当前位置:文档之家› 直流无刷电机与永磁同步电机的比较只是分享

直流无刷电机与永磁同步电机的比较只是分享

直流无刷电机与永磁同步电机的比较只是分享
直流无刷电机与永磁同步电机的比较只是分享

直流无刷电机BLDCM与永磁同步电机PMSM的比较

直流无刷电机BLDCM

Brushless Direct Current Motor

永磁同步电机(交流无刷电机) PMSM(BLACM)

Permanent Magnet Synchronous Motor (Brushless Alternating Current Motor)

1 PMSM和BLDCM相同点和不同点

1.1 PMSM和BLDCM的相似之处

两者其实都是交流电机,起源不同但从结构上看,两者非常相似。

PMSM起源于饶线式同步电机,它用永磁体代替了绕线式同步电机的激磁绕组,它的一个显著特点是反电势波形是正弦波,与感应电机非常相似。在转子上有永磁体,定子上有三相绕组。BLDCM起源于永磁直流电机,它将永磁直流电机结构进行“里外翻”,取消了换相器和电刷,依靠电子换相电路进行换相。转子上有永磁体,定子上有三相绕组。

1.2 PMSM和BLDCM的不同之处

反电势不同,PMSM具有正弦波反电势,而BLDCM具有梯形波反电势。

定子绕组分布不同,PMSM采用短距分布绕组,有时也采用分数槽或正弦绕组,以进一步减小纹波转矩。而BLDCM采用整距集中绕组。

运行电流不同,为产生恒定电磁转矩,PMSM需要正弦波定子电流;BLDCM需要矩形波电流。PMSM和BLDCM反电势和定子电流波形如图1所示。

永磁体形状不同,PMSM永磁体形状呈抛物线形,在气隙中产生的磁密尽量呈正弦波分布;BLDCM永磁体形状呈瓦片形,在气隙中产生的磁密呈梯形波分布。

运行方式不同,PMSM采用三相同时工作,每相电流相差120°电角度,要求有位置传感器。BLDCM采用绕组两两导通,每相导通120°电角度,每60°电角度换相,只需要换相点位置检测。正是这些不同之处,使得在对PMSM和BLDCM的控制方法、控制策略和控制电路上有很大差别。

2 PMSM和BLDCM特性分析

2.1按照空间应用中最关心的特性:功率密度、转矩惯量比、齿槽转矩和转矩波动、反馈元

件、逆变器容量等特性对PMSM和BLDCM进行对比分析。

2.1功率密度

在机器人和空间作动器等高性能指标应用场合,对于给定的输出功率,要求电机重量越小越好。功率密度受电机散热能力即电机定子表面积的限制。对于永磁电机,绝大多数的功率损耗产生在定子,包括铜耗、涡流损耗和磁滞损耗,而转子损耗经常被忽略。所以对于一个给定的结构尺寸,电机损耗越小,允许的功率密度就越高。假设PMSM和BLDCM的涡流损耗、磁滞损耗和铜耗相同,比较两种电机的输出功率。

PMSM中,正弦波电流可以通过滞环或PWM电流控制器得到,而铜耗基本上由电流决定。

所以,在相同的尺寸下,BDLCM与PMSM相比,可以多提供15%的功率输出。如果铁耗也相同,BDLCM的功率密度比PMSM可提高15%。

2.2转矩惯量比

在伺服系统中,通常要求电机的最大加速度,转矩惯量比就是电机本身所能提供的最大加速度。因为BDLC可以比PMSM多提供15%的输出功率,所以它可获得被PMSM多15%的电磁转矩。如果BDLC和PMSM具有相同速度,它们的转子转动惯量也相同,那么BDLC的转矩惯量比要比PMSM大15%

2.3齿槽转矩和波动转矩

转矩脉动是机电伺服系统的最大困扰,它使精确的位置控制和高性能的速度控制很困难。在高速情况下,转子惯量可以过滤掉转矩波动。但在低速和直接驱动应用场合,转矩波动将严重影响系统性能,将使系统的精度和重复性恶化。而空间精密机电伺服系统绝大多数工作在低速场合,因此电机转矩脉动问题是影响系统性能的关键因素之一。

PMSM和BLDCM都存在转矩脉动问题。转矩脉动主要有以下几个原因造成:齿槽效应和磁通畸变、电流换相引起的转矩及机械加工制造引起的转矩。

a.齿槽效应引起的转矩脉动

在永磁电机的电枢电流为零的情况下,当转子旋转时,由于定子齿槽的存在,定子铁芯磁阻的变化产生了齿槽磁阻转矩,齿槽转矩是交变的,与转子的位置有关,它是电动机本身空间和永磁场的函数。在电机制造上,将定子齿槽或永磁体斜一个齿距,可以使齿槽转矩减小到额定转矩的1%-2%左右。或者采用定子无槽结构,可以彻底消除齿槽效应,但这些方法都将降低电机的出力。PMSM和BDLC中的齿槽转矩脉动没有明显的差别。

b.磁通畸变和换相电流畸变引起的转矩脉动

磁通畸变和电流畸变是指PMSM中气隙磁场、反电势和电枢电流是非正弦波,BLDCM中气隙磁场和反电势非梯形波,电枢电流是非矩形波。气隙磁场和电枢电流相互作用后会产生转矩波动,反电动势与理想波形的偏差越大,引起的转矩脉动越大。BLDCM中,电机的电感限制了换相时绕组电流的变化率,定子绕组电流不可能是矩形波。只能得到梯形波电流,引起较大的转矩波动。另外,BLDCM定子合成磁通不是平滑地旋转,而是以一种不连续地状态向前步进,定、转子旋转磁通不可能是严格同步的,这会造成转矩的脉动,脉动频率为基波的6倍。而在PMSM中产生正弦波电流是连续的,PMSM理想运行状态是正弦分布的气隙磁密同正弦绕组电流产生恒定转矩,而实际上,PMSM中气隙磁密度也并非完全是正弦波分布,无疑也会引起了转矩脉动。但它和电枢电流波形不匹配引起的转矩波动要比BDLC中的转矩波动小的多,况且PMSM定子合成磁通是平滑地连续旋转。因此PMSM的转矩波动明显要小于BLDCM。

c.逆变器电流控制环节引起的转矩脉动

在BLDCM中,电流滞环控制器中滞环宽度和PWM电流控制器开关频率将引起BLDCM实际电流围绕期望电流上下高频波动,电机转矩也出现高频波动,通常幅度要低于换相电流引起的转矩波动。

在PMSM中,也会出现由滞环或PWM电流控制器引起的高频转矩波动,通常比较小,并由于开关频率较高,很容易被转子惯量过滤掉。

因此,从转矩波动看,PMSM比BDLC具有明显的优势,BDLCM适合用在低性能低精度的速度和位置伺服系统。而PMSM适合用在高性能的速度和位置伺服系统。

2.4伺服系统中的信号反馈元件

PMSM需要正弦波电流,而BLDCM需要矩形波电流,导致了反馈元件的不同。BLDCM中,每一时刻只有两相绕组导通,每相导通120°电角度,电流每60°电角度换相一次,只要正确检测出这些换相点,就能保证电机正常运行,在通常的机电系统中最常见的位置传感器是霍尔位置开关。在PMSM中,需要正弦波电流,电流幅值由转子瞬时位置决定,电机工作时所有三相绕组同时导通,需要连续的位置传感器,在速度伺服系统中仍需连续位置传感器,空间机电系统中最常见的位置传感器有旋转变压器+RDC解码模块或光电编码器。BLDCM构成的速度伺服系统中,只需要一个低分辨率的传感器,从这一点看,如果换相引起的转矩波动可以接受,BLDCM比PMSM更适合于速度伺服系统,而在位置伺服系统中,由于需要位置传感器,BLDCM与PMSM相比没有优势。

2.5逆变器容量

2.6控制系统结构不同

分别以空间应用常见PMSM位置伺服系统和BLDCM位置伺服系统为例说明主要区别。

基于三环控制结构的PMSM转子磁场定向位置伺服系统见图2所示。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流无刷电机与永磁同步电机区别

通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。 5 关于“那么三相无刷直流电机能不能使用三相正弦交流电呢如果可以,霍耳器件是否可以不用了” 从原理上讲,三相无刷直流电机使用三相正弦交流电是可以运行的,只不过是运行性能可能很差,如果三相无刷直流电机的反电势波形为方波,则使用三相正弦交流电时会产生很大的谐波损耗,温升很高。是否需要霍耳器件与使用什么电源(三相正弦交流电或方波脉冲电源)无关,而与电机的控制算法、控制策略及控制方式等因素有关,如果是用无位置传感

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

直流无刷电机与永磁同步电机区别

无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。 通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 . 主要技术指标 1. 额定功率: P N 30W 2. 额定电压: U N 48V ,直流 3. 额定电流: I N 1A 3. 额定转速: n N 10000r /min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸: 0.036 0.065m . 主要尺寸的确定 1. 预取效率 0.63 、 2. 计算功率 P i 直流电动机 Pi ' K m P N 0.85 30 40.48W ,按陈世坤书 i N 0.63 12 长期运行 P i 132 P N 13 短期运行 P i 1 3 P N 4 3. 预取线负荷 A s ' 11000 A / m 4. 预取气隙磁感应强度 B ' 0.55T 5. 预取计算极弧系数 i 0.8 6. 预取长径比( L/D )λ′=2

7.计算电枢内径 根据计算电枢内径取电枢内径值 D i1 1.4 10 2 m 8. 气隙长度 0.7 10 3 4 m 9. 电枢外径 D 1 2.95 10 2 m 10. 极对数 p=1 11. 计算电枢铁芯长 L D i1 2 1.4 10 2 2.8 10 2 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10 2 m 13. 输入永磁体轴向长 L m L 2.8 10 2 m 定子结构 1. 齿数 Z=6 设计者经验得 1.43T , b t 由工艺取 0.295 10 2 m 3 槽形选择 梯形口扇形槽,见下图 D i1 3 i A 6s . B 1P i n N 6.1 40.48 0.8 11000 0.55 2 10000 1.37 10 2 m 4. 预估齿宽 : b t tB B t K Fe 0.733 10 2 0.55 1.43 0.96 0.294 10 2m , B t 可由 12. 极距 D i1 2p 3.14 1.4 10 2 2 2.2 10 2 m 2. 齿距 i1 3.14 1.4 10 2 0.733 10 2m 5. 预 估 轭 高 : h j1 a i B 2lB j1K Fe 2K Fe B j1 2.2 0.8 0.55 0.323 10 2m

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

永磁有刷直流电机

永磁有刷直流电机 永磁有刷直流电机的工作原理有刷电机的定子上安装有固定的主磁极和电刷,转子上安装有电枢绕组和换向器。直流电源的电能通过电刷和换向器进入电枢绕组,产生电枢电流,电枢电流产生的磁场与主磁场相互作用产生电磁转矩,使电机旋转带动负载。由于电刷和换向器的存在,有刷电机的结构复杂,可靠性差,故障多,维护工作量大,寿命短,换向火花易产生电磁干扰。 有刷直流电机的工作原理图如图2-1所示。在有刷直流电机的固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁芯和绕在环形铁芯上的绕组。 图2-1所示的两极有刷直流电机的固定部分(定子)上装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁芯。定子与转子之间有一气隙。在电枢铁芯上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 永磁有刷直流电机的种类 ①有刷盘式绕组电机。有刷盘式绕组电机以稀土材料粘结在一缸体上,漆包铜线绕成的盘式绕组置于缸体之内,构成转子。电机相位靠机械式换相器调整。机械式换相器是靠固定的炭制电刷与转动的铜制换相面摩擦来调整电压相位的。这种电机在使用中电刷一直在磨损,电机的寿命很难超过2000h。同时,由于电机的转速较高,必须采取两级齿轮减速,这就带来了两个问题,一是噪声较大,二是效率损失大,经减速后的电机额定效率往往只能达到68%~72%。而电动自行车所用的蓄电池的容量是有限的,一般就是36V/12Ah的容量,如电机效率不高,将使电耗增加,影响续行里程。 ②有刷印制绕组电机。有刷印制绕组电机以印制铜箔板作为绕组,电机重量减轻了。由于这种电机全部是在自动生产线上生产的,工艺有可靠保证,从而使电机的寿命提高到3000h,噪声大幅度下降,效率提高到72%~76%。但这种电机有“嗡嗡”的高频噪声,靠齿轮减速后效率仍不理想,有刷换相器的使用使电机寿命无法再提高。 ③有刷压制绕组电机。这种电机通过将绕制好的铜线压制成一种新型绕组,其效率可提高到74%~78%。这种电机目前仍然被较多电动自行车厂家采用,但其存在的效率、噪声、寿命缺陷仍然是必须改进的问题。 轮毂式有齿轮传动的有刷直流电机,由盘形电枢有刷电机和齿轮减速兼传动系统两部分构成。盘形电枢是高速转动的转子。轮毅式有齿轮传动的有刷直流电机的构造如图2-2所示。电机的转矩通过轴传递给第一级齿轮,经齿轮减速带动轮毂外壳转动。 有刷有齿轮毂电机的盘形电枢是薄片形,体积很小,重量特轻,安装方便。绕组编制好之后,用树脂加玻璃纤维放进模内热压成型,在运行中由于电刷和换向器摩擦,又有齿轮啮合减速,所以有刷电机的运行声音比无刷电机声音要大。 为了适应轮毂结构,将有刷电机设计成电枢放在外边作为转子,磁钢放在电机之内作为定子,多块磁钢配多个绕组,设计转速为180r/min左右的低速电机。图2-3(a)所示为电机外转子中尚未经过压力整形的电枢绕组,,在绕组以

直流电机工作原理和有刷直流电机的模型建立

直流电机工作原理和有刷直流电机的模型建立 一、直流电机的基本结构 直流电机可概括地分为静止和转动两大部分。静止部分称为定子;转动部分称为转子。定、转子之间由空气隙分开,如图。 图a所示为直流电机结构,图b所示为直流电机剖面图。 1. 定子部分 定子由主磁极、换向极、机座和电刷装置等组成。 (1)主磁极它的作用是产生恒定的主极磁场,由主磁极铁心和套在铁心上的励磁绕组组成。 (2)换向极换向极的作用是消除电机带负载时换向器产生的有害火花,以改善换向。 (3)机座机座的作用有两个,一是作为各磁极间的磁路,这部分称为定子磁轭;二是作为电机的机械支撑。 (4)电刷装置其作用,一是使转子绕组能与外电路接通,使电流经电刷输入电枢或从电枢输出;二是与换向器相配合,获得直流电压。 2. 转子部分

转子是直流电机的重要部件。由于感应电势和电磁转矩都在转子绕组中产生.是机械能与电能相互转换的枢纽,因此称作电枢。电枢主要包括电枢铁心、电枢绕组、换向器等。另外转子上还有风扇、转轴和绕组支架等部件。 (1)电枢:铁心电枢铁心的作用有两个,一是作为磁路的一部分,二是将电枢绕组安放在铁心的槽内。 (2)电枢绕组:电枢绕组的作用是产生感应电势和通过电流,使电机实现机电.能量转换它由许多形状完全相同的线圈按一定规律连接而成。每一线圈的两个边分别嵌在包枢铁心的槽里,线圈的这两个边也称为有效线圈边。 (3)换向器:换向器又称整流子,在直流电动机中,是将电刷上的直流电流转换为绕组内的交变电流,以保证同一磁极下电枢导体的电流方向不变,使产生的电磁转矩恒定;在直流发电机中,是将绕组中的交流感应电势转换为电刷上的直流电势,所以换向器是直流电机中的关键部件。 换向器由许多鸽尾形铜片(换向片)组成。 换向片之间用云母片绝缘,电枢绕组每一个线圈 的两端分别接在两个换向片上,换向器的结构如 图1-2所示。 直流电机运行时在电刷与换向器之间往往会 产生火花。微弱的火花对电机运行并无危害,若 换向不良,火花超过一定程度,电刷和换向器就 会烧坏,使电机不能继续运行。 此外,在静止的主磁极与电枢之间,有一空气隙,它的大小和形状对电机的性能影响很大。空气隙的大小随容量不同而不同。空气隙虽小,但由于空气的磁阻较大,因而在电机磁路系统中有着重要的影响。

直流无刷电机与永磁同步电机的比较

直流无刷电机BLDCM与永磁同步电机PMSM的比较 直流无刷电机BLDCM Brushless Direct Current Motor 永磁同步电机(交流无刷电机) PMSM(BLACM) Permanent Magnet Synchronous Motor (Brushless Alternating Current Motor) 1 PMSM和BLDCM相同点和不同点 1.1 PMSM和BLDCM的相似之处 两者其实都是交流电机,起源不同但从结构上看,两者非常相似。 PMSM起源于饶线式同步电机,它用永磁体代替了绕线式同步电机的激磁绕组,它的一个显著特点是反电势波形是正弦波,与感应电机非常相似。在转子上有永磁体,定子上有三相绕组。BLDCM起源于永磁直流电机,它将永磁直流电机结构进行“里外翻”,取消了换相器和电刷,依靠电子换相电路进行换相。转子上有永磁体,定子上有三相绕组。 1.2 PMSM和BLDCM的不同之处 反电势不同,PMSM具有正弦波反电势,而BLDCM具有梯形波反电势。 定子绕组分布不同,PMSM采用短距分布绕组,有时也采用分数槽或正弦绕组,以进一步减小纹波转矩。而BLDCM采用整距集中绕组。 运行电流不同,为产生恒定电磁转矩,PMSM需要正弦波定子电流;BLDCM需要矩形波电流。PMSM和BLDCM反电势和定子电流波形如图1所示。 永磁体形状不同,PMSM永磁体形状呈抛物线形,在气隙中产生的磁密尽量呈正弦波分布;BLDCM永磁体形状呈瓦片形,在气隙中产生的磁密呈梯形波分布。 运行方式不同,PMSM采用三相同时工作,每相电流相差120°电角度,要求有位置传感器。BLDCM采用绕组两两导通,每相导通120°电角度,每60°电角度换相,只需要换相点位置检测。正是这些不同之处,使得在对PMSM和BLDCM的控制方法、控制策略和控制电路上有很大差别。 2 PMSM和BLDCM特性分析 2.1按照空间应用中最关心的特性:功率密度、转矩惯量比、齿槽转矩和转矩波动、反馈元

直流无刷电机本体设计要点

电机与拖动基础 课程设计报告 设计题目: 学号: 指导教师: 信息与电气工程学院 二零一六年七月

直流无刷电机本体设计 1. 设计任务 (1) 额定功率 80N P W = (2) 额定电压310N U V ≤ (3) 电动机运行时额定转速 1000/min N n r = (4) 发电机运行时空载转速max 6000/min n r = (5) 最大允许过载倍数 2.5λ= (6) 耐冲击能力21500/m a m s = (7) 机壳外径42D mm ≤ 设计内容: 1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。 2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。 3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。 2. 理论与计算过程 2.1 直流无刷电机的基本组成环节 直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。 因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

直流有刷电机与直流无刷电机的对比

直流有刷电机与直流无 刷电机的对比 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

无刷直流电机与有刷直流电机的对比直流有刷电机和无刷电机的区别是是否配置有常用的电刷换向器。有刷直流电机的换向一直是通过石墨电刷与安装在转子上的环形换向器相接触来实现的。 而直流无刷电机则通过霍尔传感器把转子位置反馈回到控制电路,使其能够获知电机相位换向的准确时间。大多数无刷电机生产商生产的电机都具有三个霍尔效应定位传感器。由于无刷电机没有电刷,故也没有相关接口,因此更干净,噪声更小,事实上无需维护,寿命更长。 直流无刷是基于交流调速原理基础上制造出来的,性能方面既有直流电机的启动转矩大,转速稳定调速方便,又有交流电机的结构简单没有易损件(没有直流电机的碳刷)价格方面因为需要专门的驱动故价格要比普通直流电机高3~4倍左右。不过调速方面因为直流无刷电机大部分都自带驱动电路(可以调速,当然也有恒速的)所以驱动起来只要给他接上额定电压后,输入调速PWM信号就可以了。这点无需再添加专门的驱动电路,另外直流无刷电机因为有霍尔元件做反馈,所以转速几乎是稳定恒速的。 一、无刷电机与有刷电机的性能比较 1、摩擦大、损耗大 有些朋友在用有刷电机的时候经常碰到这个问题,那就是使用电机一段时间后,需要打开电机来清理电机的碳刷,费时费力,维护强度不亚于一次家庭大扫除。 2、发热大、寿命短 由于有刷电机的结构原因,电刷和换向器的接触电阻较大,容易发热,而永磁体是热敏元件,如果温度太高,磁钢是会退磁的,使电机性能下降,影响有刷电机的寿命。 3、效率低、输出功率小 上面说到的有刷电机发热问题,很大程度是因为电流做功在电机的内阻上了,所以

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

永磁无刷直流电机矢量控制系统实现毕业设计(论文)

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下 A.将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。 B.电机内部有磁场存在。 C.载流的转子(即电枢)导体将受到电磁力 f 的作用 f=Bli a(左手定则) D.所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以便拖动机械负载。 2. 归纳 A. 所有的直流电机的电枢绕组总是自成闭路。 B. 电枢绕组的支路数(2a)永远是成对出现,这是由于磁极数(2p)是一个偶数. 注:a-支路对数 p-极对数

永磁无刷直流电机控制系统分析研究

永磁无刷直流电动机控制系统的研究 摘要 无刷直流电动机是集材料科学、电力电子技术、微电子技术和电机理论等多学科为一体的机电一体化产品,在诸多领域有着广阔的应用前景。 随着大功率开关器件集成电路及高性能的磁性材料的进步,采用电子换向原理工作的永磁无刷直流电机取得了长足的发展。永磁无刷直流电机既有直流电机的结构简单,运行可靠。又具备交流电机运行效率高,无励磁损耗及调速性能好等诸多优点,在当今国民经济的各个领域里的应用日益普及。维护方便的一系列优点 永磁无刷直流电动机发展简况 永磁无刷直流电动机是在有刷直流电动机的基础上发展起来的。现阶段,虽然各种交流电动机同直流电动机在传动应用中占主导地位,但是永磁无刷直流电动机正受到普遍的关注。 自20世纪90年代以来,随着人们生活水平提高和现代化的生产、办公自动化的发展,家用电器、工业机器人等设备越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具备精度高、速度快、效率高等特点,永磁无刷直流电机的应用因此而迅速增长。现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍

的关注。尤其在节能已成为时代主题的今天,无刷直流电机高效率的特点更显示了其巨大的应用价值。 无刷直流电机转子采用永久磁铁,其产生的气隙磁通保持为常值,因而特别适用于恒转矩运行;对于恒功率运行,无刷直流电机虽然不能直接改变磁通实现弱磁控制,但通过控制方法的改进也可以获得弱磁控制的效果。由于稀土永磁材料的矫顽力高、剩磁大,可产生很大的气隙磁通,这样可以大大缩小转子半径,减小转子的转动惯量,因而在要求有良好的静态特性和高动态响应的伺服驱动系统中,如数控机床、机器人等应用中,无刷直流电机比交流伺服电机和直流伺服电机显示了更多的优越性。目前无刷直流电机的应用范围已遍及国民经济的各个领域,并日趋广泛,特别是在家用电器、电动汽车、航空航天等领域已得到大量应用。

永磁有刷直流电动机课程设计

永磁直流有刷电动机课程设计 目录 摘要 一、设计背景及其发展状况 二、有刷直流电动机的组成结构和工作原理 1.永磁直流电动机的结构、起动和转动机理 2.永磁有刷直流电动机的反电动势和转矩、转速、调速范围 3.永磁有刷直流电动机的功率和效率 三、永磁有刷直流电动机的设计 1.永磁有刷直流电动机主要尺寸的确定 2.永磁有刷直流电动机的绕组设计 3.永磁有刷直流电动机换向器的设计 四、磁路计算 1.组抗参数 2.损耗参数 3.外特性 4.效率特性 五、个人总结 参考文献

摘要 永磁有刷直流电机是在直流电机的基础上用永磁铁代替原有磁体材料建立的主磁场。直流电动机采用了永磁励磁后,因省去了励磁绕组,降低了励磁损耗,使其具有结构简单、体积小、效率高、用铜量少等优点。本文分析了永磁有刷直流电机的工作原理,研究了永磁有刷直流电机电磁的特点, ,运用解析计算的方法分析出电机的各项参数。为设计永磁有刷直流电动机,我们依据Matlab强大的数据计算能力建立起了永磁有刷直流电机的数学模型并进行了仿真进而对控制系统进行了一定的分析,同时还对比了在不同的参数下电机的工作性能,为电机系统的设计及其工作的稳定性提供了一定的依据。经设计出的200W永磁有刷直流电动机具有简便高效的特点。 关键词永磁直流电机有刷设计电机

一、设计背景及其发展状况 1820年,丹麦物理学家奥斯特发现了电流在磁场中受机械力的作用,即电流的磁效应。 1821年,英国科学家法拉第总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。 1822年,法国人吕萨克发现电磁铁,,即用电流流过绕在铁芯上的线圈的方法可以产生磁场。在这些发现与发明的基础上,1831年法拉第发现了电磁感应定律,发明了盘式电机。 1831年,法拉第发现了电磁感应定律,并发明了盘式电机。同年,亨利制作了振荡电机。1832年,斯特金发明了换向器,并对亨利的振荡电机进行了改进,制作了世界上第一台能连续旋转运动的电机。 1833年,法国发明家皮克西制成了第一台旋转磁极式直流发电机,主要利用了磁铁和线圈之间的相对运动和一个换向装置,这就是现代直流发电机的雏形。楞次已经证明了电机的可逆原理。 1834年,俄国物理学家雅可比设计并制成了第一台实用的直流电动机。 1838年,雅可比把改进的直流电动机装在一条小船上。 1845年,英国人惠斯通用电磁铁代替天然磁铁矿石,用于制造电机并取得了专利权。1857年,他发明了自励的电励磁发电机,开创了电励磁方式的新纪元。19世纪70年代,爱迪生发明了电灯,开始了商业目的的直流发电机的研制。1871年,凡.麦尔准发明了交流发电机。 1879年,拜依莱(Bailey)首次用电的办法获得了旋转磁场,采用依次变动四个磁极上的励磁电流的方法,如果在四个磁场的中间放一个铜盘,由于感应涡流的作用,铜盘将随着磁场的变动而旋转,这就是最初的感应电动机。 1888年,特斯拉发明了三相异步电机,并申请了专利。 1900年,可靠的卷铁芯式变压器的问世,开创了长距离输电的新纪元。 1967年,钐钴永磁材料的出现,开创了永磁电机的新纪元。由于稀土钴永磁材料价格昂贵,研究重点是航空航天等要求高性能而价格不是主要因素的高科技领域。 1983年,磁性能更高而价格相对较低的钕铁硼永磁材料问世后永磁电机的研究转移到了工业和民用电机上。 进入20世纪90年代,随着永磁材料性能的不断提高和完善,和永磁电机研究开发经验的逐步成熟,永磁电机在日常生活的各个方面获得了越来越广泛的应用。现今,永磁直流电机广泛应用于各种便携式的电子设备或器具中,如录音机、VCD 机、电唱机、电动按摩器及各种玩具,也广泛应用于汽车、摩托车、干手器、电动自行车、蓄电池车、船舶、航空、机械等行业,在一些高精尖产品中也有广泛应用,如录像机、复印机、照相机、手机、精密机床、银行点钞机、捆钞机等。

相关主题
文本预览
相关文档 最新文档