当前位置:文档之家› 信道的数学模型及分类

信道的数学模型及分类

信道的数学模型及分类
信道的数学模型及分类

在一般的广义通信系统中,信道是很重要的一部分。信道的任务是以信号方式传

输信息和存储信息。我们研究信道就是研究信道中能够传送或存储的最大信息量,即

信道容量问题。

信源输出的是携带着信息的消息,而消息必须首先转换成能在信道中传输或存储

的信号,然后通过信道传送到收信者。并且认为噪声或干扰主要是从信道中引入,它

使信号通过信道后产生错误和失真。故信道的输入和输出信号之间一般不是确定的函

数关系,而是统计依赖的关系。只要知道了信道的输入信号、输出信号,以及它们之

间的统计依赖关系,则信道的全部特性就确定了。

一、信道的分类

根据信道用户的多少,可以分为:

(1)两端(单用户)信道。只是一个输入端和一个输出端的信道;

(2)多端(多用户)信道。它是在输入端或输出端至少有一端有两个以上的用户,并且还可以是双向通信的信道。

根据信道输入端和输出端的关联,可以分为:

(1)无反馈信道。信道输出端无信道反馈到输入端,即输出端对输入端信号无影响;

(2)反馈信道。信道输出端的信号反馈到输入端,影响输入端信号发生变化;

根据信道的参数与时间的关系,信道又可分为:

(1)固定参数信道。信道的统计特性不随时间变化而改变;

(2)时变参数信道。信道的统计特性随时间变化而变化;

根据输入和输出信号的特点,信道又分为:

(1)离散信道。它是指输入和输出的随机序列取值都是离散的信道;

(2)连续信道。输入输出的随机序列的数值均是连续的信道;

(3)半离散半连续信道;

(4)波形信道。输入和输出信号都是时间上连续的随机信号。

在此,我们研究无反馈、固定参数的单用户离散信道。

二、离散信道的数学模型

离散信道的数学模型一般如右图所示,输入和输出信道用随机矢量表示。输入信号,输出信号。每个随机变量和又

分别取值于符号集和

。另外,图中条件概率描述

了输入信号和输出信号之间的统计依赖关系,反映了信道的统计特性。

根据信道的统计特性即条件概率的不同,离散信道又可分成三种情况。

1、无干扰信道。信道中没有随机性的干扰或者干扰很小,输出信号与输入信号之间有

确定的一一对应的关系,即

并且满足

2、有干扰无记忆信道。实际信道中有干扰,即输出符号与输入符号之间无确定的对应

关系。这时信道输入和输出之间的条件概率不同于上式,而是一般的概率分布。若信道任一时刻输出符号只统计依赖于对应时刻的输入符号,与非对应时刻的输入符

信道

号及其他任何时刻的输出符号无关,则这种信道称为无记忆信道。满足离散无记忆信道的充要条件是:

证明:充分性,即满足上式的离散信道为无记忆信道。

根据假设,上式可以继续作如下推导:

在离散信道中,有

即有

所以有

.…..

因此有

同理,

同理可得,

……

根据以上推导可知,只要满足,则离散信道在时刻的输出只与时刻的输入有关,与以前的输入和输出无关,与以

后的输出也无关,此信道就是离散无记忆信道。

必要性。若离散信道是无记忆信道,则根据离散无记忆的信道的定义,得

……

因此,有

因此,是离散无记忆信道的充要条件。

3、有干扰有记忆信道

这是更一般的情况,既有干扰又有记忆。实际信道往往是这种类型。例如,在数字信道中,由于信道滤波使频率特性不理想时造成了码字之间的干扰,在这一类信道中某一瞬间的输出符号不但与对应时刻的输入符号有关,而且还与此以前其他时刻信道的输入符号以及输出符号有关,这样的信道称为有记忆信道,这时信道的条件概率

不再满足。

处理这类有记忆信道时,最直观的方法就是把记忆较强的个符号当做一个矢量符号来处理,而各矢量符号之间认为是无记忆的,这样就转化为无记忆信道的问题。这样处理一般会引入误差,因为实际上第一个矢量的最末几个符号一般是与第二个矢量的最前面几个符号是有关联的。取值越大,误差越小。

另一种处理方法是把看成马尔可夫链的形式,这是有限记忆信道的问题,

把信道某时刻的输入和输出序列看成为信道的状态,那么信道的编译特性可用在已知现时刻的输入符号和输出序列看成为信道的状态,那么,信道的统计特性可用在已知现时刻的输入符号和前时刻信道所处的状态的条件下,信道的输出符号和所处的状态

的联合条件概率来描述,即用来描述。然而,在一般情况下这种方法仍

很复杂,只有在每一个输出符号只与前一个输入符号有关的简单情况下,才可得到比较简单的结果。

我们着重研究无记忆信道,从最简单的单符号信道入手。

三、单符号离散信道的数学模型

单符号离散信道的输入变量为,取值于;输出变量为,取值于,并且有条件概率

这一组条件概率称为信道的传递概率或转移概率。

1-p

p

p

1-p

因为信道中有干扰存在,若信道输入为时,输出的是哪一个符号,事先无法确定,但信道输出一定是中的一个,即有

由于信道的干扰使输入符号在传输中发生错误,所以可以用传递概率

来描述干扰的大小。因此,一般简单的单符号离散信道的数学模型可以用概率空间来描述,另外,也可以用图来描述,如下图所示。

例1 二元对称信道,简记为BSC。

这是很重要的一种特殊信道,它的输入符号取值于;输出符号取值于。此时,,而且。又有传递概率

X

a1=0

a2=0

Y

b1=0

b2=1

如右图所示,很明显,表示信道输入符号为 0 而收到符号为 1 的概率,而表示信道输入符号为 1 而接收到的符号为 0 的概率。它们都是单个符号传输发生错误的概率,通常用表示。而和都是无错误传输的概率,通常用

表示。

这些传递概率满足下式:

对于这些传递概率,可用矩阵来表示,由此得二元对称对称信道的传递矩阵为:

q ' 1 2

s 2 ∞ ' ? 2 例 2 二元删除信道 BEC

这时

。输入符号 取值于

,输出符号 取值于

,传递概率

如下图所示,传递矩阵为

0 ? p 1 ≤ 0 2 1 1- p 0

/ 1- q ∞

这种信道实际是存在的,假如有一个信道,它的输入是代表0和1 的两个正、负

波形方波信道,如下图(a)所示。那么,信道送入译码器的将是受干扰后的方波信号

,如图(b)所示。我们可以用积分

来判别发送的信号是 0 还是 1,如果

是正的,且大于某一电平,那么判别发送的是 0,若 是负的,且小于某一电平,则判

别发送的是 1,而若 的绝对值很小,不能做出确切的判断,就认为接收到的是特殊符

号“2”,假如信道干扰不是很严重的话,那么 和 的可能性要比 和 的可能性小得多,所以假设

是较合理的。

由此可知,一般离散单符号信道的传递概率可用矩阵形式表示,即

b 1 a 1 ? P (b 1 | a 1 ) a 'P (b | a ) b 2 P (b 2 | a 1 ) L P (b 2 | a 2 ) L b s

P (b s | a 1 )/

P (b | a )∞ M ' a 'P (b M | a ) P (b M

| a ) L P (b M ∞ | a )∞

并满足

r ≤ 1 r 2 r s r ?

为了表述方便,可以写成 。于是信道的传递矩阵为

s

2 ∞

≤ ? ≤ 1 2 r?

≤ 1 r 2 r s r?

并且满足以及。

上述矩阵称为信道矩阵,它表达了输入符号集,又表达了输出符号集,同时还表达了输入与输出的传递概率关系,则信道矩阵同样能完整地描述了所给定的信道。因此,也可以用信道矩阵作为离散单符号信道的另一种数学模型的形式。

下面来推导一般单符号离散信道的一些概率关系。

设信道的输入概率空间为

?X /

=

?a1,a

2

, L,a r /

'P(x)∞'P(a )

P(a ) L,P(a )∞

又设输出的符号集为。给定信道矩阵为

?P(b1 | a1 )

'P(b | a )

P =' 1 2

P(b

2

| a

1

) L

P(b

2

| a

2

) L

P(b

s

| a

1

)/

P(b | a )∞

'M

'

P(b | a )

M

P(b | a) L

M ∞

P(b | a )

(1)输入和输出符号的联合概率为,则有

式中,是信道传递概率,即发送为,通过信道传输接收为的概率,又称为前向概率。它是由于信道噪声引起的,所以描述了信道噪声的特性,而是已知信道输出端接收到符号为但发送的是符号的概率,称其为后向概率。有时,也把

称为先验概率,而对应地把称为输入符号的后验概率。

(2)根据联合概率可得输出符号的概率

也可以写成

? P (b 1 )/ ? P (a 1 )/ 'P (b )∞ 'P (a )∞

' 2 ∞ = P T ' 2 ∞ ' M ∞ ' M ∞ 'P (b )∞ 'P (a )∞ ≤ s ? ≤ r ?

(3) 根据贝叶斯定律可得后验概率

且得

思考题、讨论题、作业

教学后记

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

数学模型的分类有哪些

数学模型的分类有哪些 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法:

确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离 散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模

第6章(6.1.4)移动信道的模型(多径衰落信道)

6.1.4 移动信道的模型(多径衰落信道) 一、时变线性滤波器模型及其响应 1.带通系统分析 2()Re[()c l j f t s t s t e π=2()Re[()] c l j f t t r t e π= (1)离散多径 )(t 1 α)(t 2α) (t 3α) (t 4α)(t 1τ)( t 2τ) (t 3τ)(t 4ττ 信道:信道系数()n t α,即(,)n t ατ,时延()n t τ 响应: ()()(())(,)(()) n n n n n n x t t s t t t s t t αταττ=-=-∑∑ (14-1-2) (2)连续多径 信道:)(),,(t t ττα,即(,)t ατ表示在0时刻的冲激在τ时刻的响应。 响应:()(,)()x t t s t d ατττ∞ -∞ = -? (14-1-6)

2.等效低通分析 (l s t () l t ) ;(t c τ (1)离散多径 由带通信道模型: ()()(())(,)(())n n n n n n x t t s t t t s t t αταττ=-=-∑∑ 其中()(,)n n t t αατ=为实函数,所以有 22(()) Re ()e Re ()(())e c c n j f t j f t t n n l l n r t t s t t ππτατ-????=-????∑ 即得到等效低通模型为 2()()()e (())c n j f t n n l l n r t t s t t πτατ-=-∑ 所以得到: 信道系数:2()()c n j f t n t e πτα-或2()(;)c n j f t n t e πτατ- (14-1-5) 响应:2()()()(())c n j f t l n l n n r t t e s t t πτατ-=-∑ (14-1-4) 其中()(;)n n t t αατ@。 若令2()(;)()(())c n j f t n n n c t t e t πτταδττ-=-∑,则 ()(;)()l l r t c t s t d τττ∞ -∞ =-? 2()()(())()c n j f t n n l n t e t s t d πτα δττττ∞ --∞ =--∑? 2()()(())c n j f t n l n n t e s t t πτατ-=-∑ 可见(;)c t τ是0时刻的冲激通过信道后在τ时刻上的响应。 (2)连续多径

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学模型的分类有哪些

数学模型的分类有哪些? 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法: 确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型. 静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等. 5.按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

中考数学模型的常见类型及其应用

中考数学模型的常见类型及其应用 史承灼 【摘要】“联系实际,加强应用”已经成为数学教育改革的一个重要方面,以应用数学的理论和方法解决实际问题的能 力为目标的“问题解决”亦已成为中考一大热点.而“数学模 型”或“数学建模”则是实现“数学问题解决”的基本手段和 主要内容.初中阶段常见的数学模型大致有:数与式、方程、 不等式、函数、三角、几何和统计模型等. 【关键词】初中数学问题解决构建数学模型随着数学教育改革的不断发展和深入,“联系实际,加强应用”已经成为数学 教育改革的一个重要方面,在基础教育中以培养应用数学的理论和方法解决实际问题的能力为目标的“问题解决”越来越引起人们的高度关注,亦已成为国际数学教育的一大热点.而“数学模型”或“数学建模”则是实现“数学问题解决”的基本手段和主要内容.掌握常见的“数学模型”和“数学建模”的方法,将会激发学生的创造能力,有助于应用数学知识解决实际问题能力的提高,从而达到加强“数学问题解决”教育的目的. 在数学的“问题解决”中,应用数学知识去解决实际问题,首先要把实际问题中的数学问题明确地表述出来,也就是说,要通过对实际问题的分析、归纳给出以描述这个问题的数学提法;然后才能使用数学的理论和方法进行分析,得出结论;最后再返回去解决现实的实际问题.由于实际问题的复杂性,往往很难把现成的数学理论直接套用到这些实际问题上,这就必须要在数学理论和所要解决的实际问题之间构建一个桥梁来加以沟通,以便把实际问题中的数学结构明确地表示出来,这个桥梁就是“数学模型”,这个桥梁的构建过程就是“数学建模”.一般说来,所谓数学模型是指通过抽象和简化,使用数学语言对实际现象的一个近似的刻画,以便于人们更深刻地认识所研究的对象.而“数学建模”的过程 考数学试题中,常见的应用问题按解决问题时建立数学模型所用数学知识和方法的

建立数学模型方法步骤特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法

为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

2015年 全国研究生数学建模竞赛 C题

2015年全国研究生数学建模竞赛C题(由华为公司命题) 移动通信中的无线信道“指纹”特征建模 一、背景介绍 移动通信产业一直以惊人的速度迅猛发展,已成为带动全球经济发展的主要高科技产业之一,并对人类生活及社会发展产生了巨大的影响。在移动通信中,发送端和接收端之间通过电磁波来传输信号,我们可以想象两者之间有一些看不见的电磁通路,并把这些电磁通路称为无线信道。无线信道与周围的环境密切相关,不同环境下的无线信道具有一些差异化的特征。如何发现并提取这些特征并将其应用于优化无线网络,是当前的一个研究热点。类比人类指纹,我们将上述无线信道的差异化的特征称为无线信道“指纹”。无线信道“指纹”特征建模,就是在先验模型和测试数据的基础上,提取不同场景或不同区域内无线信道的差异化的特征,进而分析归纳出“指纹”的“数学模型”,并给出清晰准确的“数学描述”。 在典型的无线信道中,电磁波的传输不是单一路径的,而是由许多因散射(包括反射和衍射)而形成的路径所构成的。由于电磁波沿各条路径的传播距离不同,因此相同发射信号经由各条路径到达接收端的时间各不相同,即多径的时延之间有差异。此外,各条路径对相同发射信号造成的影响各不相同,即多径的系数之间有差异。如左下图所示: 1

2 工程上,考虑到多径系数及多径时延的影响,在保证精度的前提下,可以用“离散线性系统”为无线信道建模。需要注意的是,该模型中的信号及多径系数均为复数。理想信道测量可以理解为获取该系统的单位序列响应,即获取单位脉冲“”经无线信道传输后被接收到的信号,如右上图所示。上述理想信道测量的结果用公式表述如下 : 其中,“”为离散信号的样点标识,这里假设共有“”个样点;“”是当前时刻的路径总数;“”为当前时刻第条路径上的信道系数,通常是复数;“”为当前时刻第条路径的时延,且已折算成样点数,即延迟了“”个样点。显然,复信号“”给出了当前时刻的完整信道。需要强调的是,上述各个参数,包括“”、“”和“”都会随着时间而变化,即各个参数具有时变性。相应地,“”的功率在信号波长[1]“”的量级上会出现时而加强时而减弱的快速变化,称之为多径衰落或小尺度衰落。同时,快速变化的功率,其平均值也会出现缓慢的变化,这主要是由于周围环境或气象条件的改变而引起的,称之为阴影衰落或大尺度衰落。两种衰落特征如下图所示:

最新数学建模的常见类型

新课标下初中数学建模的常见类型 汕头市澄海溪南中学 陈耀盛 全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。 一、建立“方程(组)”模型 现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决 例1(2007年深圳市中考试题)A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道? 解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(x +1)公里。 依题意得:31 1818=+-x x 解得x 1=2, x 2=-3

经检验x1=2,x2=-3都是原方程的根。 但x2=-3不符合题意,舍去。 ∴x+1=3 答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。二、建立“不等式(组)”模型 现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。 例2 (2007年茂名市中考试题)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题: (1)该采购员最多可购进篮球多少只? (2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元? 解:(1)该采购员最多可购进篮球x只,则排球为(100-x)只,依题意得:130x+100(100-x)≤11815 解得x≤60.5 ∵x是正整数,∴x=60 答:购进篮球和排球共100只时,该采购员最多可购进篮球60只。 (2)该采购员至少要购进篮球x只,则排球为(100-x)只,

数字通信系统的模型

数字通信系统的模型 ? 数字通信系统的分类 数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。 1. 数字频带传输通信系统 数字通信的基本特征是,它的消息或信号具有“离散”或“数字” 的特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。 另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有

一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。 综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。 需要说明的是,图中 / 、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。 2. 数字基带传输通信系统 与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。

数学模型的概念及分类

数学模型的概念及分类 2.1数学模型的概念 数学模型是指运用数学符号和公式来表达来研究对象系统的结构或过程的模型。系统工程力求采用数学模型是因为数学模型是定量化的基础,是科学实验的补充手段,是预测和决策的重要工具,是推进科技发展的依据。数学的抽象化、公理化的概念和方法,体系十分严谨。数学的丰富的想像力和思辨性,如弯曲的几何和非平直的空间结构,蕴含着普遍真理。数学模型既然是对所研究的实际对象的概括与简化,因此它不能等同于实际对象的本身,它必须舍弃实际对象的质的规定性,而是从量的关系上对实际对象作形式化的描述和刻画,在这一过程中常常略去实际对象的某些次要性质和因素,抓住其主要性质和因素,因此数学模型虽然能从某些数量关系上反映实际对象的原型,但这种反映仅仅是一种近似和模拟。 2.2数学模型的分类 常见的数学模型分类有以下几种: 按数学模型的功能可分为定量的和定性的。 按数学模型的目的可分为理论研究的,预期结果的和优化的。 按数学模型变量之间的关系可分为代数的,几何的和积分的。 按数学模型的结构可分为分析的,非分析的和图论的。 按数学模型所研究对象的特性可分为确定的和随机的,静态的和动态的,连续的和离散的,或线性的和非线性的。 按数学模型所用的数学方法可分为初等模型,微分方程模型,优化模型,控制论模型,逻辑模型,扩散模型,…… 按数学模型研究对象的实际领域可分为人口模型,交通模型,生态模型,生理模型,经济模型,社会模型.,工程系统模型,……

按数学模型研究对象的了解程度可分为白箱模型,灰箱模型和黑箱模型等。 2.3数学模型的特点 第一,它是某事物为一种特殊目的而作的一个抽象化、简单化的数学结构, 这意味着扬弃、筛选,是舍弃次要因素,突出主要因素的主要结果;是事物的一种模拟,虽源于现实,但非实际的原型,而又高于现实。 第二,它是数学上的抽象,在数值上可以作为公式应用,可以推广到与原物 相近的一类问题。 第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机。通常所谓的处理事物和过程的模型化方法,往往就是为之建立数学模型来处理。

数学模型的分类有哪些

数学模型的分类有哪些?数学模型可以按照不同的方式分类,下面介绍常用的几种. 1. 按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2. 按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3. 按照模型的表现特性又有几种分法: 确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型. 静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4. 按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等. 5. 按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理 (数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

(完整版)常见移动信道模型

3.1 单状态模型 3.1.1 Rayleigh 模型 在移动无线信道中,瑞利模型是常见的用于描述平坦衰落信号或独立多径分量接收包络统计时变特性的一种经典模型。众所周知,两个正交的正态分布的随机过程之和的包络服从瑞利分布,即设X 和Y 为正态随机过程,则R=X+jY 的包络r =|R |则服从瑞利分布。瑞利分布的概率密度函数(pdf )为[24,27,28]: ?? ???<≥??? ? ??-=0 ,00,2exp )(222 r r r r r p σσ (3-1) 其中,][22r E =σ是包络检波之前的接收信号包络的时间平均功率。R 的相位θ服从0到2π之间的均匀分布,即 ?????≤≤=其他 ,020,21)(πθπ θp (3-2) 则接收信号包络不超过某特定值R 的累计概率分布函数(CDF )为 ????? ??--==≤=R R dr r p R r p R F 0 222exp 1)()()(σ (3-3) 图3-1所示为瑞利模型的概率密度函数曲线图。

123 45678910 00.10.20.30.4 0.5 0.6 0.7 接收信号包络r p d f 瑞利分布包络的概率密度曲线图 图3-1 瑞利模型的概率密度函数曲线图 3.1.2 Ricean 模型 当接收端存在一个主要的静态(非衰落)信号时,如LOS 分量(在郊区和农村等开阔区域中,接收端经常会接收到的)等,此时接收端接收的信号的包络就服从莱斯分布。在这种情况下,从不同角度随机到达的多径分量迭加在静态的主要信号上,即包络检波器的输出端就会在随机的多径分量上迭加一个直流分量。当主要信号分量减弱后,莱斯分布就转变为瑞利分布。莱斯分布的概率密度函数为: ?????<≥≥??? ? ????? ? ?+-=0 ,00,0,2exp )(202222 r r C Cr I C r r r p σσσ (3-4) 其中C 是指主要信号分量的幅度峰值,()0I 是0阶第一类修正贝赛尔函数。为了更好的分析莱斯分布,定义主信号的功率与多径分量方差之比为莱斯因子K ,则K 的表达式可以写为

音乐风格特点分类数学建模

目录 一、问题重述 (2) 二、问题提出 (2) 三、问题分析 (2) 四、模型假设 (2) 五、主要符号说明 (3) 六、模型建立与求解 (3) 6.1探究影响流行音乐风格分类的主要因素 (3) 6.1.1旋律对音乐风格的影响 (3) 6.1.2音高对音乐风格的影响 (6) 6.1.3和声对音乐风格的影响 (7) 6.1.4音色对音乐风格的影响 (7) 6.1.5复调对音乐风格的影响 (7) 6.1.6节拍对音乐风格的影响 (7) 6.2对各影响因素进行主成分分析 (8) 6.2.1模型的建立 (8) 6.2.2模型的求解 (10) 6.3用matlab进行音乐特征提取 (11) 6.3.1利用FFT进行频谱分析 (11) 6.3.2特征提取分析 (12) 6.3.3特征提取结果 (12) 6.4基于BP神经网络的分类算法 (13) 6.4.1 BP神经网络介绍 (13) 6.4.2 BP神经网络训练步骤 (14) 6.4.3 BP神经网络语音特征信号分类 (15) 6.4.4 归一化处理 (16) 6.4.5 结果分析 (16) 七、模型的优缺点 (18) 7.1层次分析法的优缺点 (18) 7.2主成分分析法的优缺点 (18) 7.3 BP神经网络的优缺点 (18) 八、参考文献 (19)

一、问题重述 随着互联网的发展,流行音乐的主要传播媒介从传统的电台和唱片逐渐过渡到网络下载和网络电台等。网络电台需要根据收听者的已知喜好,自动推荐并播放其它音乐。由于每个人喜好的音乐可能横跨若干种风格,区别甚大,需要分别对待。这就需要探讨如何区分音乐风格的问题。 在流行音乐中,传统的风格概念包括Pop(流行)、Country(乡村)、Jazz(爵士)、Rock(摇滚)、R&B(节奏布鲁斯)、New Age(新世纪)等若干大类,它们分别可以细分成许多小类,有些小类甚至可以做更进一步的细分。而每首歌曲只能靠人工赋予风格标签。这样的做法有许多不足:有的类别之间关系不清楚,造成混乱;有的类别过度粗略或精细;有的类别标签没有得到公认;有的音乐归属则存在争议或者难以划归。 二、问题提出 建立合理的数学模型,对流行音乐的风格给出一个自然、合理的分类方法,以便给网络电台的推荐功能和其它可能的用途提供支持。 三、问题分析 对于流行音乐风格的分类,要从以下三个方面进行考虑: (1)探究影响流行音乐风格分类的主要因素。目前,旋律、音高、和声、音色、复调和节拍等都是体现音乐风格的因素。通过建立递阶层次结构,构造判断矩阵并赋值、层次单排序(计算权向量)与检验、主成分分析的数学模型等方法,确定影响流行音乐风格的主要因素; (2)音乐特征提取。通过FFT进行频谱分析,利用不同类别音乐的统计规律提取特征向量; (3)进行归一化处理; (4)利用BP神经网络分类算法进行分类。 四、模型假设 4.1忽略主观因素对流行音乐风格分类的影响 4.2假设每个音乐分类是明确的 4.3假设流行音乐市场处于稳定状态 4.4其他所发生的偶然因素对模型无影响

无线信道模型

无线信道模型 摘要:本文分析了无线信道模型。针对的是对无线信道的各种效应感兴趣的读者。众所周知,正是这些复杂的效应使得无线信道产生了不确定性,也就是通常所说的统计特性。由于这方面很少有比较全面,容易理解的资料,所以本文的内容是对其他几本书和相关的论文资料的综合。此外的资料不是只讨论了部分问题,就是虽然面面俱到,但缺乏一定的深度。 本文深入探讨了“是什么影响了无线信道的特性?”这一问题。主要阐述了无线信道的两种效应:一种是乘性效应,使信号产生衰落;另一种是加性效应,使接收到的信号产生畸变。信号的衰落不一定总是随机过程,但信号的畸变却总是。对于信道对信号产生的各种效应,找到了较好的数学模型,这些模型可以用来仿真和分析系统的性能。而且,我们简单举例分析了一些数字无线调制信道的特性。 内容 1 介绍 2 无线电信道 2.1路径损耗 2.1.1 天线 2.1.2 自由空间传播 2.1.3 双线模型 2.1.4 经验和半经验模型

2.1.5其他模型和参数 2.2 阴影 2.2.1 阴影模型 2.2.2 测量结果 2.2.3 阴影修正 2.3 衰落 2.3.1 物理基础 2.3.2 数学模型 2.3.3 衰落的时域和频域特性 2.3.4 一维统计特性 2.3.5 二维统计特性 2.3.6 衰落率和持续时间 3 调制信道 3.1 噪声 3.1.1 门限噪声 3.1.2 窄带高斯白噪声 3.1.3 人为噪声 3.1.4 一些结果 3.2 干扰 4 数字信道 4.1 数字信道的结构 4.2 高斯白噪声信道下二进制PAM信号的以SNIR为自变量的函数BER的计算

4.3 瑞利信道下BPSK信号以SNIR为自变量的函数BER的计算4.4 高斯白噪声信道下其他数字调制方案的一些结果 5 结论 第一章 介绍

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模模型分类

模型类型: 一:关联分析类(回归分析、相关分析法、熵权法、归一化、主成分分析、聚类分析、典型相关分析、灰色关联度分析、层次分析法、判别分析法、小波分析、灵敏度分析、误差分析、残差检验、回归方程显著性检验) 二:预测类(时间序列、灰色预测、插值拟合) 三:图论模型(最短路问题、图片匹配类模型) 四:最优化类(遗传算法、神经网络、蚁群算法、线性规划、非线性规划、多目标规划、动态规划) 类别类别(2)模型名称关键点备注 参 考 书 目 复杂系统库存模型排队模型 可靠系统 差 分方程模型动力系统类 酵母菌增长模型 平衡点;平 衡点的分 类 地高辛衰减模型 战争模型 总量一定 时,对单量 的分配 竞争物种模型 不稳定平 衡:对初始 值敏感 比例性模型 钓鱼比赛模型 几何相似 性 身高、体重与灵活性模型 A 数据拟合模型最小二乘拟合 停止距离模型97 海湾收成模型 多项式拟合 磁带播放模型 高阶多项 式敏感度 很强 光滑化115 停止距离模型(2) 三阶样条 法。有自然 和强制样 条两种 134 A 预时间序列GM(1,1),指数平滑,线性平滑因果分析法

测 A 聚类分析灰色关联度分析聚类分析 因子分析 模 拟方法蒙特卡罗算法 硬币投掷模型149 汽油储存模型 逆线性样 条(可改变 随机数范 围) 155 港口系统模型 改变参数 时,改善情 况的分析 164 离 散概率模型马尔可夫链 汽车租赁模型 要结合蒙特卡 罗算法 176 投票趋势模型177 Markov决策 串联和并联系统模型178 线性规划模型 无约束类生产计划模型192取整数类载货模型194动态规划类197 多目标规划类投资问题 有时须对 目标进行 取舍。可采 取加权 系统层次分析196 冲突目标 Minmax与maxmin 机会约束 约束满足 概率性>P 矛盾约束 约束相互 矛盾 单纯形法木匠生产模型 注意步骤 性。 215组合模型 参数模型 动态规划决策法 背包问题 排序问题 多步骤形 的规划 数值搜索法工业流程优化 黄金分割 搜索法 还有二分搜索 法 233

相关主题
文本预览
相关文档 最新文档