当前位置:文档之家› 基本不等式求最值的类型及方法,经典大全

基本不等式求最值的类型及方法,经典大全

基本不等式求最值的类型及方法,经典大全
基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法

一、几个重要的基本不等式:

①,、)(2

22

22

2

R b a b

a a

b ab b a ∈+≤

?≥+当且仅当a = b 时,“=”号成立; ②,

、)(222

+

∈??

?

??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3

33

333

3

3

+∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成

立;

④)(333

3+

∈??

? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号

成立.

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;

② 熟悉一个重要的不等式链:b

a 112

+2a b

+≤≤≤

2

2

2b a +。 二、函数()(0)b

f x ax a b x

=+

>、图象及性质 (1)函数()0)(>+

=b a x

b

ax x f 、图象如图: (2)函数()0)(>+

=b a x

b ax x f 、性质:

①值域:),2[]2,(+∞--∞ab ab Y ;

单调递增区间:(,-∞

,)+∞

;单调递减区间:(0,

,[0). 三、用均值不等式求最值的常见类型

类型Ⅰ:求几个正数和的最小值。 例1、求函数2

1

(1)2(1)y x x x =+

>-的最小值。

解析:21(1)2(1)y x x x =+

>-21(1)1(1)2(1)x x x =-++>-2

111

1(1)222(1)

x x x x --=+++>-

1≥312≥+52=, 当且仅当

211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5

2

。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值:

①23

(32)(0)2

y x x x =-<<

②2sin cos (0)2y x x x π=<<

解析:①30,3202

x x <<

->Q ∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3

(32)[]13

x x x ++-≤=,

当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。

②0,sin 0,cos 02

x x x π

<<

>>Q ∴,则0y >,欲求y 的最大值,可先求2y 的最大值。

2

4

2

sin cos y x x =?2

2

2

sin sin cos x x x =??222

1(sin sin 2cos )2

x x x =??22231sin sin 2cos 4()2327x x x ++≤?=,

当且仅当2

2

sin 2cos x x =(0)2

x π

<

<

tan x ?=

x arc =时 “=”号成立,

评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。

例3、若x 、y +

∈R ,求4

()f x x x

=+

)10(≤

f x ax a b x

=+>、图象及性质知,当(0,1]x ∈时,函数

4

()f x x x

=+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

12121244

()()()()f x f x x x x x -=-+-211212

()4x x x x x x -=-+?1212124()x x x x x x -=-?,

∵1201x x <<≤,∴121212

4

0,

0x x x x x x --<<,则1212()()0()()f x f x f x f x ->?>, 即4()f x x x =+

在(0,1]上是减函数。故当1x =时,4

()f x x x

=+在(0,1]上有最小值5。 解法二:(配方法)因01x <≤,则有4

()f x x x =

+

24=+, 易知当01x <≤

时,0μ=

且单调递减,则2()4f x =+在(0,1]上也是减函数, 即4()f x x x =+

在(0,1]上是减函数,当1x =时,4

()f x x x

=+在(0,1]上有最小值5。 解法三:(拆分法)4

()f x x x

=+

)10(≤

+31≥5=,

当且仅当1x =时“=”号成立,故此函数最小值是5。

评析:求解此类问题,要注意灵活选取方法,特别是单调性法具有一般性,配方法及拆分法也是较为简洁实用得方法。 类型Ⅳ:条件最值问题。 例4、已知正数x 、y 满足

81

1x y

+=,求2x y +的最小值。 解法一:(利用均值不等式)2x y +8116()(2)10x y x y x

y

y x =++=+

+1018≥+=, 当且仅当811

16x y x y y

x ?+=???

?=??即12,3x y ==时“=”号成立,故此函数最小值是18。 解法二:(消元法)由811x y +=得8x y x =-,由00088

x

y x x x >?>>?>-又,则

2x y +22(8)161616

2(8)108888

x x x x x x x x x x -+=+

=+=++=-++---

-1018≥=。 当且仅当16

88

x x -=

-即12,3x y ==此时时“=”号成立,故此函数最小值是18。 解法三:(三角换元法)令228sin 1cos x x x y

?=????=??则有228sin 1cos x x y x ?=???

?=

?? 则:22

82

2sin cos x y x x

+=

+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++

10≥+18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。

评析:此类问题是学生求解易错得一类题目,解法一学生普遍有这样一种错误的求解方法:

812()(2)8x y x y x y +=++≥=。原因就是等号成立的条件不一致。

类型Ⅴ:利用均值不等式化归为其它不等式求解的问题。 例5、已知正数x y 、满足3xy x y =++,试求xy 、x y +的围。 解法一:由0,0x y >>,则3xy x y =+

+3xy x y ?-=+≥,

即2

30-≥

13≤-≥(舍),

当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值围是[9,)+∞。 又2

3(

)2

x y x y xy +++=≤2()4()120x y x y ?+-+-≥2()6x y x y ?+≤-+≥舍或, 当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故x y +的取值围是[6,)+∞。

解法二:由0,0x y >>,3(1)3xy x y x y x =++?-=+知1x ≠,

则:31x y x +=

-,由3

0011

x y x x +>?

>?>-, 则:2233(1)5(1)44

(1)51111

x x x x x xy x x x x x x ++-+-+=?===-++---

-59≥=, 当且仅当4

1(0)31

x x x x -=

>=-即,并求得3y =时取“=”号,故xy 的取值围是[9,)+∞。

314441(1)2261111x x x y x x x x x x x x +-++=+

=+=++=-++≥=----,

当且仅当4

1(0)31

x x x x -=

>=-即,并求得3y =时取“=”号,故xy 的取值围是[9,)+∞。 评析:解法一具有普遍性,而且简洁实用,易于掌握,解法二要求掌握构造的技巧。 四、均值不等式易错例析: 例1. 求函数()()

y x x x

=

++49的最值。

错解:()()y x x x x x x

=++=

++491336

2=++≥+?=133********x x x x 当且仅当x x

=

36

即x =±6时取等号。所以当x =±6时,y 的最小值为25,此函数没有最大值。 分析:上述解题过程中应用了均值不等式,却忽略了应用均值不等式求最值时的条件导致错误。因为函数()()

y x x x

=

++49的定义域为()()-∞+∞,,00Y ,所以须对x 的正负加以分类讨论。

正解:1)当x >0时,25362133613=?+≥++=x

x x x y 当且仅当x x

=

36

即6=x 时取等号。所以当x =6时,y min =25 2)当x <0时,->-

>x x

036

0,, ()()-+-?? ???≥--?? ???=x x x x 3623612 11213)]36

()[(13=-≤-

+--=∴x

x y 当且仅当-=-

x x

36

,即x =-6时取等号,所以当x =-6时,y max =-=13121. 例2. 当x >0时,求y x x

=+49

2的最小值。

错解:因为x y x x x x x

>=+≥?=0492496

22,

所以当且仅当492x x =即x =943

时,y x

min ==6

2183。

分析:用均值不等式求“和”或“积”的最值时,必须分别满足“积为定值”或“和为定值”,而上述解法中4x 与

9

2

x 的积不是定值,导致错误。 正解:因为x y x x x x x x x x

>=+=++≥??=0492293229

3362223

3,

当且仅当29

2x x

=,即x =3623时等号成立,所以当x =3623时,y min =3363。

例3. 求y x x x R =

++∈22

54

()的最小值。

错解:因为y x x x x x x =

++=++

+≥+?

+=22

22

22

54

414

2

414

2,所以y min =2

分析:忽视了取最小值时须x x 2

2414

+=

+成立的条件,而此式化解得x 2

3=-,无解,所

以原函数y 取不到最小值2。 正解:令()t x t =

+≥242,则y t t

t =+≥1

2()

又因为t ≥1时,y t t =+1是递增的。所以当t =2,即x =0时,y min =5

2

例4.已知+

∈R y x ,且

14

1=+y

x ,求y x u +=的最小值. 错解:44411≥?≥+=

xy xy

y x Θ ,82≥≥+=∴xy y x u ,u ∴的最小值为8. 分析:解题时两次运用均值不等式,但取等号条件分别为y

x 4

1=和y x =,而这两个式子不能同时成立,故取不到最小值8. 正解:94545)41)(

(=+≥++=++=x

y

y x y x y x u 当且仅当

x

y

y x =4即6,3==y x 时等号成立. u ∴的最小值为9. 综上所述,应用均值不等式求最值要注意:

一要正:各项或各因式必须为正数;

二可定:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;

三能等:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值。

技巧一:凑项

例1:已知5

4x <

,求函数14245

y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1

(42)45

x x --g 不是常数,所以对42x -要进行

拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--?

?231≤-+=, 当且仅当1

5454x x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例2. 当时,求(82)y x x =-的最大值。 解析:由

知,,利用基本不等式求最值,必须和为定值或积为定值,注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

技巧三: 分离

例3. 求2

710

(1)1

x x y x x ++=

>-+的值域。

解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号)。 技巧四:换元

解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t =时,4

59y t t

≥?=(当t =2即x =1时取“=”号)。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+的单调性。

例:求函数22

4

y x =

+的值域。

2

4(2)x t t +=≥,则2

24

y x =+2

21

4(2)4

x t t t x =

+=+≥+

因10,1t t t >?=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1

y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52

y ≥。 所以,所求函数的值域为5

,2??+∞????

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且

19

1x y

+=,求x y +的最小值。 解:19

0,0,1x y x y >>+=Q ,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当

9y x x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

巩固练习:

1、已知:b n m a y x =+=+2

2

2

2

,且b a ≠,则ny mx +的最大值为( )

(A)ab (B)2b a + (C)2

2

2b a + (D)222b a +

2、若+

∈R y x a ,,,且y x a y x +≤+恒成立,则a 的最小值是( )

(A)22 (B)2 (C)2 (D)1

3、已知下列不等式:①)(233

+

∈>+R x x x ;②),(3

2

2

3

5

5

+

∈+≥+R b a b a b a b a ; ③)1(22

2

--≥+b a b a .其中正确的个数是( ) (A)0个 (B)1个 (C)2个 (D)3个 4、设+

∈R b a ,,则下列不等式中不成立的是( )

(A)4)11)((≥++b a b a (B) ab ab b a 222≥+ (C)21≥+ab

ab (D)ab b a ab

≤+2

5、设+

∈R b a ,且2242,12b a ab S b a --==+的最大值是( )

(A)12- (B)

212- (C)12+ (D)2

1

2+ 6、若实数b a ,满足2=+b a ,则b

a 33+的最小值是( )

(A)18 (B)6 (C)32 (D)432 7、若正数b a ,满足3++=b a ab ,则ab 的取值围是 .

8、若+

∈R y x ,,且12=+

y x ,则

y

x 1

1+的最小值为 . 基本不等式 知识点:

1. (1)若R b a ∈,,则ab b a 22

2

≥+ (2)若R b a ∈,,则2

2

2b a ab +≤

(当且仅当b

a =时取“=”)

2. (1)若*

,R b a ∈,则ab b a ≥+2

(2)若*

,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)

(3)若*

,R b a ∈,则2

2?

?

? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1

2x x +

≥ (当且仅当1x =时取“=”) 若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”)

若0x ≠,则11122-2x x x x x x

+≥+≥+≤即或 (当且仅当b a =时取“=”)

4.若0>ab ,则2≥+a

b b a (当且仅当b a =时取“=”)若0ab ≠,则

22-2a b a b a b

b a b a b a

+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2

)2(222b a b a +≤

+(当且仅当b a =时取“=”) 注意:

(1)当两个正数的积为定植时,可以求它们的和的最小值,

当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值

例:求下列函数的值域

(1)y =3x 2

+12x 2 (2)y =x +1x

解:(1)y =3x 2

+1

2x

2 ≥2

3x 2

·1

2x

2 = 6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x ≥2

x ·1

x

=2; 当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2 ∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项

例 已知5

4x <

,求函数14245

y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1

(42)45

x x --g 不是常数,所以对42x -要进

行拆、凑项,

5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??

231≤-+=

当且仅当1

5454x x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。

技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

变式:设2

3

0<

-x ∴2922322)23(22)23(42

=??

? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即??

?

??∈=23,043x 时等号成立。

技巧三: 分离 技巧四:换元

例:求2710

(1)1

x x y x x ++=

>-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

1)591

y x x ≥+?

=+((当且仅当x =1时取“=”号)。 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544

=5t t t t y t t t t

-+-++==++)

当,即t=

时,4

259y t t

≥?+=(当t=2即x =1时取“=”号)。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a

f x x x

=+的单调性。

例:求函数22

4

y x =

+的值域。

24(2)x t t +=≥,则2

24

y x =+221

4(2)4x t t t x =

+=+≥+

因10,1t t t >?=,但1

t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故5

2

y ≥。

所以,所求函数的值域为5

,2

??+∞????

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 例:已知0,0x y >>,且

19

1x y

+=,求x y +的最小值。 错解..:Q 0,0x y >>,且

191x y +=,∴()1992212x y x y xy x y xy ??

+=++≥= ???

故 ()min 12x y += 。

错因:解法中两次连用均值不等式,在2x y xy +≥x y =,在1992x

y

xy

+≥号成立条件是

19

x y

=即9y x =,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:19

0,0,1x y x y >>+=Q ,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当9y x

x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

技巧七

例:已知x ,y 为正实数,且x 2

y 2

2

=1,求x 1+y 2

的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤

a 2+

b 2

2

同时还应化简1+y 2

中y 2

前面的系数为 12

, x 1+y 2

=x

2·1+y 2

2

= 2

x ·

12 +y

2

2

下面将x ,

12 +y

2

2

分别看成两个因式: x ·

12 +y

2

2

≤x 2

+(

12 +y 22 )22 =x 2

+y 2

2 +12 2 =3

4

即x

1+y 2

2 ·x

12 +y 2

2 ≤ 3

4 2 技巧八:

已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab

的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,

再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2

+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2

+34t -31t =-2(t +16t )+34∵t +16

t

≥2

t ·16

t

=8

∴ ab ≤18 ∴ y ≥ 1

18 当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab

令u =ab 则u 2

+2 2 u -30≤0, -5 2 ≤u ≤3 2

∴ab ≤3 2 ,ab ≤18,∴y ≥1

18

点评:①本题考查不等式

ab b

a ≥+2

(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+

∈R b a ,出发求得ab 的围,关键是寻找到ab b a 与+之间的关

系,由此想到不等式ab b

a ≥+2

(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的围.

技巧九、取平方

例:

求函数15()22

y x =<<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=

又0y >

,所以0y <≤当且仅当21x -=52x -,即3

2

x =

时取等号。

故max y = 应用二:利用均值不等式证明不等式

例:已知a 、b 、c R +

∈,且1a b c ++=。求证:1111118a b c ??????

---≥

???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2

”连乘,又111a b c a a a -+-==≥

解:Q a 、b 、c R +∈,1a b c ++=。

111a b c a a a -+-==≥

。同理11b -≥

,11c -≥

。上述三个不等式两边均为正,分别相乘,得

1111118a b c ??????---≥= ???????????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题 例:已知0,0x y >>且

19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值围。 解:令,0,0,

x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞

应用四:均值定理在比较大小中的应用: 例:若

)2

lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=

?=>>,则R Q P ,,的大小关系是 . 分析:∵1>>b a ∴0lg ,0lg >>b a

2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R>Q>P 。

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

利用基本不等式求最值的技巧Word文档

利用基本不等式求最值的技巧 在运用基本不等式ab b a 222≥+与2b a ab +≤ 或其变式解题时,要注意如下技巧 1:配系数 【例1】已知2 30<-x ,从而 8 9)2232(21)]23(2[21)23(2=-+?≤-=-=x x x x x x y ,当且仅当)23(2x x -=即43=x 时,8 9max =y . 说明:这里运用了2)2(b a ab +≤. 2:添加项 【例2】已知23>x ,求3 22-+=x x y 的最小值. 【分析】按照“积定和最小”的思路,由于322-? x x 不是定值,所以应把x 变凑成23)32(21+-x ,使得13 22)32(21=-?-x x 为定值. 【解】由于2 3>x ,所以032>-x ,于是 2 723322)32(21223322)32(21322=+-?-≥+-+-=-+=x x x x x x y , 当且仅当322)32(21-=-x x 即25=x 时,2 7min =y . 3:分拆项 【例3】已知2>x ,求2 632-+-=x x x y 的最小值. 【分析】按照“积定和最小”的思路,必须把2 632-+-=x x x y 分拆成两项,再配凑适当的系数,使得其积为定值.

【解】由于2>x ,所以, 3124)2(2124)2(2)2(3)22(26322=+-?-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当2 42-=-x x 即4=x 时,3min =y . 4:巧用”1”代换 【例4】已知正数y x ,满足12=+y x ,求y x 21+的最小值. 【解】注意到844244)21()2(21=+?≥++=+?+=+x y y x x y y x y x y x y x ,当且仅当x y y x =4即2 1,41==y x 时,8)21(min =+y x . 一般地有,2)())((bd ac y d x c by ax +≥++,其中d c b a y x ,,,,,都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解. 【例5】已知正数z y x ,,满足1=++z y x ,求z y x 941++的最小值. 【解】注意到y z z y x z z x x y y x z y x z y x z y x 499414)941()(941++++++=++?++=++ 36492924214=?+?+?+≥y z z y x z z x x y y x ,当且仅当x y y x =4,x z z x =9,y z z y 49=即2 1,31,61===z y x 时,36)941(min =++z y x . 5:换元 【例6】已知c b a >>,求c b c a b a c a w --+--=的最小值. 【解】设c b y b a x -=-=,,则c a y x -=+,y x ,都是正数,所以42≥++=+++=x y y x y y x x y x w ,当且仅当x y y x =即b c a 2=+时,

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,]b a -∞,[,)b a +∞;单调递减区间:(0,b a ,[,0)b a . 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1)y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 3 2 111 31 222(1)x x x --≥??-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 30,3202 x x <<->∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=2x arc = “=”号成立,故 23 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

利用基本不等式求最值的类型及方法

1 利用基本不等式求最值的类型及方法 1 解析:y x 2(x 1) (x 2(x 1) 1) 芳 1(x 1) -1 ?」1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ① a 2 b 2 2ab a 2 b 2 ab (a 、b R ),当且仅当a = b 时,"=”号成立; 2 1 2 2(x 1) ② a b 2 ab 2 a b ab (a 、b R ),当且仅当a = b 时,“=”号成立; 2 当且仅当 1)即x 2时,“ 5 ”号成立,故此函数最小值是 -。 2 ③ a 3 b 3 c 3 3abc 3 abc ― b 3 3 3 c ( (a 、 立; ④ a b c 3v abc abc a b 3 c (a abc 3 a 、 b 、 c R ),当且仅当a = b = c 时,“=”号成 b 、 c R ),当且仅当a = b = c 时,“=”号 成立? 注:①注意运用均值不等式求最值时的条件:一 “正”、二“定”、三“等”; 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: ①y x 2 (3 2x)(0 x 2 ② y sin xcosx(0 x ) 2 ② 熟悉一个重要的不等式链: b 2 2 解析:①Q 0 x - ,? 3 2 2x ?- y 当且仅当 (3 2x)(0 x 3 2x 即 x ,?? sin x 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 二、函数 f(x) ax X b 0)图象及性质 (1)函数 f(x) ax b a 、 X b 0图象如图: ⑵函数 f(x) ax b a 、 X b 0性质: ①值域:( J 2 ab] [2 一ab,); ②单调递增区间:( 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 sin 2 x sin 2 x coSx 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 「 -------- —) 刃 .2 sin x 2cos x (0 tan x 2,即 x arctan^^ 时“=”号成立, );单调递减区间: b ], a ,[ (0, ,0) ? 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x ) (0 x 1)的最小 值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax - (a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y 1 x 2^(x 1) 的最小值。 f (x ) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则 f(xj f(X 2) (X 1 X 2) (— —) (X 1 X 2)4 匹 为 (X 1 X 2)4 , x-1 X 2 X !X 2 X 1X 2

高中数学x基本不等式--三项注意

基本不等式----三大注意事项例题解答 基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“(0,0)2 a b ab a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面. 一个技巧: 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如22 2a b ab +≥逆用就是22 2a b ab +≤,2a b ab +≥ (0,0)a b >>逆用就是2()2 a b ab +≤等. 两个变形: (1) 222 1122a b a b ab a b ++≤≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 22 2()22 a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 例题. 一、注意运用不等式链 例1 已知0a >,0b >,1a b +=,求 11a b +的最大值. 解析:由0a >,0b >,又2 112a b a b +≤+,因为1a b +=,所以21112a b ≤+,所以11a b +4≥,当且仅当12 a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

一个不等式的七种证明方法

一个不等式的七种证明方法 证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法 证法一:(1)当ac +bd ≤0时,显然成立. (2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2 因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二: (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)

=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd . 故命题得证. 分析三:用比较法 证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法 证法四:为了避免讨论,由ac +bd ≤|ac +bd |, 可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法 证法五:不妨设???==???==ββ ααsin cos ,sin cos 2 211r d r c r b r a (r 1,r 2均为变量). 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+?+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

文本预览
相关文档 最新文档