当前位置:文档之家› 函数列一致收敛判别法

函数列一致收敛判别法

函数列一致收敛判别法
函数列一致收敛判别法

学士学位论文题目函数列一致收敛性判别法

学生许月

指导教师房维维讲师

年级 2008级

专业数学与应用数学

系别数学系

学院文理学院

哈尔滨师范大学

2012年4月

目录

摘要 (1)

关键词 (1)

引言 (1)

一预备知识........................................................................................................ 错误!未定义书签。

1.1函数列一致收敛性定义 (1)

1.2函数列一致收敛性柯西准则 (1)

1.3函数列一致收敛性充要条件 (2)

二函数列一致收敛性判别法的应用 (2)

2.1利用函数列一致收敛性定义证明 (2)

2.2利用函数列一致收敛性柯西准则 (3)

2.3 利用函数列一致收敛性充要条件 (5)

3. 结束语 (6)

注释 (6)

参考文献 (7)

英文摘要 (8)

函数列一致收敛性判别法

许月

摘要: 在高等数学中一致收敛是函数列的一个重要性质,有效的判别函数列一致收敛性的方法,对研究函数列的性质起着重要的作用。其方法有定义法,柯西准则,充要条件等重要方法,通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维能力,并对各种方法加以系统总结,以便学者熟练并灵活运用.

关键词: 函数列;一致收敛;判别法

引言

本文系统总结了有关函数列一致收敛性的若干证明方法与技巧,通过对例题的分析,回顾了几种常用的函数列一致收敛性判定方法,充分的分析各种判定方法的应用,并结合实例对不同方法进行具体应用,叙述了证明函数列一致收敛性判别方法,即函数列一致收敛性的定义,函数列一致收敛性的柯西准则,函数列一致收敛性的充要条件等方法证明函数列一致收敛性.这样对我们解题将会起到很大的作用.

一 预备知识

1.1函数列一致收敛的定义

定义1:设函数列{n f }与函数()f x 定义在同一数集D 上,若对任给的正数ε,总存在一正整数N ,使得当n N >时,对一切x D ∈,都有()()n f x f x ε-<,则称函数列 {n f }在D 上一致收敛于f ,记作()()n f x f x ? ()n →∞,x D ∈.

1.2 函数列一致收敛性的柯西准则

定理1(Cauchy )函数列n f 在D 上一致收敛的充分必要条件上:对任意给定正数ε,总存在正数N ,使得当,n m N >时,对一切x D ∈,都有()()n m f x f x ε-<.

1.3函数列一致收敛性的充要条件

定理2 函数列{n f }在D 上一致收敛的充要条件是:()()lim sup 0n n x D

f x f x →∞∈-=.

二 函数列一致收敛性判别法的应用

2.1利用函数列一致收敛性定义证明 例1:定义在(),-∞+∞上的函数列()sin ,1,2...n nx

f x n n

=

=由于对任何实数x ,都有n

n nx 1

sin ≤ 故对任给的0ε>,只要1

n N ε

>=

,就有

sin 0,nx n ε-<所以函数列sin nx n ??

????

收敛域为无限区间(),-∞+∞, 极限函数()0f x =.

注:对于函数列,仅停留在谈论在那些点上收敛是远远不够的,重要的是研究极限函数与函数列所具有的解析性质的关系。例如,能否由函数列每项的连续性,可导性,来判断出极限函数的连续性和可导性;或极限函数的导数或积分,是否分别是函数列每项导数或积分的极限,对这些更深刻问题的讨论,必须对它在D 上的收敛性提出更高的要求才行。

例2:设在[],a b 上,()n f x 一致收敛于()f x ,()n g x 一致收敛于()g x 。若存在正数列{}[]()

,,,1,2,...n M x a b n ∈=。证明:()()n n f x g x ?在[],a b 上一致收敛于()()f x g x ?。

证明:先证(){}

n f x 一致有界。

因为()n f x 一致收敛于()f x ,所以0,0N ε'?>?>,当n N '>时

()()[](),n f x f x x a b ε-<∈

特别地对1,ε=有()()1n f x f x -<,所以()()11,n n f x f x M ≤+≤+即()f x 是有界的。

记[]

()1

,sup x a b M f x ∈'=,则当n N '>时,()()11,n n n f x f x M '≤+≤+取 {}

121max ,,...,1N M M M M M ''=+

则有对于任意的[](),,,n n N x a b f x M ?∈?∈≤同理可证()g x 是有界的,即0,M '?>使得

()[],,g x M x a b '≤∈,由于()n f x 一致收敛于()f x ,()n g x 一致收敛于()g x ,所以对

0,0,N ε?>?>当n N >时对一切[],x a b ∈()()()(),22n n f x f x g x g x M M

ε

ε

-<

-<

'

所以当n N >时有

()()()()n n f x g x f x g x -

()()()()()()()()n n n f x g x f x g x f x g x f x g x ≤-+-

()()()()()()n n n f x g x g x g x f x f x ≤-+-22M M M

M ε

ε

ε'

+?

='

故()()n n f x g x 在[],a b 上一致收敛于()()f x g x .

2.2利用函数列一致收敛性的柯西准则 例3:设()n

f n x =,1,2

n =为定义在)(

,+∞-∞上的函数列,证明它的收敛域是

(]1,1-,且有极限函数

0,1()1,1

{x f x x <=

= (3)

证明:任给0ε>,(不防设1ε<),当01x <<时,由于()()n

n f x f x x -=,只要取()ln ,ln N x x

ε

ε=

,当n N >(),x ε时,就有()()n f x f x ε-<,当0x =和1x =时,则对任何正整数n ,都有()()000n f f ε-=<,()()110n f f ε-=<.这就证得{n f }在(]1,1-上收敛,且有(3)式所表现的极限函数.

当1x >时,则有()n

x n →+∞→∞,当1x =-时,对应的数列为,1,1,1,1......-- 它显然是发散的。所以函数列{}n

x 在区间(]1,1-外是发散的.

注:对于不等式中含有可考虑用的因子,)()(a f b f -拉格朗日中值定理先处理以下,利用中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)的方法来证明不等式首先要熟记各个中值定理的应用条件,可将原不等式通过变形找到一个辅助函数,使其在所给区间上满足中值定理的条件,证明的关键是处理

好ξ点,分析函数或其导数在该点的性质即可得到所要结论,在证明过程中也会出现反复应用同一定理或同时应用几个定理进行证明的情况.

例4:可微函数列(){}

n f x 在[],a b 上收敛,且导函数列(){}

n f x '在[],a b 上一致有界,则

(){}n

f x 在[],a b 上一致收敛。

证明:由假设存在正数M ,对一切自然数n ,当[],x a b ∈时,有()n f x M '≤,因此对0ε?>,只要取3M

ε

δ<

,则当x x δ'''-<,对一切自然数n ,由微分中值定理有

()()()3

n n n f x f x f x x M ε

ζδ''''''-=-≤<

其中ζ在'

x 和x ''之间,现对[],a b 作k 等分,使b a k

δ-<,在各个小区间内任取一点12,,...,k x x x ,

在这些点上函数列(){}

n f x 收敛,对0ε?>,存在自然数i N ,当i n N >时,有

()()3

n i m i f x f x ε

-<

令1max i i k

N N <<=,则当n N >时,这一切12,,...,k x x x 都有,()()3

n i m i f x f x ε

-<,对任意[],x a b ∈,

设x 落在i x 所在的小区间上,(1),(2),及n N >有

()()()()()()()()n m n n i n i m i m i m f x f x f x f x f x f x f x f x ε-≤-+-+-<

所以(){}

n f x 在[],a b 上是一致收敛的。

注:柯西准则的特点是不需要知道极限函数是什么,只是根据函数列本身的特点来判断函数列是否一致收敛。

例5:()2n

n

n f x x x =-在01x ≤≤是否一致收敛?

分析:考察区间收敛与一致收敛的逻辑关系注意联系闭区间连续性与一致收敛的关系. 证明:这里()(

)()2lim lim 0,01,n

n

n n n f x x x

f x x →∞

→∞

=-==≤≤,

令()()'

1

120n n

n

f x nx x -=-=,

得n x =

()0n f x ≥,而()()010n n f f ==

,所以,在n x =()n f x 取极大值. ()()2

201

01

111

sup sup 224

n

n

n x x f x f x x x

≤≤≤≤????-=-=-= ? ?????

所以()n f x 不趋近于()f x .

注:当()()01

sup n x f x f x ≤≤-不好求时,只好诉之于一致或者不一致收敛的定义或柯西准则。从

上例题也可看出,函数列在有限闭区间上收敛,未必一致收敛,{}

2n n x x -在[]0,1上就是如此,这与有限闭区间上连续函数一定一直连续不同。

2.3 利用函数列一致收敛性的充要方法

例6:定义在上的函数列 122,0211222,,1,2,...210,1(){

n n x x n n n x x n n n x n f x ≤≤-≤≤=<<= (8) 其中1,2,3n =的图像,如图所示. 由于(0)0n f =,故()(0)lim 00n n n f f →∞==。当01x <≤时,只

1n x

>,就有()0n f x =,故在(]0,1上有()(0)lim 00n n n f f →∞==于是函数列(8),在]1,0[上的极限函数()0f x =,又由于

[]()()()0,11sup 2n n x f x f x f n n n ∈??-==→∞→∞ ???

,所以函数列(8)在[]0,1上不一致收敛。

例7:讨论函数列(){}222n x n f x n xe -=,[]0,1x ∈的一致收敛性。

证明:因为()[]222

lim 0,0,1n x n f x n xe x -→∞==∈,于是,()()2220.n x n f x f n xe --=容易

验证222n x n xe -在[]0,1上只有唯一的极大点02x n =

,因此为最大值点。于是 ()()1

2sup 2

n f x f x --=→+∞ 因此该函数列在[]0,1上不一致收敛。

注:(){}222n x n f x n xe -=不一致收敛是因为函数列余项的数值在0x =的附近不能随n 的增大一致趋于零,因此对任何不含原点的区间

[](),101a a <<,(){}222n x n f x n xe -=在该区间上一致收敛于零。

例8:讨论(

)()1,2,...1,1n f x n D ===-是否一致收敛,并说明理由。 证明:由于()()()lim ,1,1n n f x x f x x D →∞

==∈=-,且 ()(

)limsup n n n x D x D f x f x x →∞→∞∈∈-=

21

1lim lim 0n n x D n →∞→∞∈===

()(),,1,1x n x →∞∈-. 例9:讨论()()22,1,2,...,,1n x f x n D n x =

==-∞+∞+是否一致收敛,并说明理由。 证明:由于()()()lim 0,,n n f x f x x →∞==∈-∞+∞,且

()()221limsup limsup lim 021n n n n x D x D x f x f x n n x →∞→∞→∞∈∈-=≤=+ 故()()22

0,0,,1x x n x ?→∞∈-∞+∞+. 结束语

初等数学中的常用方法有很多,在数学的学习过程中,函数列一致收敛性证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现.在极限上,虽然函数列一致收敛性判别法广泛的存在于现实的世界里,但是人们对函数列一致收敛性判别法的认识尚浅.直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的一个重要组成部分.

但一般来说比较讲究解题技巧.而用上述函数列一致收敛性判别法,有时可大大降低解题技巧的需要,简化解题过程.所以以上方法给我们提供了便利的条件.

注释:

[1]李长明,周焕山:初等数学研究[M].北京:高等教育出版社,1995,253-263.

[2]叶慧萍:反思性教学设计-不等式证明综合法[J].数学教学研究,2005,10(3):89-91.

[3]胡炳生,吴俊:现代数学观点下的中学数学[M].北京:高等教育出版社,1998,45-50.

[4]宋庆:函数列一致收敛性判别法的再推广[J].中等数学,2006,45(5):29-31.

[5]蒋昌林:也谈一类函数列一致收敛性的统一证明[J].数学通报,2005,15(2):75-79.

[6]张新全.函数列一致收敛性的证明[J].数学通报,2006,45(4):54-55.

参考文献:

[1] 孙涛:数学分析经典习题解析[M],高等教育出版社,2004.

[2] 孙清华:数学分析内容、方法与技巧[M],华中科技大学出版社,2003.

[3] 谢惠民:数学分析习题课讲义[M],高等教育出版社,2003.

[4] 陈传璋:数学分析[M],人民教育出版社,1980.

[5] 黄先开,曹显兵:历届考研试题[M],世界图书出版公司, 2004.

英文摘要

Uniform Convergence Of Function Sequence Of Discriminant Method

XuYue

Abstract: Higher Mathematics in uniform convergence of function sequence is one of the important properties, effective discriminant function uniformly convergence method, to study the properties of sequence of functions play an important role. The method of defining method, a sufficient and necessary condition of guidelines, and other important method, through the study of these proven methods, which can help us to solve some practical problems, developing logical reasoning ability and abstract thinking ability, and the various methods to summarize, in order to scholars of skilled and flexible use.

Keywords: function list; uniform convergence; discriminant method

论文评阅人意见

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. 2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌 握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判 别及应用。 (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别 法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ————————————————————一函数列及其一致收敛性

对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值 )()(lim x f x f n n =∞ → 与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n = n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 函数列的一致收敛性: 设函数列 })({x f n 在E 上收敛于 )(x f ,若对任意的0>ε ,存在自然数 )(εN N =,当 N n >时,对E 中一切 x 都有 ε<-)()(x f x f n 则称函数列)}({x f n 在E 上一致收敛于)(x f 。 注意 这里的 N 只与ε有关,与x 无关,这一点是一致收敛与逐点收敛的本质区别。

函数项级数一致收敛的判别

函数项级数一致收敛的判别 姓名: 学号: 指导老师: 摘要:函数项级数问题是数学分析中极其重要的部分,判别其一致收敛的方法有多种。本文探讨了对函数项级数一致收敛的判别方法,并对有关的注意事项进行了分析。 关键字:函数项级数 一致收敛 判别法 Judgment on Uniform Convergence for Function Series Name: Student Number: Advisor: Abstract: Issue of function series plays a very important role in Mathematical Analysis.There are various methods to judging the uniform convergence of function series .This paper gives several methods of juding the uniform convergence of function series. Apart from that, the paper also analysizes some relative points that need to be paid special attention. Key words: Function series Uniformly convergence Judgment 在数学分析中级数问题是一个特别重要的问题。级数内容主要分为两大块,即数 项级数与函数项级数。数项级数通常被认为是函数项级数的一个典型例子,而函数项级数,在某种意义上,是对数项级数的延伸。在研究内容和性质上,它们又有着许多类似的地方,例如使用第n 个部分和数列的敛散性来判断级数的敛散性,以及判别收敛性的方法等。对于函数项级数,研究它的性质和一致收敛的判别则是学习的重点,并且它还是研究级数问题最重要的工具,对进一步研究函数项级数的性质起着重要的作用。教材中判别一致收敛的方法有很多,下面给出一种最基本的方法,即根据一致收敛的定义来进行判别。 一 利用一致收敛的定义 定义1[1] : 设函数项级数()1n n u x ∞ =∑在D 上和函数为()S x ,称()( )n R x S x =-() n S x 为函数项级数()1 n n u x ∞ =∑的余项. 定义2[1] : 设函数项级数()1 n n u x ∞ =∑在区间I 上收敛于和函数()S x ,若任给 0,ε>N N n N x I +?∈?>?∈,,,有()()()n n S x S x R x ε-=<,则称函数项级数

1函数项级数的一致收敛性

函数列与函数项级数 §1. 函数项级数的一致收敛性 1. 讨论下列函数序列在所示区域的一致收敛性: ⑴ ()n f x = ,(,);x ∈-∞+∞ ⑵ ()sin ,n x f x n = i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx =+ (0,1);x ∈ ⑷ 1(),1n f x nx = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑸ 2 233 (),1n n x f x n x = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x = ++ [0,1];x ∈ ⑺ (),1n n n x f x x = + i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞> ⑻ 2(),n n n f x x x =- [0,1];x ∈ ⑼ 1 (),n n n f x x x +=- [0,1];x ∈ ⑽ ()ln ,n x x f x n n = (0,1);x ∈ ⑾ 1()ln(1),nx n f x e n -= + (,);x ∈-∞+∞

⑿ 2 ()(),x n n f x e --= i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令 [()] ()n nf x f x n = (1,2,)n =???. 求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时, (),nx n f x n xe α -= 1,2,3,n =??? 在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10 lim ()n n f x dx ->∞ ? 可在积分号下取极 限? 4. 证明序列2 ()nx n f x nxe -=(1,2,)n =???在闭区间[0,1]上收敛,但 1 100 lim ()lim ().n n n n f x dx f x dx ->∞ ->∞ ≠? ? 5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又 [,]n x a b ∈(1,2,)n =???,满足0lim n n x x ->∞ =,求证 0lim ()().n n n f x f x ->∞ = 6. 按定义讨论下列函数项级数的一致收敛性: ⑴ 0 (1), [0,1];n n x x x ∞ =-∈∑ ⑵ 12 2 1 (1) , (,)(1) n n n x x x -∞ =-∈-∞+∞+∑ . 7. 设()n f x (1,2,)n =???在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证: ()n f x 在[,]a b 上一致有界. 8. 设()f x 在(,)a b 内有连续的导数()f x ',且 1()[()()],n f x n f x f x n =+ - 求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

一致收敛函数列与函数项级数的性质

§2 一致收敛函数列与函数项级数的性质 教学计划:4课时. 教学目的:让学生掌握一致收敛函数列与函数项级数的性质及其应用. 教学重点:函数列与函数项级数的确定的函数的连续性、可积性与可微性. 教学难点:在一致收敛的条件下证明各项分析性质. 教学方法:讲授法. 教学步骤: 本节讨论由函数列与函数项级数的确定的函数的连续性、可积性与可微性. 定理13.8 设函数列{}n f 在()()b x x a o o ,, 上一致收敛于()x f ,且对每个n , ()n n x x a x f o =→lim 则n a ∞ →lim 和()x f o x x →lim 均存在且相等. 证 先证{}n a 是收敛数列.对任意0>ε,由于{}n f 一致收敛,故有N ,当N n >和任意正整数p ,对一切()()b x x a x o o ,, ∈有 ()().ε<-+x f x f p n n (1) 从而 ()()ε≤-=-+→+x f x f a a p n n x x p n n 0 lim 这样由柯西准则可知{}n a 是收敛数列. 设.lim A a n n =∞ →.再证().lim 0 A x f x x =→ 由于)(x f n 一致收敛于)(x f 及n a 收敛于A ,因此对任意,0>ε存在正数N ,当N n >时,对任意),(),(00b x U x a x ∈ 3 3 )()(ε ε < -< -A a x f x f n 和 同时成立.特别取,1+=N n 有 .3 ,3 )()(11ε ε < -< -++A a x f x f N N 又(),lim 110 ++→=N N x x a x f ,故存在,0>δ,当δ<-<00x x 时, .3 )(11ε < -++N N a x f 这样,当x 满足δ<-<00x x 时, A a a x f x f x f A x f N N N N -+-+-≤-++++1111)()()()( ,3 3 3 εε ε ε =+ + < 即 ().lim 0 A x f x x =→ □ 这个定理指出:在一致收敛的条件下,{})(x f n 中两个独立变量x 与n ,在分别求极限时其求极限的顺序可以交换,即 ()().lim lim lim lim 0 0x f x f n x x n n n x x →∞→∞ →→= (2) 类似地,若)(x f n 在()b a ,上一致收敛且)(lim x f n a x + →存在,可推得 ()().lim lim lim lim x f x f n a x n n n a x ++→∞→∞ →→=;若)(x f n 在()b a ,上一致收敛和)(lim x f n b x +→存在,则可推 得()().lim lim lim lim x f x f n b x n n n b x + + →∞→∞ →→=.

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

一致收敛性及应用初步

龙源期刊网 https://www.doczj.com/doc/5a14276299.html, 一致收敛性及应用初步 作者:缪彩花何天荣 来源:《文理导航》2018年第03期 【摘要】本文对函数项级数一致收敛性的判别法进行介绍和举例,还介绍了一致收敛函数项级数性质的初步应用,有助于加深对一致收敛的理解,体会一致收敛的作用,增强数学的应用意识。 【关键词】级数;一致收敛;判别法 函数项级数具有高度的抽象性,特别是函数项级数的一致收敛性更是教学和学习中的难点,以下我们介绍函数项级数一致收敛性的判别方法及其初步应用。 一、函数项级数一致收敛性的判别法 1.M判别法 M判别法的适用范围虽然较窄,但当它适用時,用起来却很方便。 如对于函数项级数,x∈[-1,1]。由于对任意的x∈[-1,1]有u (x)≤ ,而级数收敛,所以由M判别法知原函数项级数在[-1,1]上一致收敛。该函数项级数也可用“裂项相消法”去求 部分和序列,证明其一致收敛,但和M判别法比较,就可以发现M判别法简单得多。 2.狄利克雷判别法和阿贝尔判别法 狄利克雷判别法和阿贝尔判别法均适用于讨论通项是两个函数相乘的函数项级数,如对于函数项级数,x∈[0,+∞),记u (x)= ,v (x)= , u (x)在[0,+∞)上一致收敛。 ∨x∈[0,+∞),函数列{v (x)}是单调减少的,又因为v (x)≤1对一切x∈[0,+∞)和任意n∈N都成立,所以{v (x)}在[0,+∞)一致有界,由阿贝尔判别法知函数项级数 u (x)v (x)在[0,+∞)上一致收敛。 3.柯西准则及其推论 判别函数项级数一致收敛的M判别法,狄利克雷判别法,阿贝尔判别法都是充分性判别法,不能用它们来判别函数项级数不一致收敛。判别函数项级数不一致收敛可应用柯西准则及其推论。对于函数项级数 2 sin(x/3 ),x∈(0,+∞),记u (x)=2 sin(x/3 ),取ε =1,∨N>0, n>N及x =π3 /2∈(0,+∞)有u (x )=2 >1,由此得{u (x)}在(0,+∞)上不一致收敛于零,由柯西准则的推论得:函数项级数 2 sin(x/3 )在(0,+∞)上不一致收敛。

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

浅谈函数列收敛与一致收敛的关系及差异

摘要:本文从定义、定理、集合的角度,通过正反对比的例题,论述函数列收敛、一致收敛、内闭一致收敛间的相互关系及其差异 关键词:函数列;收敛;一致收敛;内闭一致收敛

Abstract:This paper from the definition, theorem, the set point of view, through the contrast of examples, discusses the function series convergence, uniform convergence, in close relationship and difference between the uniform convergence Keyword:Function series; convergence; uniform convergence; uniform convergence

目录 1 引言 (4) 2 函数列收敛与一致收敛的定义 (4) 2.1 函数列收敛 (5) 2.2函数列的一致收敛 (5) 3 论述函数列收敛与一致收敛的差异 (5) 4 阐述函数列收敛与一致收敛的相互关系 (9) 4.1从定理的角度阐述 (10) 4.2从集合的角度阐述 (11) 结论 (12) 参考文献 (13) 致谢 (14)

1引言 收敛与一致收敛理论是数学分析的重要概念之一,同时也是教学的难点之一。 特别是函数列的收敛与一致收敛问题,在各个版本的数学分析教科书中往往都把 函数列的收敛问题与函数项级数的收敛问题混在一起,导致学生往往难以透彻的 理解这个概念。而且证明时学生常常都用""N -ε语言硬套,各个版本数学分析 中对这个概念也仅仅是一般性叙述,例题很少,尤其是正反例题更少。所以本文 为了让学生更好掌握这一重要概念将从定义、定理、集合的角度,系统论述函数 列收敛与一致收敛及内闭一致收敛间的相互关系及差异,让这部分内容能够独立 建立 2 函数列收敛与一致收敛的定义 2.1函数列收敛: 设 ,2,1f f …,,n f … (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列。(1)也可以简单地写作: ? ?????n f 或,n f n=1,2,… 设0x ∈E ,以0 x 代入(1)可得数列 ), 0 (),...0(2),0(1x n f x f x f (2) 若数列(2)收敛,则函数列(1)在点0x 收敛,0 x 称为函数列(1)的收敛点。若数列(1)在数集D E ?上每一点都收敛,则称(1)在数集D 上收敛。这时D 上每一点x ,都有数 列? ?? ???n f 的一个极限值与之对应,由这个对应法则所确定的D 上的函数,称为函数列(1)的极限函数。若把此极限函数记作,f 则有

一致收敛判别法总结

学年论文 题目:一致收敛判别法总结 学院:数学与统计学院 专业:数学与应用数学 学生姓名:张学玉 学号:201071010374 指导教师:陶菊春

一致收敛判别法总结 学生姓名:张学玉 指导教师:陶菊春 摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。并通过例题的讨论说明这些判别法的可行性及特点。 Abstract :Function Series Uniform Convergence prove mathematical analysis of the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics. 关键词: 函数项级数;函数序列;一致收敛;判别法 Keywords: series of functions; function sequence; uniform convergence; Criterion 引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。 一、定义 设(){}x S n 是函数项级数()x u n ∑的部分和函数列.若(){}x S n 在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n ∑在D 上一致收敛于函数()x S ,或称函数项级数 ()x u n ∑在D 上一致收敛. 定理:若对?n ,?n a >0使得()()n n a x S x S ≤-()D x ∈?,并且当∞→n 时有 0→n a .则当∞→n 时()x S n 一致收敛于()x S . 例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积

函数项级数一致收敛性判别法及其应用

函数项级数一致收敛性判别法及其应用 数学科学学院08级蒙班 包艳玲 20082115054 指导老师 苏雅拉图 摘 要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用. 关键词:一致收敛,函数项级数,和函数. 下面我要给出函数项级数的一致收敛性的定义 定义 设给定函数项级数∑∞ =1 )(k k x u ,如果它的部分和序列= )(x S n ∑=π 1 )(k k x u 在 区间I 一致收敛到和函数)(x S ;那么称级数∑∞ =1 )(k k x u 在区间I 一致收敛到和函数 )(x S , 即用N -ε语言来叙述,函数项级数∑∞ =1 )(k k x u 在区间I 一致收敛到)(x S ,是指对 任给的0>ε,存在于x 无关的N ,只要N n >就有 ε<-= -∑=n k k n x S x u x S x S 1 )()()()( 对一切I x ∈一直成立. 例1 证明函数项级数∑∞ =-1 1k k x 在??? ???-21,21一致收敛. 证明 已知∑∞ =-1 1 k k x =x x n --11,?? ? ???-∈21,21x 时 x x x x S n n k k n --= =∑=-11)(1 1 ε<≤-≤-=--12111)()(n n n n x x x x x S x S ;??? ???-∈21,21x 时取121ln ln +????? ? ??????=εN 则只要N n >,就有ε<-)()(x S x S n ;??? ???-∈21,21x , ∑∞ =-1 1 k k x 在??????-21,21一致收敛.

含参量反常积分的一致收敛性判别法

3. 含参量的反常积分一致收敛性判别法 Weierstrass 判别法 设函数(,)f x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的; (b ) 存在()x ?,使得 ()a x dx ?+∞ ?收敛,且 (,)(), [,)f x t x x a ?≤∈+∞; 则反常积分(,)a f x t dx +∞ ? 关于t T ∈绝对一致收敛,亦即,反常积分 (,)a f x t dx +∞ ? 关于t T ∈一致 收敛. 我们称定理中的()x ?为(,)f x t 的优函数. Abel 判别法 设函数(,)f x t 、(,)g x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 若反常积分 (,)a f x t dx +∞ ? 关于t T ∈一致收敛; (b ) (,)g x t 是x 的单调函数,且存在常数0L >(与[,)x a ∈+∞、t T ∈无关),使得 (,)g x t L ≤; 则反常积分 (,)(,)a f x t g x t dx +∞ ? 关于t T ∈一致收敛. Dirichlet 判别法 设函数(,)f x t 、(,)g x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的,且积分 (,)A a f x t dx ?关于t T ∈ 一致有界,亦即,0M ?>(与A 、t 无关),使得

含参变量无穷积分的一致收敛性

含参变量无穷积分的一致收敛性 论文摘要:本文通过含参变量无穷积分与函数级数之间的关系,归纳总结了含参变量无穷积分的一致收敛性的判别法(柯西一致收敛准则、魏尔斯特拉斯判别法、狄利克雷判别法等)及其性质. 关键词:含参变量无穷积分一致收敛判别法 无穷积分?+∞ a dx x f) (与级数∑∞ =1 n n u的敛散概念、敛散判别法及其性质基本上 是平行的,不难想到,含参变量无穷积分?+∞ a dx y x f) , (与函数级数() ∑∞ =1 n n x u之间 亦应如此,为了讨论函数项级数的和函数的分析性质,我们在收敛区域I上提出了更高的要求,引进了一致收敛的概念,同样,在讨论含参变量无穷积分所确定的函数的分析性质时,一致收敛同样也起着重要的作用.因此,含参变量无穷积分的一致收敛性是《数学分析》中非常重要的知识点,也是学生不容易掌握的难点,从而,我试着类比、总结得出含参变量无穷积分的一致收敛性的判别法及其性质,以便使学生对此有一个更为系统和深刻的了解. 1.含参变量无穷积分一致收敛的判别法 我们很自然的可以想到运用定义来证明.

定义 设?∈y 区间I ,无穷积分 ()?+∞ a dx y x f ,收敛,若?ε >0,0A ?(通 用)>0,?0A>A ,有| (,)(,)A a a f x y dx f x y +∞ -? ?dx |=| (,)A f x y dx +∞ ? |ε<,则称无穷积分 ()?+∞ a dx y x f ,在区间I 一致收敛. 用定义证明一致收敛的关键在于寻找只与ε有关的共同的0A ,方法常常是采取适当放大的方法. 例 1[] 1证明:无穷积分dx ye xy ?+∞ -0 在区间[a ,+∞](a >0)一致收敛,而 在(0,+∞)上非一致收敛. 证明 Ay Ay t A xy e dt e xy t dx y y -+∞ -+∞ -==+∞∈???令ε ), ,0(, 对,0>?ε解不等式ε<-Ay e ,有y A ε1 ln > ,取y A ε1 ln = ,则0 A A >?,有 ε?A 取),0(21 ,2' ' +∞∈=>=A y A A A ,则01''''ε>==---?e e dx e y y A xy ,但dx ye A xy ?+∞ -在),[+∞a 一致收敛(其中0>a ),由不等式: y a ≥,有Ay Aa e e --≤,解不等式

导函数列一致收敛的性质

关于导函数列一致收敛的性质的一些命题. 函数列可逐项求导的充分条件 定理10.10 如果函数列}{n f 满足条件: (1) 每一个n f 在区间],[b a 上有连续的导函数; (2) 由导函数构成的函数列}{n f '在],[b a 上一致收敛于函数 g ; (3) 至少在某一点],[0b a x ∈,)}({0x f n 收敛。 那么, }{n f 在],[b a 上一致收敛于某个函数f ,f 在区间],[b a 上有连续的导函数,而且对每个],[b a x ∈,有)()(x g x f =', 即 )(lim ))(lim (x f x f n n n n '='∞ →∞ → 。 定理 设函数列}{n f 的每一项都在区间I 上连续可导,如果对任何 I B A ∈,, B A <,函数列}{n f 在],[B A 上一致收敛于函数f ,函数列}{n f '在],[B A 上一致收敛 于函数 g ,那么f 在区间 I 上有连续的导函数,而且对每个I x ∈,有 )()(x g x f =',即 )(lim ))(lim (x f x f n n n n ' ='∞ →∞ → 。 定理1.设[][]b a x b a C x f n ,,,)(02∈∈.若{})(0x f n 收敛, {})(0x f n '收敛,且{})(x f n ''在[]b a ,上一致收敛,则 {})(x f n '在[]b a ,上一致收敛;{})(x f n 在[]b a ,上一致收敛. (lim ())lim ()n n n n f x f x →∞ →∞ ''=,(lim ())lim ()n n n n f x f x →∞ →∞ ''''= 。 定理2 设[],,)(2b a C x f n ∈且{}{})(,)(b f a f n n 收敛,如果{})(x f n ''在[]b a ,上一致收敛, 则{})(x f n 与{})(x f n '均在[]b a ,上一致收敛. 证明由?''-+-'+=b a n n n n dx x f x b a b a f a f b f )()())(()()(, 得?''----='b a n n n n dx x f x b a b a f b f a f )()()()()( ,由条件,可知{})(a f n '收敛,利用定理1,即得到结论. 定理3 设[],,)(2 b a C x f n ∈若{})(x f n 在[]b a ,上一致收敛,{})(x f n ''在[]b a ,上一致收敛, 则{})(x f n '在[]b a ,上一致收敛.

函数项级数的一致收敛性

第三节 函数项级数的一致收敛性 本节将讨论函数项级数有关性质。 定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为 )(1x u +)(2x u +……+)(x u n +…… 为E 上的函数项级数,简记为∑∞ =1 )(n n x u 。其中)(x u n 称为第n 项. )(x u k +)(1x u k ++……+)(x u n +……也记为∑∞ =k n n x u )(. 记号中n 可以用其它字母 代之. 同研究常数项级数一样,我们类似可以定义其收敛性。 定义 2 设∑∞ =1)(n n x u 是集合E 上的函数项级数,记 ∑==n i i n x u x S 1 )()(=)(1x u +)(2x u +……+)(x u n , 它称为级数∑∞ =1 )(n n x u 的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞ =1 )(n n x u 的部分和函数列。 如果{})(x S n 在0x 点收敛,我们也说∑∞ =1 )(n n x u 在0x 点收敛或称0x 为该级数 的收敛点。 如果|)(|1 ∑∞ =n n x u 在0x 点收敛,我们称∑∞ =1 )(n n x u 在0x 点绝对收敛。非常容易证 明绝对收敛一定收敛。 {})(x S n 的收敛域也称为该级数的收敛域。如果{})(x S n 在0x 点不收敛,

我们说∑∞ =1 )(n n x u 在0x 点发散。 如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上点态收敛于 )(x S . )(x S 称为该级数的的和函数。)()()(x S x S x R n n -=称为该级数关于前 n 项部分和的余项. {})(x R n 称为该级数的余项函数列. 如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞ =1)(n n x u 在D 上一致收敛于 )(x S , 或∑∞ =1 )(n n x u 在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上内闭一致收敛. 用N -ε的进行叙述将是: 设∑∞ =1)(n n x u 是D 上函数项级数,)(x S 是D 上函数。 若对任意ε>0,总存 在一个正数正数N (只能依赖于ε,绝对不依赖于x ),当N n >时,对一切的D x ∈,总有 ε<-∑=|)()(|1x S x u n i i , 则称该函数项级数在D 上一致收敛于)(x S . 同样一致收敛一定点态收敛. 例 1 定义在(—∞,+∞)上的函数项级数(几何级数) ΛΛΛΛ+++++=∑∞ =-n n n x x x x 21 1 1 的部分和函数是x x x S n n --=11)( .显然当|x |<1时

相关主题
文本预览
相关文档 最新文档