当前位置:文档之家› SXA224高考数学必修_例谈无理函数的值域求法

SXA224高考数学必修_例谈无理函数的值域求法

SXA224高考数学必修_例谈无理函数的值域求法
SXA224高考数学必修_例谈无理函数的值域求法

无理函数的值域求法

求无理函数值域的方法较多,涉及化归转化、函数与方程、数形结合等数学思想方法,对培养学生思维的灵活性、创造性大有裨益. 主要方法有:配方法、换元法、利用函数的单调性、均值不等式、转化为方程有解、数形结合法、构造模型法等.

一、应用配方法求值域

1.4y =求函数.

解:

240(1)44

02

244

2,4].

y x =≤--+≤∴≤∴≤-≤∴原函数的值域为[

评注:配方法适用于解析式中含有二次函数的求值域问题.

二、应用换元法将无理函数转化为二次函数或三角函数

例2.求函数x x y 21-+=的值域.

分析:

, 则x 相当于二次项.只需对 x 21-换元,即可将问题转化为二次函数的值域问题. 解:令t x =-21,则2

12

t x -=(0≥t ) ,1)1(2

12122+--=+-=t t t y ,0≥t 1≤∴y ,即值域为(]1,∞-.

评注:形如d cx b ax y +±+= 的函数均可用此法求值域.

例3.求函数x x y -+=1的值域.

解:函数的定义域为[]1,0,令θ2sin =x ,???

???∈2,0πθ, 则θθcos cos 12==-x

,

sin cos )4

y πθθθ∴=+=+ 又??

????∈+43,44πππθ

sin()4πθ?∴+∈???

,

即函数的值域为.?? 评注:三角换元时常需选择角的范围. 选择角的范围时不仅要确保换元前后的等价性,还要有利于后续的化简.

例4.

求y =[4,2]-在上的值域.

解:

令u =

,v =则 226u v += (0u ≥,0v ≥)

设u θ

,v θ=02πθ??≤≤ ??

?

则()))3f πθ?θθθθ==+

由02πθ≤≤

,得5336πππθ≤+≤ 知1sin()123

πθ≤+≤

故所求值域为

三、利用函数的单调性

5.[0,1],x y ∈=已知求函数.

解:

122y x y ==

,

调递减

min max [0,1]1(0)

202(1)

1,2].

y x y x y x ∴=∈∴===-==∴内单调递增,

当时当时原函数的值域为 例6.求函数x x x f -=

1)((14x <≤)的值域. 解:函数x y x

y -==和1都在区间(]4,1 上单调递减, ∴函数x x

x f -=1)(在区间(]4,1上是减函数. 于是)1()()4(f x f f ≤<,即值域为??? ??-

,47. 四、应用均值不等式

例7.|y x =求函数.

:

22222max 11(12211.2x x y x x x x y +-==∴=-==当且仅当,即

∵y ≥0 ]

1,

0[函数的值域是∴ 例8.求函数

y =. 解:令t =则0,t ≥2.1t y t =+ 当t=0时,y=0;

当t>0时,2110.112

t y t t t

<==≤++ ∴原函数的值域为10,.2??????

五、转化为方程有解

例9.求函数y=x-122+x 的值域.

解法一:原函数可化为x-y=122+x ,即x>y 且(x-y)2=2x 2+1,

亦即x>y 且x 2+2xy+1-y 2=0,

原题即求关于x 的方程x 2+2xy+1-y 2=0在(y,+∝)有解的条件.

记f(x)=x 2+2xy+1-y 2=0,显然有f(y)=2y 2+1>0。则依题意可得

?????≥---=?>-0

)1(4)2(2222y y y y x ,解得22-≤y . 故原函数的值域为??

? ??-∞-22,. 解法二: 原函数可化为x-y=122+x ,即x>y 且(x-y)2=2x 2+1,

亦即x>y 且x 2+2xy+1-y 2=0,由函数的定义域为R,

令22(2)

4(1)0y y ?=

---≥,得

22

y

y ≥

≤ 又

|0x x < y ∴≤即原函数的值域为??? ?

?-∞-2

2,. 六、数形结合法

例10.求函数()f x =.

()()()()()223:21,0,1y y x y y x --==

-+=≥--解设则原函数化为f x 从而问题转化为: 求半圆弧()2221(0)x y y -+=≥上的动点P 与定点A(-1,-3)连线斜率的取值范围,

可得斜率的取值范围为34

????.

七、构造模型求值域

例11.

求函数y 的值域. 分析一: 构造复数模型,利用复数模的几何意义建立不等关系(a b a b +≥+)

. 解法一

:.y =

设12y xi =-,23(1)y x i =++,

则1y

,2y =

则12125y y y y y i =+≥+=+=

故所求值域为)∞.

分析二:构造距离模型,利用对称求值域.

解法二

:y

表示:平面直角坐标系中x 轴上的点P (x,0)到两定点A (0,2)、B (-1,3)的距离之和. 记点A 关于x 轴的对称点为'A ,则()'0,2A -,

故有'y A B ≥

故所求值域为)∞.

八、构造向量求最值

例12.

求函数y .

解: 原函数化为

.y R =其定义域为

()()()()223,1,3,4,|31,||316.a x b x a x b x =-=+=-+=++设则|

()

6,3||3 5.a b a b ∴-=--∴-= ||||||||a b a b -≤-又,,.a b 当且仅当与方向相同时取等号

||||||35,

a b ∴-≤()()()3,13,40,.x t x t -=+>当时取等号

即x=5时等号成立.

∴当x=5时,min y =-

例13.求函数26y x +的最大值.

解: 原函数化为()[]222,5,1.y x x =?++∈- 设()()()

21,2,92,2,||5,|| 3.a b x x a b ==-++==则

())2||||35,,2,.y a b a b a b x ∴-=?≤=+当且仅当方向相同,即1,2=t 时取等号

max 2, 2.x y ∴==当时

综上所述, 求无理函数值域或最值的方法较多, 需根据条件灵活选用.

高中数学必修一函数的值域求法

最新精题高一数学必修一函数的值域 2配方法]?3,5x??x2x?(求函数y?3例1. 的值域; 2的表达式,f(a),记∈[0,1]f(a)为其最小值,求-练习已知函数y=-3x+2ax1,x 的最大值并求f(a) 2?6x?5x函数y??求2. 的值域;例 ,的函数为常数d?且a0)、、、(????yaxbcxdabc 换元法:形如;常用换元法求值域x?y214x?? 3. 例的值域求函数 利用函数的单调性求函数的值域2?y6] 上的最大值和最小值.在区间例4求函数[2,1x?

2)的取值范围是(在R上单调递增,且f(m )>f(-m),则实数m1练习函数y=f(x) ) ∞,-1 )∪( 0,+C.(-1,0 ) D. (-∞A. (-∞,-1 ) B. ( 0,+∞) 2x+2-1-x 的最大值为,最小值为y= 。[0,1]2.已知x∈,则函数3.若函数y=f(x)的值域是[-2,3],则函数y=∣f(x)∣的值域是() A.[-2,3] B.[2,3] C.[0,2] D.[0,3] 2ax?bx?c;判别式法:形如111域y)的函数用判别式法求值不同时为零(a?,a 212ax?bx?c2221的值域;求函数例4 ?y?x x cx?d(a?0)y?分离常数法:形如的函数也可用此法求值域;bax?13x??y 例5求函数的值域;2x? 数形结合法。的值域?4|x?1|?|x|y? 6求函数(方法一可用到图象法)例

2xxxy( ) ,3],的最大值、最小值分别为1.函数∈=4[0-当堂检测3 0 (D)4,0 (B)2,0 (C)3,(A)4,1( ) .函数的最小值为2?y2xx?1(D)4 (B)1 (A)(C)2 232)(xy??)〕上的最大值、最小值分别是( 3、函数在区间〔0,52?x33333,,0,0 B.,无最小值。 D. A. C. 最大值72727)(ff(x)的值域为[a,b],则(x+a)的值域为.定义域为4R的函数y = ] ba+[-a,a[0,b-a] C.[,b] D.[2A.a,a+b] B.) (-.函数5y=x+2x1的值域是11 0} |y≤.y.{y|y≤} C.{|y≥0} D{yB|A.{yy≥} 22252]?[?4,,则m,值域为的定义域为[0,m]的取值范围是()6.若函数y=x-3x-44333),??[,4]],[3(]0(,4 D A B C 222 2xxyx (27.函数=4--1 ∈-.______3)2,的值域为2.______8.函数的值域为x?x2?y ???2。的值域是9、函数0,3??5(?xx?4xy x4?13??y2x?3。、函数的值域是10 2?(x)?4xf?4x?8.函数11 .的值域为 x?3?x3?y?y)0x?(。;.函数的值域是12.函数的值域是 5x?2x?52x2?y?x?4 13函数的值域————————————312?xy?x?的值。.若函数14的定义域和值域都是[1,b](b>1),求b22 15.求下列函数的值域:2x?x?y x?2?x?1y)(2)1 (21x?x? 2222? +x+3k+5=0(k的最大值。R)的两个实根,求.已知16x、x是方程x-(k-2)x+kx2211

函数值域的求法(精选例题)

函数值域的求法 1、(观察法)求下列函数的值域 (1)求函数y1=121 1x +的值域 (]1,0 (2)求函数y1=2-x 的值域。 (]2-,∞ 2、(配方法)求下列函数的值域 (1)求函数225,[1,2]y x x x =-+∈-的值域 ][84, (2)求函数y =的值域: ][20, (3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是( ) C A.-1241 B.18 C.8 D.43

3、(换元法)求下列函数的值域 (1)21y x =+[)∞+,3 (2)4y x =++ ][234,1+ (3)求函数y=32 ++x x 的值域 ??????21,0 (4)求函数y = ][2,1 (5)求函数 y=12243++-x x x x 的值域 ??????41,41-

4、(分离常数法)求下列函数的值域 (1)求值域(1)1 (4)2x y x x -=≥-+ ()??? ???∞+∞,,251- (2)求函数122+--=x x x x y 的值域。 ?????? 131 -, 5、(判别式法)求下列函数的值域 (1)求函数的值域2222 1x x y x x -+=++ ][51, (2)求函数3274222++-+=x x x x y 的值域。 ?????? 229 -, (3)已知函数12)(22 +++=x b ax x f x 的值域是[1,3 ],求实数a , b 的值. a=2或-2,b=2

6、(单调性法)求下列函数的值域 (1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。 (2)-48f = (2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间???? ??-34,14上的最大值和最小值. max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x = 7、(数形结合法)求下列函数的值域 (1)求函数y=4 1362+-x x 4-542++x x 的值域 (]265-, (2)求函数y=4 12++x x 4-1 - 2 +x x 的值域 ()1,1-

高中数学必修一函数专题:二次函数值域

高一数学必修一函数专题:二次函数值域 第一部分:计算二次函数的值域 题型一:计算二次函数c bx ax x f ++=2 )(在定义域R x ∈上的值域。 解法设计:第一步:计算二次函数的对称轴a b x 2- =。 第二步:第一种情况:当0>a 时:二次函数c bx ax x f ++=2 )(开口向上。 二次函数)(x f 在对称轴a b x 2-=处取得最小值。 最大值为∞+。 第二种情况:当0

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

高中函数值域的经典例题12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

高一必修一数学函数的定义域值域专题训练打印版

高一必修一数学函数的定义域值域专题训练打 印版

函数定义域、值域专题教案与练 习 一、函数的定义域 1.函数定义域的求解方法 求函数的定义域主要是通过解不等式(组)或方程来获得.一般地,我们约定:如果不加说明,所谓函数的定义域就是自变量使函数解析式有意义的实数的集合. (1)若)(x f 是整式,则定义域为全体实数. (2)若)(x f 是分式,则定义域为使分母不为零的全体实数.?? (3)若)(x f 是偶次根式,则定义域为使被开方式为非负的全体实数. (4)若)(x f 为对数式,则定义域为真数大于零的全体实数。 (5)若)(x f 为复合函数,则定义域由复合的各基本的定义域所组成的不等式组确定.如:)(x f 的定义域为],[b a ,则复合函数)]([x g f 的定义域应由不等式b x g a ≤≤)(解出. (5)由实际问题确定的函数,其定义域由自变量的实际意义确定. 2.求函数定义域的常见问题: (1)若已知函数解析式比较复杂,求定义域时通常根据各种条件列不等式组求解; (2)由)(x f y =的定义域,求复合函数)]([x g f 的问题,实际上是已知中间变量)(x g u =的值域,求自变量x 的取值范围问题; (3)对含有字母参数的函数,求其定义域时注意对字母参数的一切允许值分类讨论; (4)若是实际问题除应考虑解析式有意义外,还应使实际问题有意义. 二、求函数的值域常用方法 (1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数值域求解; (2)单调性法:利用函数的单调性求解 (3)换元法:通过对函数解析式进行适当换元,可以将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围求函数的值域。 三、初等函数:指数函数、对数函数、幂函数的定义域、值域 1.指数函数:)1,0()(≠>=a a a x f x ,定义域:R x ∈;值域:),0()(+∞∈x f ; 2.对数函数:)1,0(log )(≠>=a a x x f a ,定义域:),0(+∞∈x ;值域:R x f ∈)( 3.幂函数:α x x f =)(()R ∈α,其定义域、值域随α的取值而不同,但在),0(+∞∈x 都有意义。

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

函数值域的求法及例题

函数值域的求法 在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法. [例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2| (5)y =2x -3+134-x (6)y =2 224)1(5 +++x x x (7)y =5 21+-x x (8)y =1223222++--x x x x (9)y =3-2x -x 2 x ∈[-3,1] (10)y =2 1322+-x x 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域. 对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域. 对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域. 解:(1)y ∈R (2)y ∈{1,0,-1} (3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1] 时,得y ∈[-1,8] (4)对于y =|x +1|-|x -2|的理解,从几何意义入 手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3 -3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3] (5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域. ∵4x -13≥0 ∴x ∈[4 13 ,+∞)令t =134-x 则得:x =4132+t

高中数学必修一函数概念定义域值域教学方案

高中数学必修一函数概念定义域值域教学方案(总16页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

函数的概念 函数的定义: 设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((?B )叫做函数y=f(x)的值域. 对函数概念的理解需注意以下几点: ①函数首先是两个数集之间建立的对应,A 、B 都是非空数集,因此定义域(或值域)为空集的函数不存在。 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的一一对应或多一对应 ③认真理解()x f y =的含义:()x f y =是一个整体,()x f y =并不表示f 与x 的乘积,它是一种符号,它可以是解析式,也可以是图像,也可以是表格 ④函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . 【例1】判断下列对应能否表示y 是x 的函数: (1)x y =;(2)x y =;(3)2x y =;(4)x y =2;(5)122=+x y ;(6)122=-x y 。 【练1】判断下列图象能表示函数图象的是( ) (A)

区间的概念和记号 设a,b∈R ,且aa,x≤b,x

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

求值域的方法,带例题

1.直接观察法:利用常见函数的值域来求值域或者通过对函数定义域、性质或者图像的观察,结合函数的解析式,求得函数的值域。 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 44|2-≥};当a<0时,值域为{a b a c y y 44|2 -≤}. 练习1.求下列函数的值域 ① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1 += x x y 2.分离常数法:分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。 练习2.求函数1 1)(+-= x x e e x f 的值域。 3.有解判别法: 有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数是否为0的讨论 例1.求函数y=1 1 22+++-x x x x 值域 解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题?≥0,

即0)14(-)1(22≥+y-y , 解得33 1 ≤≤y 且 y ≠1. 综上:值域{y|33 1 ≤≤y }. 例2.求函数6 6 522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?) 解:把已知函数化为(2)(3)36 1(2)(3)33 x x x y x x x x ---===- -+++ (x ≠2且 x ≠-3) 由此可得 y ≠1 ∵ x=2时 51-=y ∴ 5 1 -≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠5 1 -} 练习3(1)31 (1)2 x y x x +=≤- (2)22 1x x y x x -=-+ 4.二次函数在给定区间上的值域。 例3. 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142 ∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ④]5,0[,142∈+-=x x x y ; 注:对于二次函数)0()(2 ≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a b x 2-=时,其最小值 321-1-2-3 654321-1-2x O y

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

必修一函数定义域值域和单调性奇偶性练习题

高一数学函数练习题 一、 求函数的定义域 1、 求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,, 则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y =⑹ 225941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y =⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是

LS 高一数学函数值域求法及例题

君子有三乐,而王天下不与存焉。父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。 函数值域(最值)的常用方法 姓名: 一、基本函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????, 当0a <时的值域为24,4ac b a ??--∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 二、其它函数值域 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2 、求函数y = 的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数2241x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 274222++-+=x x x x y 的值域. 2、求函数2122 x y x x += ++的值域. 3、 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用 三角代换)等) 1、求函数x x y 41332-+-=的值域. 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数13y x x =-+-的值域。 七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+), 利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.) 1、求函数1(0)y x x x =+>的值域.

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

必修一值域定义域练习题

1、设集合M={x |0≤x ≤2},N={y |0≤y ≤2},从M 到N 有4种对应如下图所示: 其中能表示为M 到N 的函数关系的有。 2、求下列函数的定义域: )(x f =1+x + x -21 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f( ); (3)y=f(; (4)y=f(x+a)+f(x-a). 3、已知函数)(x f =3x 2-5x +2,求)3(f ,)2(-f ,)1(+a f 。 4、下列函数中哪个与函数y =x 是同一个函数? (1)2)(x y =;(2)33x y =;(3)2x y = x 1)31()31 -++x f x

5.给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2. 试分别求出f(x)的解析式. 变式训练1:(1)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); (2)已知f (x )满足2f (x )+f ( )=3x ,求f (x ). 6 求下列函数的值域: (1)y= (2)y=x-; (3)y=. 变式训练2:求下列函数的值域: (1)y= ; (2)y=|x|. 7.若函数f (x )=x 2 -x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. .8.判断函数f(x)=在定义域上的单调性. 需要答案回复 x x x 1;122+--x x x x x 21-1e 1e +-x x 521+-x x 21x -2112-x

相关主题
文本预览
相关文档 最新文档