当前位置:文档之家› 旋转变压器

旋转变压器

旋转变压器
旋转变压器

旋转变压器

旋转变压器(resolver/transformer)是一种电磁式传感器,又称同步分解器。它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。其中定子绕组作为变压器的原边,接受励磁电压,励磁频率通常用400、3000及5000HZ等。转子绕组作为变压器的副边,通过电磁耦合得到感应电压。

一、旋转变压器简介

旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电压幅值与转子

转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故也称为解算器。

旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则各有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故也称为解算器。

旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则各有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。

二、工作原理

定子绕组D1-D2接交流电源激磁,转子绕组Z1-Z2接负载Z L当主令轴带动转子转过θ角时,转子各绕组中产生的感应电压分别为

换算式

换算式

式中k为一相定、转子绕组的有效匝数比(变比)。如用转子绕组激磁,定子绕组输出时表达式相同(只是k值不同)。采用不同接线方式或不同的绕组结构,可以获得与转角成不同函数关系的输出电压。采用不同的结构还可以制成弹道函数、圆函数、锯齿波函数等特种用途的旋转变压器。

利用两台相同的正、余弦旋转变压器可组成单通道测角系统。一台旋转变压器为发送机,另一台为控制变压器。发送机由交流电源激磁。旋转变压器的精度为6′,单通道系统的精度不小于6′。为了提高系统的控制精度,可采用双通道测角系统(图2)。用四台结构相同的旋转变压器,两台XZ1与XZ2组成粗通道测角系统,另外两台XZ3与XZ4组成精通道测角系统。XZ1与XZ3

旋转变压器原理图

、XZ2与XZ4分别通过升速比为i(i=15~30)的升速器相连接。当主令轴带动粗通道的XZ1转过θ1角时,精通道的XZ3将转过iθ1角,XZ2与负载同轴,其转角为θ2时,XZ4的转角为iθ2。粗通道的输出电压Uc1=kU r sin δ,精通道XZ4的输出电压为Uc2=kU rsin iδ,式中δ=θ1-θ2。二者的输出电压经过粗精转换器处理后再经放大装置驱动负载。应用双通道测角系统可组成双通道伺服系统,当误差角δ较小时用精通道信号控制,误差角δ较大时用粗通道信号控制。因此系统的控制精度最高可达3″~7″。

为了减少减速器齿轮间隙造成的非线性误差,可采用电气变速式双通道测角系统,即采用多极旋转变压器。它是在一个机体内安装单极和多极两台旋转变压器,而共用一根轴。用单极变压器组成粗通道系统,多极旋转变压器组成精通道系统。这样既能提高精度又能简化结构。

三、旋转变压器的分类

按输出电压与转子转角间的函数关系,主要分三大类旋转变

旋转变压器

压器:

1.正--余弦旋转变压器----其输出电压与转子转角的函数关系成正弦或余弦函数关系。

2.线性旋转变压器----其输出电压与转子转角成线性函数关系。线性旋转变压器按转子结构又分成隐极式和凸极式两种。

3.比例式旋转变压器----其输出电压与转角成比例关系。

四、旋转变压器的应用

旋转变压器是一种精密角度、位置、速度检测装置,适用于所有使用旋转编码器的

旋转变压器

场合,特别是高温、严寒、潮湿、高速、高震动等旋转编码器无法正常工作的场合。由于旋转变压器以上特点,可完全替代光电编码器,被广泛应用在伺服控制系统、机器人系统、机械工具、汽车、电力、冶金、纺织、印刷、航空航天、船舶、兵器、电子、冶金、矿山、油田、水利、化工、轻工、建筑等领域的角度、位置检测系统中。也可用于坐标变换、三角运算和角度数据传输、作为两相移相器用在角度--数字转换装置中。

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输 出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成 线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度 --数字转换装 置中。 按输出电压与转子转角间的函数关系 ,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、( XDX ----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种, 前者(XX )实际上也是正--余弦旋转变压器, 不同的是采用了特定的变比和接线方式。后者( XDX 称单绕组线性旋转变压器。 变化的交变电压信号。 应电势的幅值,便可间接地得到转子相对于定子的位置,即 角的大小。 以上是两极绕组式旋转变压器的基本工作原理, 在实际应用中,考虑到使用的方便性和检测精度等因素, 常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1. 鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。 图中SS 2为定子主绕组,K 1K 2 为定子辅助绕组。当 S 1S 2 和 K 1K 2中分别通以交变激磁电压时 V s = V m Cos t (4 3);V = V sin t (4—4)4) t (4 3);V s =V m Sin t (4 4) 根据线性叠加原理,可在转子绕组 感应电势 V BS 和V BK 之和,即 比例式旋转变压器(XL ) ----其输出电压与转角成比例关系。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子 当激磁电压加到定子绕组时,通过电磁耦合, 3. 原理图。图中Z 为阻抗。设加在定子绕组 (旋转一周)之间空气间隙内磁通分布符合正弦规律, 因此, 转子绕组便产生感应电势。图 4-3为两极旋转变压器电气工作 的激磁电压为 V S 《sin t 图4-3两极旋转变压器 根据电磁学原理,转子绕组 B 1B 2 V B KV s sin KV m sin sin t 式中K ――旋转变压器的变化; (4 — 1) 中的感应电势则为 4— 2) (4— 2) V m — V s 的幅值; ――转子的转角,当转子和定子的磁轴垂直时, 安装在机床丝杠上,定子安装在机床底座上,则 的角度,它间接反映了机床工作台的位移。 =0。如果转子 角代表的是丝杠转过 由式(4 — 2)可知,转子绕组中的感应电势 V B 为以角速度3随时间 t 其幅值 KV m sin 随转子和定子的相对角位移 以正弦函数变化。因此,只要测量出转子绕组中的感 (4— 4) Bl B 2 中得到感应电 势 V s 和 V k 在 Bl B 2 中产生

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值 sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感 应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1.鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

旋转变压器原理及应用

旋轉變壓器原理及應用 上海贏雙電機有限公司 ⒈概述 ⒈⒈旋轉變壓器的發展 旋轉變壓器用於運動伺服控制系統中,作為角度位置的傳感和測量用。早期的旋轉變壓器用於計算解答裝置中,作為模擬電腦中的主要組成部分之一。其輸出,是隨轉子轉角作某種函數變化的電氣信號,通常是正弦、余弦、線性等。這些函數是最常見的,也是容易實現的。在對繞組做專門設計時,也可產生某些特殊函數的電氣輸出。但這樣的函數只用於特殊的場合,不是通用的。60年代起,旋轉變壓器逐漸用於伺服系統,作為角度信號的產生和檢測元件。三線的三相的自整角機,早於四線的兩相旋轉變壓器應用於系統中。所以作為角度信號傳輸的旋轉變壓器,有時被稱作四線自整角機。隨著電子技術和數字計算技術的發展,數字式電腦早已代替了模擬式電腦。所以實際上,旋轉變壓器目前主要是用於角度位置伺服控制系統中。由於兩相的旋轉變壓器比自整角機更容易提高精度,所以旋轉變壓器應用的更廣泛。特別是,在高精度的雙通道、雙速系統中,廣泛應用的多極電氣元件,原來採用的是多極自整角機,現在基本上都是採用多極旋轉變壓器。 旋轉變壓器是目前國內的專業名稱,簡稱“旋變”。俄文裏稱作“ВращающийсяТрансформатор” ,詞義就是“旋轉變壓器”。英文名字叫“resolver”,根據詞義,有人把它稱作為“解算器”或“分解器”。 作為角度位置傳感元件,常用的有這樣幾種:光學編碼器、磁性編碼器和旋轉變壓器。由於製作和精度的緣故,磁性編碼器沒有其他兩種普及。光學編碼器的輸出信號是脈衝,由於是天然的數字量,數據處理比較方便,因而得到了很好的應用。早期的旋轉變壓器,由於信號處理電路比較複雜,價格比較貴的原因,應用受到了限制。因為旋轉變壓器具有無可比擬的可靠性,以及具有足夠高的精度,在許多場合有著不可代替的地位,特別是在軍事以及航太、航空、航海等方面。 隨著電子工業的發展,電子元器件集成化程度的提高,元器件的價格大大下降;另外,信號處理技術的進步,旋轉變壓器的信號處理電路變得簡單、可靠,價格也大大下降。而且,又出現了軟體解碼的信號處理,使得信號處理問題變得更加靈活、方便。這樣,旋轉變壓器的應用得到了更大的發展,其優點得到了更大的體現。和光學編碼器相比,旋轉變壓器有這樣幾點

电机多极旋转变压器误差计算的分析

多极旋转变压器误差计算的分析 多极旋转变压器电气误差计算方法,GJB2143—94国家军用标准《多极和双通道旋转变压器通用规范》规定,以基准电气零位为参考点,在所测正、负各点偏差中,取其中绝对值最大偏差作为电气误差。而多极旋变老技术标准却规定,取其中各点正、负最大的偏差绝对值之和的1/2作电气误差。二者误差计算方法截然不同。本文对这两种计算方法进行比较与分析。 1误差表示方法 在误差测量中,有两种误差表示方法:一种是绝对误差法,一种是相对误差法。绝对误差法,一般只说明测量值与实际值的偏离程度,不能说明测量的准确度。而多极旋变老技术标准,采用的则是绝对误差法,它表示的电气误差,代表的是测量值偏离0″是多少值,且不管它测量时参考点如何取,测出的结果都是一样的。即1台电机造定后,它的绝对误差基本上是一个不变量。但它并不代表相对于基准电气零位的准确度是多少,相对误差法则只代表相对于基准电气零位的准确度是多少,国军标GJB—2143—94,采用的便是相对误差法,它表示的电气误差,便是表示相对于基准电气零位的准确度是多少。例如,1台绝对误差为10″的多极旋变,选用不同的参考点测试,它可由|-10″|+|+10″|之和的1/2得到10″,也可由|0″|+|-20″|之和的1/2得到10″等。如果|0″|+|-20″|情况刚好是以基准电气零位为参考测试出现,尽管电机标明的电气误差为10″,但实际使用时将会产生-20″的误差,这就是绝对误差法不能表明准确度的原因。如果用国军标相对误差法,该电机的电气误差则应标为20″,这样它的准确度就很明确了。使用中,只要以基准电气零位为参考点,它产生的误差,绝对不会大于电机标明的20″。即从误差表示的角度来看,国军标GJB-2143-94规定的误差计算方法更合理,它符合使用实际,对用户有利。而老技术标准规定的误差计算方法,既使知道了产品的电气、误差是多少,使用中也可能大大超过这个要求,不科学。 2产品生产和测试 从误差表示的角度看,老技术标准用绝对误差法计算电气误差不科学,不符合使用实际。但从评判产品质量上看,老技术标准绝对误差法合理,而国军标相对误差法反而不合理。因绝对误差法评定产品的质量是客观的,1台电机的误差是多少就是多少,不会因测试时选择的参考点不同而发生变化。相对误差法评定产品质量则带有很强的主观性,1台电机,测试选定不同的基准电气零位,测出的电气误差是不一样的。即1台绝对误差合格的电机,它的相对误差不一定合格。相对误差不合格的电机,也不一定相对误差就不能合格。只要合理地选择基准电气零位,相对误差不合格的电机也可变合格。由此给测试工作带来很大麻烦。如果测试人员简单按技术条件办事,相当于提高了对产品的要求,将造成大量的废品率。为了克服这一弊病,放宽对产品的要求,测试人员在测试时,就不能简单地定一个基准电气零位,必须要待测试完后,对数据进行分析,然后选择好合理参考点作基准电气零位,以使相对误差最小,提高产品合格率。合理参考点的选取,单通道多极旋变有多少极对数,就有多少个点可供作基准电气零位,不同变换出线标志,仍符合向量图。若变换出线标志,可供作基准电气零位的点则增加为极对数乘4,仍符合向量图。双通道多极旋度,变换出线标志,可在90°位置提供4个点作基准电气零位,仍符合向量图。双通道可供选择的点比单通单少得多,

旋转变压器原理及其在自动控制中的应用

旋转变压器原理及其在自动控制中的应用.txt婚姻是键盘,太多秩序和规则;爱情是鼠标,一点就通。男人自比主机,内存最重要;女人好似显示器,一切都看得出来。旋转变压器原理及其在自动控制中的应用 摘要:介绍旋转变压器(简称旋变)分类、结构特点、工作原理和解码方法,以及在各行各业中的应用,还有与其相关的工业设备(SMARTCAM)的应用特点。 关键词:旋转变压器,SMARTCODER,SMARTCAM 旋转变压器 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,主要分三大类旋转变压器: 1.正--余弦旋转变压器----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2.线性旋转变压器----其输出电压与转子转角成线性函数关系。线性旋转变压器 按转子结构又分成隐极式和凸极式两种。 3.比例式旋转变压器----其输出电压与转角成比例关系。 结构说明 由于我公司只销售日本多摩川公司的正余弦旋转变压器,所以在此介绍的旋转变压器皆为正余弦型的。 旋变由转子和定子绕组构成,并且两者相互独立,初级和次极线圈都绕在定子上,转子由两组相差90度线圈组成,采用无刷设计,如图1所示。 转子绕组定子绕组 图1 图2是旋转变压器电气示意图。 ER1-R2 励磁电压

Ve ES2-S4 图2 旋变的输入输出电压之间的具体函数关系如下所示: 设转子转动角度为θ,初级线圈电压(即励磁电压): ER1-R2=E*Sin2πft f:励磁频率, E:信号幅度 那么输出电压ES1-S3=K*E*Sin2πft*Cosθ; ES2-S4=K*E*Sin2πft*Sinθ K:传输比,θ:转子偏离原点的角度 令θ=ωt,即转子做匀速运动,那么其输出信号的函数曲线可表示为图3所示, 图中信号频率为f,即励磁信号频率,最大幅度为E,包络信号为Sinωt和Cosωt,解码器就是通过检测这两组输出信号获取旋变位置信息的。 不难看出,励磁频率越高,旋变解码精度也就越高,而励磁电压幅度则对解码没有很明显的影响。只需达到一定的电压数值即可, 一般来讲3V~120%额定电压。 (旋变转子旋转角度) 电气角 图3 解码 日本多摩川公司推出了自己的多款解码芯片,其原理都基本相同,如图4所示,解码芯片原理框图中如果图中Vsr=0, 那么θm=θrd. 即可解码出转子转角。 乘法器 SIN COS D/A θrd 相敏解 调器 积分器 压控振 荡器 VSR=kE1sinωt*sin(θm-θrd) 1相励磁,两相出力

旋转变压器与编码器的区别

从原理上讲,旋转变压器是采用电磁感应原理工作,随着旋转变压器的转子和定子角位置不同,输出信号可以实现对输入正弦载波信号的相位变换和幅值调制,最终由专用的信号处理电路或者某些具备一定功能接口的DSP和单片机,根据输出信号的幅值和相位与正弦载波信号的关系,解析出转子和定子间的角位置关系。 旋转变压器有单对极和多对极之分,n对极的又被习惯地称为n倍速。在一个极对的角度范围内(单对极就是一整圈),旋转变压器信号经处理后的结果一般都具有反映绝对位置的特性,即可反映当前角位置是处于0~360度(电角度)中的多少度上。目前商用分辨率可以做到2的12次方以上,直至2的16次方,再高就比较困难了。 典型的旋转变压器本体由硅钢片和漆包线构成,不包含任何电子元件,因而抗震能力和温度特性极佳,因而其抗恶劣环境的工作能力远胜于普通旋转编码器,在军工产品中具有广泛应用。 典型的旋转编码器采用光栅原理,用光电方法进行角位置检测,又可分为增量式和绝对式等类型. 旋转变压器 简称旋变,是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差 绝对型测小角度相对不准,但大角度无累积误差 说简单点的编码器更精确采用的是脉冲计数旋转变压器就不是脉冲技术而是模拟量反馈 据我所知区别如下:1、编码器多是方波输出的,旋变是正余弦的,通过芯片解算出相位差。2、旋变的转速比较高,可以达到上万转,编码器就没那么高了。 3、旋变的应用环境温度是-55到+155,编码器是-10到+70。 4、旋变一般是增量的。根本区别在于:数字信号和模拟正弦或余弦信号的的区别。resolver 有2组信号,可以分别处理成增量信号和绝对值型号。今后会越来越多地得到推广使用。

多极旋转变压器误差计算的分析

测试技术!"""""""""""""""""""""""""""""""""" #$%##$&’()*+$ 多极旋转变压器误差计算的分析 收稿日期,-..-/.0/-1张文海23杨铭- 425成都电机厂3四川成都62..027-5成都寄生虫研究所3四川成都62..829中图分类号,:;<=<5-文献标识码,>文章编号,2..2/6=8=4-..-9.0/..8-/.- 多极旋转变压器电气误差计算方法3 ?@>-28A -28/-28< /18规定的误差计算方法更合理3它符合使用实际3对用户有利E而老技术标准规定的误差计算方法3既使知道了产品的电气D误差是多少3使用中也可能大大超过这个要求3不科学E K产品生产和测试 从误差表示的角度看3老技术标准用绝对误差法计算电气误差不科学3不符合使用实际E但从评判产品质量上看3老技术标准绝对误差法合理3而国军标相对误差法反而不合理E因绝对误差法评定产品的质量是客观的32台电机的误差是多少就是多少3不会因测试时选择的参考点不同而发生变化E相对误差法评定产品质量则带有很强的主观性32台电机3测试选定不同的基准电气零位3测出的电气误差是不一样的E即2台绝对误差合格的电机3它的相对误差不一定合格E相对误差不合格的电机3也不一定相对误差就不能合格E只要合理地选择基准电气零位3相对误差不合格的电机也可变合格E由此给测试工作带来很大麻烦E如果测试人员简单按技术条件办事3相当于提高了对产品的要求3将造成大量的废品率E为了克服这一弊病3放宽对产品的要求3测试人员在测试时3就不能简单地定一个基准电气零位3必须要待测试完后3对数据进行分析3然后选择好合理参考点作基准电气零位3以使相对误差最小3提高产品合格率E合理参考点的选取3单通道多极旋变有多少极对数3就有多少个点可供作基准电气零位3不同变换出线标志3仍符合向量图E若变换出线标志3可供作基准电气零位的点则增加为极对数乘83仍符合向量图E双通道多极旋度3变换出线标志3可在1.L位置提供8个点作基准电气零位3仍符合向量图E双通道可供选择的点比单通单少得多3电机合格率也低得多E当然3如果从设计和工艺入手3提高产品精度3绝对误差都是小于0H的电机3不管以何点为参考3测出的相对误差3绝不会大于2.H3但这毕竟要增加投入E M测试实例计算 以笔者测试的2台22.N O P<-.双通道多极旋 A - 8 A 微电机-..-年第<0卷第0期4总第2-=期 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 9

旋转变压器分类及接口电路

摘要:本文简要介绍编码器、旋转变压器应用特点和接口方法,其中重点介绍产品通信协议和硬件接口电路以及专用的接收芯片AU5561应用方法。 编码器发展历史 早期的编码器主要是旋转变压器,旋转变压器IP值高,能在一些比较恶劣的环境条件下工作,虽然因为对电磁干扰敏感以及解码复杂等缺点而逐渐退出,但是时至今日,仍然有其特有的价值,比如作为混合动力汽车的速度反馈,几乎是不可代替的,此外在环境恶劣的钢铁行业、水利水电行业,旋转变压器因为其防护等级高同样获得了广泛的应用。随着半导体技术的发展,后来便有霍尔传感器和光电编码器,霍尔传感器精度不高但价格便宜,而且不能耐高温,只适合用在一些低端场合,光电编码器正是由于克服了前面两种编码器的缺点而产生,它精度高,抗干扰能力强,接口简单使用方便因而获得了最广泛的应用。 编码器的生产厂家很多,这里以多摩川的产品为例进行介绍。 下面以旋转变压器、增量式编码器、绝对式编码器为例逐一进行介绍。 旋转变压器 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 旋转变压器解码 图4旋转变压器电气示意图。 旋变的输入输出电压之间的具体函数关系如下所示: 设转子转动角度为θ,初级线圈电压(即励磁电压):ER1-R2=E*Sin2πft f:励磁频率,E:信号幅度 那么输出电压ES1-S3=K*E*Sin2πft*Cosθ; ES2-S4=K*E*Sin2πft*Sinθ K:传输比, θ:转子偏离原点的角度 令θ=ωt,即转子做匀速运动,那么其输出信号的函数曲线可表示为图5所示, 图中信号频率为f,即励磁信号频率,最大幅度为E,包络信号为Sinωt和Cosωt,解码器就是通过检测这两组输出信号获取旋变位置信息的。 不难看出,励磁频率越高,旋变解码精度也就越高,而励磁电压幅度则对解码没有很明显的影响。只需达到一定的电压数值即可,一般来讲3V~1.2倍额定电压都可满足解码需求。 多摩川为自己的旋变开发了专门的解码芯片AU6802N1,并且艾而特公司有现成的解码板可供使用,解码板支持10KHZ励磁频率,0.5的传输比,可以同时提供增量式和绝对式信号输出,增量式输出

磁阻式多极旋转变压器

磁阻式多极旋转变压器 普通旋转变压器的精度较低,为角分的数量级,一般应用于精度要求不高或大型机床的粗测和中测系统中。为提高精度,近年来数控系统中广泛采用磁阻式多极旋转变压器。 磁阻式多极旋转变压器(又称细分解算器,或游标解算器),它是一种多极角度传感元件,实际上是一种非接触式磁阻可变的耦合变压器,其结构与传统的多极旋变不同之处在于其励磁绕组和输出绕组均安置在定子铁心的槽中,转子仅由带齿的选片叠制而成,不放任何绕组,实现无接触运行。定子冲片内圆冲制有若干大齿(也称为极靴),每个大齿上又冲制若干等分小齿,绕组安放在大齿槽中。转子外圆表面冲制有若干等分小齿,其数与极对数相等。输出和输入绕组均为集中绕制,其正余弦绕组的匝数按正弦规律变化。而传统结构的多极旋转变压器是采用分布式绕组。图6-4所示为磁阻式多极旋转变压器的原理示意图,其中画出了5个定子齿,4个转子齿。定子槽内安置了逐槽反向串接的输入绕组1-1和两个间隔绕制反向串接的输出绕组2-2、3-3。当给输入绕组1-1加上交流正弦电压时,两个输出绕组2-2、3-3中分别得到两个电压,其幅值主要取决于定子和转子齿的相对位置间气隙磁导的大小。当转子相对定子转动时,空间的气隙磁导发生变化,转子每转过一个转子齿距,气隙磁导变化一个周期;而

当转子转过一周时,气隙磁导变化的周期数等于转子齿数。这样,转子的齿数就相当于磁阻式多极旋转变压器极对数,从而达到多极的效果。气隙磁导的变化,导致输入和输出绕组之间互感的变化,输出绕组感应的电势亦发生变化。实际应用中是通过输出电压幅值的变化而测得转子的转角的。 磁阻式多极旋转变压器没有电刷和滑环接触,工作可靠、抗冲击能力强,并能连续高速运行、寿命长,多用于高精度及各种控制式电气变速双通道系统,提高数控机床定位精度。尽管它的测量精度不如感应同步器和光栅,但高于普通旋转变压器,误差不超过3.5角秒,而且成本低,不需维修,输出信号电平高(0.5~1.5V,最高可达4V),所以在数控机床上的应用很有前途。

旋转变压器(resolver)原理

§4—1旋转变压器 旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 一、旋转变压器的结构 旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。 图4-1是有刷式旋转变压器。它的转子绕组通过滑环和电刷直接引出,其特点是结构简单,体积小,但因电刷与滑环是机械滑动接触的,所以旋转变压器的可靠性差,寿命也较短。 图4-1 有刷式旋转变压器

图4-2 无刷式旋转变压器 图4—2是无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。 常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z为阻抗。设 加在定子绕组的激磁电压为

旋转变压器与编码器的区别

旋转变压器与编码器的区 别 The Standardization Office was revised on the afternoon of December 13, 2020

从原理上讲,旋转变压器是采用电磁感应原理工作,随着旋转变压器的转子和 定子角位置不同,输出信号可以实现对输入正弦载波信号的相位变换和幅值调 制,最终由专用的信号处理电路或者某些具备一定功能接口的DSP和单片机, 根据输出信号的幅值和相位与正弦载波信号的关系,解析出转子和定子间的角 位置关系。 旋转变压器有单对极和多对极之分,n对极的又被习惯地称为n倍速。在一个 极对的角度范围内(单对极就是一整圈),旋转变压器信号经处理后的结果一 般都具有反映绝对位置的特性,即可反映当前角位置是处于0~360度(电角 度)中的多少度上。目前商用分辨率可以做到2的12次方以上,直至2的16 次方,再高就比较困难了。 典型的旋转变压器本体由硅钢片和漆包线构成,不包含任何电子元件,因而抗 震能力和温度特性极佳,因而其抗恶劣环境的工作能力远胜于普通旋转编码 器,在军工产品中具有广泛应用。 典型的旋转编码器采用光栅原理,用光电方法进行角位置检测,又可分为增量 式和绝对式等类型. 旋转变压器 简称旋变,是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差

磁阻式多极旋转变压器的工作原理

磁阻式多极旋转变压器的工作原理 普通旋转变压器的精度较低,为角分的数量级,一般应用于精度要求不高或大型机床的粗测和中测系统中。为提高精度,近年来数控系统中广泛采用磁阻式多极旋转变压器。 磁阻式多极旋转变压器(又称细分解算器,或游标解算器),它是一种多极角度传感元件,实际上是一种非接触式磁阻可变的耦合变压器,其结构与传统的多极旋转变压器不同之处在于其励磁绕组和输出绕组均安置在定子铁心的槽中,转子仅由带齿的选片叠制而成,不放任何绕组,实现无接触运行。定子冲片内圆冲制有若干大齿(也称为极靴),每个大齿上又冲制若干等分小齿,绕组安放在大齿槽中。转子外圆表面冲制有若干等分小齿,其数与擞对数相等。输出和输入绕组均为集中绕制,其正余弦绕组的匝数控正弦规律变化。而传统结构的多极旋转变压器是采用分布式绕组。图6-4所示为磁阻式多极旋转变压器的原理示意图,其中画出了5个定子齿,4个转于齿。定子槽内安置了逐槽反向串接的输入绕组1-1和两个间隔绕制反向串接的输出绕组2-2,3-3。当给输入绕组1-1加上交流正弦电压时,两个输出绕组2-2、3-3中分别得到两个电压,其幅值主要取决于定子和转子齿的相对位置间气隙磁导的大小。当转子相对定子转动时,空间的气隙磁导发生变化,转子每转过一个转子齿距,气隙磁导变化一个周期;而当转子转过一周时,气隙磁导变化的周期数等于转子齿数。这样,转子的齿数就相当于磁阻式多极旋转变压器极对数,从而达到多极的效果。气隙磁导的变化,导致输入和输出绕组之间互感的变化,输出绕组感应的电势亦发生变化。实际应用中是通过输出电压幅值的变化而测得转子的转角的。

磁阻式多极旋转变压器没有电刷和滑环接触,工作可靠、抗冲击能力强,并能连续高速运行、寿命长,多用于高精度及各种控制式电气变速双通道系统,提高数控机床定位精度。尽管它的测量精度不如感应同步器和光栅,但高于普通旋转变压器,误差不超过3.5角秒,而且成本低,不需维修,输出信号电平高(0.5—1.5V.最高可达4V),所以在数控机床上的应用很有前途。

旋转变压器开关应用

旋转变压器在开关电源上的应用 摘要:介绍了非接触式旋转高频链变压器在旋转机构电源上的应用,CRFT 的使用代替了传统的电能传递方式,即电刷电能传递方式,大大延长了旋转机构电源系统的使用寿命和使用可靠性。采用软开关技术,减少了电能在磁场中传递而进行变换产生的电磁干扰,解决了与静止供电完全没有物理接触的旋转电路的供电问题。实验证明,CRFT 完全可以在旋转机构供电场合代替电刷及滑环。 关键词:开关电源/ 非接触式旋转高频链变压器;旋转机构 ------------------------------------------------------------------------------------ 引言 任何电子设备都需要电源,旋转机构系统也是如此,如石油钻井、造纸机械、直升机旋翼等机构上的传感器及测试设备的供电,卫星、雷达等需要将电能传递到旋转用电设备的场合等。 以卫星电源为例,卫星在绕地球轨道运行的过程中,自身始终以一定的角速率旋转。而卫星的太阳能电池板为了最大限度地利用太阳能,必须始终正对太阳照射的向。随着卫星在轨道上位置的变化,伺服机构实时调节太阳能电池板的朝向。太阳能电池板和卫星星体之间的电能传递传统上是通过石墨电刷与铜制滑环之间的接触实现的。石墨电刷因相对运动产生磨损,从而导致碳粉的掉落、接触的松动、供电不稳以及产生电火花等不良影响,最终导致电刷与滑环脱离接触,无法完成供电,成为该类旋转机构电源寿命延长的瓶颈。 而使用非接触式旋转高频链变压器,则可以从根本上解决接触磨损的问题。美国在1996 年成功研制出传递功率达400 W 的非接触式旋转变压器电源,但使用的是400 Hz 的中频硅钢片变压器,重量较大。2002 年,欧洲和法国玛特拉宇航系统公司联合研制 出了传递功率达到100 W 的旋转高频链开关电源,该电源系统不仅可以传递电能,还可以传递19.2 k/s 的信息数据[1]。非接触式旋转高频链逆变器可用于所有需向旋转机 构提供电能的领域。 1 CRFT 的结构和基本原理 CRFT 的工作频率为100 kHz 左右,因此,变压器所使用的磁性材料为锰锌铁氧体,它具有磁导率和电阻率较高,矫顽力较低的特点。在实际应用中,使绕组产生激磁电流就能产生较高的磁感应强度,传递较大的功率,同时具有较小的铁耗和涡流损耗。 图1 示出在CRFT 内部绕组放置的位置系。为防止意外的摩擦,绕组之间相互留有间隙。磁心之间也留有相对运动的间隙。旋

旋转变压器的工作原理及应用

旋转变压器的工作原理及应用 旋转变压器的工作原理及应用 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转变 压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 什么是旋转变压器以及应用方式 什么是旋转变压器以及应用方式 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。 在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转 变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 旋转变压器的应用 旋转变压器作为位置检测装置有两种应用方式:鉴相方式和鉴幅方式。 1.鉴相工作方式 在旋转变压器定子的两相正交绕组(正弦用s和和余弦用c表示),一般称为正弦绕组和余弦绕组上,分别输入幅值相等,频率相同的正弦、余弦激磁电压 Us=Umsinωt Uc=Umcosωt 两相激磁电压在转子绕组中会产生感应电动势。根据线性叠加原理,在转子绕组中感应电压为 U=kUssinθ机+kUccosθ机=kUmcos(ωt-θ机)

旋转变压器工作原理

旋转变压器工作原理 摘要:本文介绍了虽然目前已逐渐被广泛应用,但仍未被人们所熟悉的,角度位置传感元件—旋转变压器。文章对旋转变压器的发展、结构、原理、参数与性能指标及其信号变换做了简单的介绍;最后对几种类型旋转变压器的各方面作了比较,以供选择、使用时参考。 曲家骐:上海赢双电机有限公司 旋转变压器介绍 ⒈概述 ⒈⒈旋转变压器的发展 旋转变压器用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解答装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是最常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,不是通用的。60年代起,旋转变压器逐渐用于伺服系统,作为角度信号的产生和检测元件。三线的三相的自整角机,早于四线的两相旋转变压器应用于系统中。所以作为角度信号传输的旋转变压器,有时被称作四线自整角机。随着电子技术和数字计算技术的发展,数字式计算机早已代替了模拟式计算机。所以实际上,旋转变压器目前主要是用于角度位置伺服控制系统中。由于两相的旋转变压器比自整角机更容易提高精度,所以旋转变压器应用的更广泛。特别是,在高精度的双通道、双速系统中,广泛应用的多极电气元件,原来采用的是多极自整角机,现在基本上都是采用多极旋转变压器。 旋转变压器是目前国内的专业名称,简称“旋变” 。俄文里称作“Вращающийся Трансформатор” ,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。 作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限制。因为旋转变压器具有无可比拟的可靠性,以及具有足够高的精度,在许多场合有着不可代替的地位,特别是在军事以及航天、航空、航海等方面。随着电子工业的发展,电子元器件集成化程度的提高,元器件的价格大大下降;另外,信号处理技术的进步,旋转变压器的信号处理电路变得简单、可靠,价格也大大下降。而且,又出现了软件解码的信号处理,使得信号处理问题变得更加灵活、方便。这样,旋转变压器的应用得到了更大的发展,其优点得到了更大的体现。和光学编码器相比,旋转变压器有这样几点明显的优点:①无可比拟的可靠性,非常好的抗恶劣环境条件的能力;②可以运行在更高的转速下。(在输出12 bit的信号下,允许电动机的转速可达60,000rpm。而光学编码器,由于光电器件的频响一般在200kHz以下,在12 bit时,速度只能达到3,000rpm);③方便的绝对值信号数据输出。 ⒈⒉旋转变压器的应用 旋转变压器的应用,近期发展很快。除了传统的、要求可靠性高的军用、航空航天领域之外,在工业、交通以及民用领域也得到了广泛的应用。特别应该提出的

旋转变压器

旋转变压器 旋转变压器(resolver/transformer)是一种电磁式传感器,又称同步分解器。它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。其中定子绕组作为变压器的原边,接受励磁电压,励磁频率通常用400、3000及5000HZ等。转子绕组作为变压器的副边,通过电磁耦合得到感应电压。 一、旋转变压器简介 旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电压幅值与转子 转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故也称为解算器。 旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则各有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故也称为解算器。 旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则各有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。 二、工作原理

旋转变压器原理及应用

旋转变压器原理及应用 上海赢双电机有限公司曲家骐 ⒈概述 ⒈⒈旋转变压器的发展 旋转变压器用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解答装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是最常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,不是通用的。60年代起,旋转变压器逐渐用于伺服系统,作为角度信号的产生和检测元件。三线的三相的自整角机,早于四线的两相旋转变压器应用于系统中。所以作为角度信号传输的旋转变压器,有时被称作四线自整角机。随着电子技术和数字计算技术的发展,数字式计算机早已代替了模拟式计算机。所以实际上,旋转变压器目前主要是用于角度位置伺服控制系统中。由于两相的旋转变压器比自整角机更容易提高精度,所以旋转变压器应用的更广泛。特别是,在高精度的双通道、双速系统中,广泛应用的多极电气元件,原来采用的是多极自整角机,现在基本上都是采用多极旋转变压器。 旋转变压器是目前国内的专业名称,简称“旋变”。俄文里称作“ВращающийсяТрансформатор” ,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。 作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限制。因为旋转变压器具有无可比拟的可靠性,以及具有足够高的精度,在许多场合有着不可代替的地位,特别是在军事以及航天、航空、航海等方面。 随着电子工业的发展,电子元器件集成化程度的提高,元器件的价格大大下降;另外,信号处理技术的进步,旋转变压器的信号处理电路变得简单、可靠,价格也大大下降。而且,又出现了软件解码的信号处理,使得信号处理问题变得更加灵活、方便。这样,旋转变压器的应用得到了更大的发展,其优点得到了更大的体现。和光学编码器相比,旋转变压器有这样几点明显的优点:①无可比拟的可靠性,非常好的抗恶劣环境条件的能力;②可以运行在更高的转速下。(在输出12 bit的信号下,允许电动机的转速可达60,000rpm。而光学编码器,由于光电器件的频响一般在200kHz以下,在12 bit时,速度只能达到3,000rpm);③方便的绝对值信号数据输出。 ⒈⒉旋转变压器的应用 旋转变压器的应用,近期发展很快。除了传统的、要求可靠性高的军用、航空航天领域之外,在工业、交通以及民用领域也得到了广泛的应用。特别应该提出的是,这些年来,随着工业自动化水平的提高,随着节能减排的要求越来越高,效率高、节能显著的永磁交流电动机的应用,越来越广泛。而永磁交流电动机的位置传感器,原来是以光学编码器居多,但这些年来,却迅速地被旋转变压器代替。可以举几个明显的例子,在家电中,不论是冰箱、空调、还是洗衣机,目前都是向变频变速发展,采用的是正弦波控制的永磁交流电动机。目前各国都在非常重视的电动汽车中,电动汽车中所用的位置、速度传感器都是旋转变压器。例如,驱动用电动机和发电机的位置传感、电动助力方向盘电机的位置速度传感、燃气阀角度测量、真空室传送器角度位置测量等等,都是采用旋转变压器。在应用于塑压系统、纺织系统、冶金系统以及其

相关主题
文本预览
相关文档 最新文档