆,提高学生识图能力,发展学生合情推理和演绎推理的能力。 3、在探究四边形四个顶点能够共圆的问题中,学会运用从特殊到一般的数学思想,能利用转化思想来解决问题,感受解决问题的多样性。 三、重点:通过活动探究四点共圆的条件。 难点:对角互补的四边形四个顶点共圆的证明方法。 四、学情分析:经历《圆》的全章单元学习后,学生对圆的相关知识点还未能透彻贯通,需要加强能力方面的训练。让学生自己结合线索推理发现、得出结论,课堂教学既要重视数学结论的探索过程,又要强化各种技能之间的综合运用。 五、教具:多媒体设备(含几何画板、PPT、投影展台) 六、教学反思:四点共圆研究方法具有多样性和灵活性,理解点和圆的位置关系,实现位置关系和数量关系的相互转化,体现知识的普遍联系和深入发展特性,丰富学生的研究方法。通过观察、实验操作、归纳猜想、验证活动,使不同层次学生思维水平和推理水平有不同的提高。表格式梳理对照,自学复习相关知识点,以数学活动为契机,培养探索精神,调动全章圆的知识的相关储备,串联综合运用的能力猜想并加以验证。

七、课堂过程 活动一、考题片段引入 如图,已知矩形ABCD,,动点E 从点B 沿线段BC 运动到点C 停止,连结AE,以AE 为边作矩形AEFG,使边FG 过点D.直接写出点G 所经过的路径长。 关键:点G 路径是什么样的轨迹? ★(设计意图)从考题片段引入,清晰给出学习目标,引发学生思考。在完成表格二猜想一后再进行展开,结合几何画板演示动态过程,运用新结论,形成基本数学图形模式。 活动二、复习旧知类比迁移 表格一 多边形 任意一个三角形 任意一个四边形 有且只有 个外接圆 外接圆 多边形名称 内接三角形 (根据圆的 定义) 共圆的顶点 要具备的条 件 三个顶点到定点( 心)的 距离都等于定长(即 ) 即:OA=OB=OC 个顶点到定点( 心)的距离都等于定长(即 ) 即:OA=OB=OC=OD 定点(外心)的作法 任意两边 交点 任意两边 交点 提醒:三角形也是任意多边形组成的基本图形单位。 思考:过任意一个四边形的四个顶点也一定可以作一个圆吗?你打算怎样去尝试呢? 如果能共圆,四边形的四个顶点应满足什么条件? ★(设计意图)学生联系对比复习链接的知识定义,为后续探究打下基础,对照巩固原有思维水平。 23,6AB BC ==

上海市初三数学复习专题及答案 圆的基础知识

授课类型T圆的基础T综合题目 授课日期及时段 教学内容 题型一:圆的有关概念及其性质 (宝山区)6.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”。由此说明:(B) (A)圆是中心对称图形,圆心是它的对称中心; (B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分; (D)垂直弦的直径平分弦及弦所对的弧. 题型二:点与圆的位置关系 (普陀区)17.在Rt△ABC中,∠C=90°,AC=5,BC=8,如果以点C为圆心作圆,使点A在圆C内,点B在圆C 外,那么圆C半径r的取值范围为______________ 题型三:垂径定理的应用 (长宁区)14. 点A B ,是⊙O上两点,10 AB=,点P是⊙O上的动点(P与A B ,不重合),连结AP PB ,过点O分别作OE AP ⊥于E,OF PB ⊥于F,则EF=______________ 17. 如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8. 则sin∠ABD=______________ (闸北区)18.如图七,直径AB⊥弦CD于点E,设AE x =,BE y =,用含x y ,的式子表示运动的弦CD和与之垂直的直径AB的大小关系______________ O D C B A 第17题 x y C B D A O E ( 图 七 )

C B E · O D A y x ? O P A (崇明区)18、如图,AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC ______________ (奉贤区)18.如图,⊙O 的半径是10cm ,弦AB 的长是12cm ,OC 是⊙O 的半径且OC AB ⊥, 垂足为D ,CD =______________ (虹口区)17.如图3,AB 是⊙O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =, 那么AE 的长为______________ (长宁区)15.铲车轮胎在建筑工地的泥地上留下圆弧形凹坑如图所示,量得凹坑跨度AB 为80cm ,凹坑最大深度CD 为20cm ,由此可算得铲车轮胎半径为______________ (金山区) 18. 如图,在平面直角坐标系中点()3,4P ,以P 为圆心,PO 长为半径作⊙P , 则⊙P 截x 轴所得弦OA 的长是______________ (闵行区) 16.如图,水平放置的圆柱形油桶的截面半径r = 4,油面(阴影部分)高为3 2 r , 那么截面上油面的面积为______________(答案保留π及根号) (静安区)16.如图,⊙O 的的半径为3,直径AB ⊥弦CD ,垂足为E ,点F 是BC 的中点, 那么EF 2+OF 2 =______________ 练习 C A O B A B O D C A B D C A C D F O B E 32 r

最新九年级数学四点共圆例题讲解

精品文档 九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆的方法很重要。 、、、===OCOB四个点到定点DO 判定四点共圆最基本的方法是圆的定义:如果A的距离相等,即BOAC、、、D四点共圆.,那么ACB OD 由此,我们立即可以得出 1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。 将上述判定推广到一般情况,得: 2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。 3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。 4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。 运用这些判定四点共圆的方法,立即可以推出: 正方形、矩形、等腰梯形的四个顶点共圆。 其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是: 、、、D四点共圆。B =CE·ED,则AC· 1.相交弦定理的逆定理:若两线段AB和CD相交 于E,且AEEB、、、BPD,则APA,且·PB =PC 2.割线定理的逆定理:若相交于点P的两线段PB·PD上各有一点A、C 、D四点共圆。C 3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。 另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。 例题精讲 、、、、、、、、、、F四点共圆,上。已知PPDAC1例:如图,P为△ABC内一点,DEEF分别在BCECAAB、、、

数学活动——探究四点共圆的条件

数学活动——探究四点共圆的条件 一内容和内容解析 1.内容:探究四点共圆的条件 2.内容解析:四点共圆的条件是在学生学习了经过一个点的圆、经过不在同一直线上的三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆的条件的探究。 在四点共圆的条件的探究过程中,首先学生在已学的圆相关知识基础上,对四点共圆的条件进行合理猜想:圆内接四边形对角互补,相应的,对角互补的四边形的四个顶点共圆;再利用计算机工具,对特殊的四边形(平行四边形、矩形、等腰梯形)、一组对角同时等于九十度的四边形、任意对角互补的四边形以及任意四边形等,在几何画板上进行测量检验,用实验的方法验证猜想的正确性;然后对正方形、矩形、一组对角同时等于九十度的四边形、任意对角互补的四边形四个顶点共圆进行理论推理验证,最终得出结论。学生全程感受并经历了发现并提出问题——猜想——实验验证——理论推理验证——得出结论的活动过程,在“做”的过程和“思考”的过程中,积累数学活动的经验;在验证的过程中体现了特殊到一般的思想,同时,在研究中,类比将四边形转化成三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想。 基于以上分析,确定本节课的教学重点是:四点共圆的条件的探究。 二目标和目标分析 1.目标 (1)理解过某个四边形的四个顶点能作一个圆的条件。 (2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般、转化的数学思想,积累数学活动的经验。 2.目标解析 达成目标(1)的标志是:知道对角互补的四边形的四个顶点共圆的结论,会应用反证法证明这一结论,能应用对角互补的四边形四个顶点共圆判断给定的四边形的四个顶点是否可以做一个圆。 达成目标(2)的标志是:通过猜想,实验验证、理论推理验证得出结论,体会数学活动的完整过程,在过程中积累经验;通过几何画板画图,测量,比较,分析平行四边形、矩形、菱形、等腰梯形、直角梯形、一组对角等于九十度的四边形、一般的对角互补的四边形的四个顶点能否共圆,得到:对角互补的四边形四个顶点共圆的更一般的结论。体会由特殊到一般的研究规律;将证明四点共圆的问题转化为不共线的三点可以确定的圆,与第四个顶点之间的关系,并应用圆内接四边形对角互补的性质获得证明;在解决问题的过程中,积极思考、勇于质疑,体会发现问题、解决问题、有效的呈现活动结果等过程是数学活动的基本过程。 三教学问题诊断分析 学生从一开始发现问题,到后来的猜想,都是在已有知识的基础上,从已学定理:圆内接四边形对角互补出发,研究它的逆命题:对角互补的四边形四个顶点共圆。在探究过程中鼓励学生在已学知识基础上进行合理大胆的猜想。 在验证的过程中,学生可能会联想到任意一个三角形的三个顶点作一个圆的影响,去判断第四个顶点时候在这个圆上,解决这一问题的关键是引导学生从特殊的四边形出发,从特殊到一般的探究问题,通过画图、测量、比较,分析各种四边形的顶点是否共圆。 另外,在进行理论验证的过程中,要用到反证法,学生可能不知如何下手,而且猜想的证明对学生来说是难点。关键是从过任意一个三角形的顶点能作一个圆入手,把四点共圆问

相关主题
文本预览
相关文档 最新文档