当前位置:文档之家› 天津大学第五版-刘俊吉-物理化学课后习题答案(全)

天津大学第五版-刘俊吉-物理化学课后习题答案(全)

天津大学第五版-刘俊吉-物理化学课后习题答案(全)
天津大学第五版-刘俊吉-物理化学课后习题答案(全)

第一章 气体的pVT 关系

1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:

1 1T

T p V p V V T V V ????

????-=??? ????=

κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT

111 )/(11-=?=?=???

????=??? ????=

T T

V

V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????-

=p p V V p

nRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?

解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为

mol RT pV n 623.1461815

.300314.8300

106.1213=???== 每小时90kg 的流量折合p 摩尔数为

13

3153.144145

.621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时

1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。

解:33

714.015

.273314.81016101325444

--?=???=?=?=m kg M RT p M V n CH CH CH

ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,

总质量为125.0000g 。若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。试估算该气体的摩尔质量。

解:先求容器的容积33)

(0000.1001

0000.100000.250000.1252

cm cm V l O H ==-=ρ

n=m/M=pV/RT

mol g pV RTm M ?=?-??==

-31.3010

13330)

0000.250163.25(15.298314.84

1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。 解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ???

?

??+=???

? ??+

=

+=f

f f

f f f

f f f f

T T T T R V

p T V T V R p n n n ,2,1,1,2,2,1,2,1 kPa

T T T T T p T T T T VR n p f f f f i i f

f f f f 00.117)

15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+???=?

??? ??+=???? ??+=

1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。试作ρ/p —p 图,用外推法求氯甲烷的相对分子质量。

解:将数据处理如下:

P/kPa

101.32

5

67.550

50.66

3

33.775 25.331

(ρ/p)/(g ·dm -3·kPa ) 0.02277

0.02260

0.02250

0.02242 0.02237 作(ρ/p)对p 图

当p →0时,(ρ/p)=0.02225,则氯甲烷的相对分子质量为

()10529.5015.273314.802225.0/-→?=??==mol g RT p M p ρ

1-7 今有20℃的乙烷-丁烷混合气体,充入一抽真空的200 cm 3

容器中,直至压力达101.325kPa ,测得容器中混合气体的质量为0.3879g 。试求该混合气体中两种组分的摩尔分数及分压力。 解:设A 为乙烷,B 为丁烷。

mol RT pV n 008315.015

.293314.8102001013256

=???==- B A B B A A y y mol g M y M y n m M 123.580694.30 867.46008315.03897

.01+=?==+==

- (1) 1=+B A y y (2)

联立方程(1)与(2)求解得401.0,599.0==B B y y

kPa

p y p kPa p y p B B A A 69.60325.101599.063.40325.101401.0=?===?==

1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与

氮气,二者均克视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。

(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?

(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干?

解:(1)抽隔板前两侧压力均为p ,温度均为T 。

p dm RT n p dm RT n p N N H H ==

==

3

3

132222 (1)

得:22

3N H

n n =

而抽去隔板后,体积为4dm 3,温度为,所以压力为

3

331444)3(2222dm RT n dm RT n dm RT n n V nRT p N N N N =

=+== (2)

比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。 (2)抽隔板前,H 2的摩尔体积为p

RT V H

m /2

,=,N 2的摩尔体积

p RT V N m /2,=

抽去隔板后

2

2

222222223n 3 /)3(/H ,,N N N N N N m N H m H n p

RT n p

RT n p RT n n p nRT V n V n V =+=+==+= 总

所以有 p RT V H

m /2

,=,p RT V N m /2,=

可见,隔板抽去前后,H 2及N 2的摩尔体积相同。 (3)4

1 ,433322

222

==

+=

N N N N H

y n n n y p p y p p p y p N N H H 4

1

;432222===

= 所以有 1:34

1

:43:22

==

p p p p N H

3

3144

1

3443

22

22dm V y V dm V y V N N H H =?===?== 1-9 氯乙烯、氯化氢及乙烯构成的混合气体中,各组分的摩尔分数分别为0.89、0.09和0.02。于恒定压力101.325kPa 条件下,用水吸收掉其中的氯化氢,所得混合气体中增加了分压力为2.670 kPa 的水蒸气。试求洗涤后的混合气体中C 2H 3Cl 及C 2H 4的分压力。

解:洗涤后的总压为101.325kPa ,所以有

kPa p p H C Cl H C 655.98670.2325.1014232=-=+ (1) 02.0/89.0///423242324232===H C Cl H C H C Cl H C H C Cl H C n n y y p p (2)

联立式(1)与式(2)求解得

kPa p kPa p H C Cl H C 168.2 ;49.964232==

1-10 室温下一高压釜内有常压的空气。为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下向釜内通氮直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。这种步骤共重复三次。求釜内最后排气至年恢复常压时其中气体含氧的摩尔分数。设空气中氧、氮摩尔分数之比为1∶4。

解: 高压釜内有常压的空气的压力为p 常,氧的分压为

常p p O 2.02=

每次通氮直到4倍于空气的压力,即总压为

p=4p 常,

第一次置换后釜内氧气的摩尔分数及分压为

常常

常p y p p p p p p y O O O O ?=?===

==

05.005

.04

2

.042.01,1,1,2222 第二次置换后釜内氧气的摩尔分数及分压为

常常常

常p y p p p p p p y O O O O ?=

?====

4

05

.04

05.0405.02,2,1,2,2222

所以第三次置换后釜内氧气的摩尔分数

%313.000313.016

05

.04)4/05.0(2,3,22===

=

=

p p p

p y O O 1-11 25℃时饱和了水蒸汽的乙炔气体(即该混合气体中水蒸汽分压力为同温度下水的饱和蒸气压)总压力为138.7kPa ,于恒定总压下泠却到10℃,使部分水蒸气凝结成水。试求每摩尔干乙炔气在该泠却过程中凝结出水的物质的量。已知25℃及10℃时水的饱和蒸气压分别为3.17kPa 和1.23kPa 。

解:p y p B B =,故有)/(///B B A B A B A B p p p n n y y p p -=== 所以,每摩尔干乙炔气含有水蒸气的物质的量为 进口处:)(02339.017

.37.13817.32222

22mol p p n n H C O H H C O H =-=?

???

??=???? ??进进 出口处:)(008947.01237.1381232

222

22mol p p n n H C O H H C O

H =-=????

??=????

??出

每摩尔干乙炔气在该泠却过程中凝结出的水的物质的量为 0.02339-0.008974=0.01444(mol )

1-12 有某温度下的2dm 3湿空气,其压力为101.325kPa ,相对湿度为60%。设空气中O 2和N 2的体积分数分别为0.21和0.79,求水蒸气、O 2和N 2的分体积。已知该温度下水的饱和蒸气压为20.55kPa (相对湿度即该温度下水蒸气分压与水的饱和蒸气压之比)。

解:水蒸气分压=水的饱和蒸气压×0.60=20.55kPa ×0.60=12.33 kPa

O 2分压=(101.325-12.33 )×0.21=18.69kPa N 2分压=(101.325-12.33 )×0.79=70.31kPa 33688.02325

.10169

.18222

dm V p p V y V O O O

=?=

=

= 33878.12325

.10131

.70222dm V p p V y V N N N =?=

=

= 32434.02325

.10133

.122

22dm V p

p V y V O

H O H O H =?=

=

= 1-13 一密闭刚性容器中充满了空气,并有少量的水,当容器于300K 条件下达到平衡时,器内压力为101.325kPa 。若把该容器移至373.15K 的沸水中,试求容器中达到新的平衡时应有的压力。设容器中始终有水存在,且可忽略水的体积变化。300K 时水的饱和蒸气压为3.567kPa 。

解:300K 时容器中空气的分压为 kPa kPa kPa p 758.97567.3325.101=-='空 373.15K 时容器中空气的分压为

)(534.121758.97300

15

.37330015.373kPa p p =?='=

空空 373.15K 时容器中水的分压为 =O H p 2

101.325kPa 所以373.15K 时容器内的总压为

p=空p +=O H p 2

121.534+101.325=222.859(kPa )

1-14 CO 2气体在40℃时的摩尔体积为0.381dm 3·mol -1。设CO 2

为范德华气体,试求其压力,并与实验值5066.3kPa 作比较。

解:查表附录七得CO 2气体的范德华常数为 a=0.3640Pa ·m 6·mol -2;b=0.4267×10-4m 3·mol -1

5187.7kPa

5187675250756176952362507561100.338332603.5291

)10381.0(3640

.0104267.010381.015.313314.8)(3-2

3432==-=-?=

?-

?-??=--=---Pa

V a b V RT p m m

相对误差E=5187.7-5066.3/5066.3=2.4%

1-15今有0℃、40530kPa 的氮气体,分别用理想气体状态方程及范德华方程计算其摩尔体积。其实验值为70.3cm 3·mol -1。

解:用理想气体状态方程计算如下:

1

31

3

031.56000056031.0 4053000015.273314.8/--?=?=÷?==mol

cm mol

m p RT V m

将范德华方程整理成

0/)/()/(23=-++-p ab V p a V p RT b V m m m (a)

查附录七,得a=1.408×10-1Pa ·m 6·mol -2,b=0.3913×10-4m 3·mol -1 这些数据代入式(a ),可整理得

10

0.1)}/({100.3 )}/({109516.0)}/({13

1392

134133=?-??+??-?------mol m V mol m V mol m V m m m

解此三次方程得 V m =73.1 cm 3·mol -1

1-16 函数1/(1-x )在-1<x <1区间内可用下述幂级数表示:

1/(1-x )=1+x+x 2+x 3+…

先将范德华方程整理成

2/11m

m

m V a

V b V RT p -???? ??-=

再用述幂级数展开式来求证范德华气体的第二、第三维里系数分别为

B (T )=b-a (RT ) C=(T )=b 2

解:1/(1-b/ V m )=1+ b/ V m +(b/ V m )2+… 将上式取前三项代入范德华方程得

32

22221m m m m m m m V RTb V a RTb V RT V a V b V b V RT p +-+=-???? ?

?++=

而维里方程(1.4.4)也可以整理成

32m

m m V RTC

V RTB V RT p ++=

根据左边压力相等,右边对应项也相等,得 B (T )=b – a/(RT ) C (T )=b 2

*1-17 试由波义尔温度T B 的定义式,试证范德华气体的T B 可表示为

T B =a/(bR )

式中a 、b 为范德华常数。

解:先将范德华方程整理成2

2)(V an nb V nRT p -

-=

将上式两边同乘以V 得 V

an nb V nRTV pV 2

)(-

-=

求导数

22222222)( )()( )()(nb V RT

bn V an V an nb V nRTV nRT nb V V an nb V nRTV p p pV T

T --=+---=???? ??--??=???? ????

当p →0

时0]/)([=??T p pV ,于是有 0)

(2

222=--nb V RT

bn V an 2

2)(bRV

a

nb V T -= 当p →0时V →∞,(V-nb )2≈V 2,所以有 T B = a/(bR )

1-18 把25℃的氧气充入40dm 3的氧气钢瓶中,压力达202.7×102kPa 。试用普遍化压缩因子图求解钢瓶中氧气的质量。

解:氧气的临界参数为 T C =154.58K p C =5043kPa 氧气的相对温度和相对压力

929.158.154/15.298/===C r T T T

019.45043/107.202/2=?==C r p p p

由压缩因子图查出:Z=0.95

mol mol ZRT pV n 3.34415

.298314.895.01040107.2023

2=?????==- 钢瓶中氧气的质量 kg kg nM m O O

02.1110999.313.344322

=??==-

1-19 1-20

1-21 在300k 时40dm 3钢瓶中贮存乙烯的压力为146.9×102kPa 。欲从中提用300K 、101.325kPa 的乙烯气体12m 3,试用压缩因子图求解钢瓶中剩余乙烯气体的压力。

解:乙烯的临界参数为 T C =282.34K p C =5039kPa

乙烯的相对温度和相对压力

063.134.282/15.300/===C r T T T

915.254039/109.146/2=?==C r p p p

由压缩因子图查出:Z=0.45

)(3.52315

.300314.845.010*******.1463

32mol mol ZRT pV n =??????==- 因为提出后的气体为低压,所提用气体的物质的量,可按理想气体状态方程计算如下:

mol mol RT pV n 2.48715

.300314.812

101325=??==

提 剩余气体的物质的量

n 1=n-n 提=523.3mol-487.2mol=36.1mol 剩余气体的压力

kPa Z Pa Z V RT n Z p 13

1

111225210

4015.300314.81.36=???==

- 剩余气体的对比压力

11144.05039/2252/Z Z p p p c r ===

上式说明剩余气体的对比压力与压缩因子成直线关系。另一方面,T r =1.063。要同时满足这两个条件,只有在压缩因子图上作出144.0Z p r =的直线,

并使该直线与T r =1.063的等温线相交,此交点相当

于剩余气体的对比状态。此交点处的压缩因子为

Z 1=0.88

所以,剩余气体的压力

kPa kPa kPa Z p 198688.022********=?==

第二章 热力学第一定律

2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。

解:J T nR nRT nRT pV pV V V p W amb 314.8)(121212-=?-=+-=+-=--=

2-2 1mol 水蒸气(H 2O ,g )在100℃,101.325 kPa 下全部凝结成液态水。求过程的功。

解: )(g l amb V V p W --=≈kJ RT p nRT p V p g

amb 102.315.3733145.8)/(=?===

2-3 在25℃及恒定压力下,电解1mol 水(H 2O ,l ),求过程的体积功。

)(2

1

)()(222g O g H l O H +=

解:1mol 水(H 2O ,l )完全电解为1mol H 2(g )和0.50 mol O 2

(g ),即气体混合物的总的物质的量为1.50 mol ,则有

)()(2l O H g amb V V p W --=≈)/(p nRT p V p g amb -=-

kJ nRT 718.315.2983145.850.1-=??-=-= 2-4 系统由相同的始态经过不同途径达到相同的末态。若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。求W b 。

解:因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+ 所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=

2-5 始态为25℃,200kPa 的5 mol 某理想气体,经a ,b 两不同途径到达相同的末态。途径a 先经绝热膨胀到 – 28.57℃,100kPa ,步骤的功W a = - 5.57kJ ;在恒容加热到压力200 kPa 的末态,步骤的热Q a = 25.42kJ 。途径b 为恒压加热过程。求途径b 的W b 及Q b 。

解:过程为:

2

00,42.252

00,57.51

020*******.285200255V kPa C t mol V kPa C mol V kPa C mol a a

a a

W kJ Q Q kJ W ?????→

?-?????→

?=''=''='-='

途径b

33111062.0)10200(15.2983145.85/m p nRT V =?÷??==

33222102.0)10100()15.27357.28(3145.85/m p nRT V =?÷+-??==

kJ J V V p W amb b 0.88000)062.0102.0(10200)(312-=-=-??-=--=

kJ W W W a a a 57.5057.5-=+-=''+'=

kJ Q Q Q a a

a 42.2542.250=+=''+'= 因两条途径的始末态相同,故有△U a =△U

b ,则 b b a a W Q W Q +=+ kJ W W Q Q b a a b 85.270.857.542.25=+-=-+=

2-6 4mol 某理想气体,温度升高20℃,求△H -△U 的值。 解:

665.16J

208.3144 )20()( 2020,,20,20,=??=-+==-=-=?-??

?

?

?++++T K T nR nRdT dT C C n dT

nC dT nC U H K T T

K

T T

m V m p K

T T

m V K T T m p

2-7 已知水在25℃的密度ρ=997.04 kg ·m -3。求1 mol 水(H 2O ,l )在25℃下:

(1)压力从100 kPa 增加到200kPa 时的△H ; (2)压力从100 kPa 增加到1 MPa 时的△H 。

假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。

解:)(pV U H ?+?=?

因假设水的密度不随压力改变,即V 恒定,又因在此压力范围内

水的摩尔热力学能近似认为与压力无关,故0=?U ,上式变成为

)()(12122p p M p p V p V H O

H -=

-=?=?ρ

(1)J p p M H O H 8.110)100200(04

.99710

18)(33

122

=?-??=-=?-ρ

(2)J p p M H O H 2.1610)1001000(04

.99710

18)(33

122

=?-??=-=?-ρ*

2-8 某理想气体, 1.5V m C R =。今有该气体 5 mol 在恒容下温度升高50℃,求过程的W ,Q ,△H 和△U 。 解:恒容:W=0;

kJ

J K nC T K T nC dT nC U m V m V K T T

m V 118.33118503145.823

550 )

50(,,50,==???=?=-+==??

+

kJ

J K

R C n T K T nC dT nC H m V m p K

T T

m p 196.55196503145.82

5

5 50)()50(,,50,==???=?+==-+==??

+

根据热力学第一定律,:W=0,故有Q=△U=3.118kJ

2-9 某理想气体, 2.5V m C R =。今有该气体5 mol 在恒压下温度降低50℃,求过程的W ,Q ,△H 和△U 。

解:

kJ

J K nC T K T nC dT nC U m V m V K T T

m V 196.55196503145.825

5)50( )

50(,,50,-=-=???-=-?=--==??

-

kJ

J K nC T K T nC dT nC H m p m p K

T T

m p 275.77275503145.827

5)50( )

50(,,50,-=-=???-=-?=--==??

-

kJ

kJ kJ Q U W kJ

H Q 079.2)725.7(196.5275.7=---=-?=-=?=

2-10 2mol 某理想气体,R C m P 2

7,=。由始态100 kPa ,50 dm 3,

先恒容加热使压力升高至200 kPa ,再恒压泠却使体积缩小至25 dm 3。求整个过程的W ,Q ,△H 和△U 。 解:整个过程示意如下:

3

3320

3125200250200250100221dm kPa T mol

dm kPa T mol dm kPa T mol W W ?→

???→?=

K

nR V p T 70.3003145.821050101003

3111=????==-

K nR V p T 4.6013145.821050102003

3222=????==-

K

nR V p T 70.3003145

.821025102003

3333=????==-

kJ J V V p W 00.5500010)5025(10200)(331322==?-??-=-?-=-

kJ W kJ W W 00.5W W ;00.5 ;02121=+=== 0H 0,U ;70.300 31=?=?∴==K T T

-5.00kJ -W Q 0,U ===?

2-11 4 mol 某理想气体,R C m P 2

5,=。由始态100 kPa ,100 dm 3,先

恒压加热使体积升增大到150 dm 3,再恒容加热使压力增大到150kPa 。求过程的W ,Q ,△H 和△U 。 解:过程为

3

30

323115015041501004100100421dm kPa T mol

dm kPa T mol dm kPa T mol W W ??→

??→?= K

nR V p T 70.3003145

.8410100101003

3111=????==-; K nR V p T 02.4513145

.8410150101003

3222=????==

- K nR V p T 53.6763145

.8410150101503

3333=????==-

kJ J V V p W 00.5500010)100150(10100)(331311-=-=?-??-=-?-=-

kJ W kJ W W 00.5W W ;00.5 ;02112-=+=-==

)(2

3

)(13,,31

31T T R n dT R C n dT nC U T T m p T T m V -??=-==??? kJ J 75.1818749)70.30053.676(314.82

34==-???=

)(2513,31

T T R n dT nC H T T m P -??==??kJ J 25.3131248)70.30053.676(314.82

5

4==-???=

kJ kJ kJ W U Q 23.75)00.5(75.18=--=-?=

2-12 已知CO 2(g )的

C p ,m ={26.75+42.258×10-3(T/K )-14.25×10-6(T/K )2

} J ·mol -1·K -1

求:(1)300K 至800K 间CO 2(g )的m p C ,;

(2)1kg 常压下的CO 2(g )从300K 恒压加热至800K 的Q 。 解: (1):

?=?2

1,T T m p m dT C H

1

-12615.80015.3003mol 22.7kJ )/(})/(1025.14)/(10258.4275.26{?=??-?+=---?

mol J K T d K T K T K

K

11113,4.45500/)107.22(/----??=???=??=K mol J K mol J T H C m m p

(2):△H=n △H m =(1×103)÷44.01×22.7 kJ =516 kJ 2-13 已知20 ℃液态乙醇(C 2H 5OH ,l )的体膨胀系数

131012.1--?=K V α,等温压缩系数191011.1--?=Pa T κ,密度ρ

=0.7893 g ·cm -3,摩尔定压热容11,30.114--??=K mol J C m P 。求20℃,液态乙醇的m V C ,。

解:1mol 乙醇的质量M 为46.0684g ,则 ρ/M V m =

=46.0684g ·mol -1÷(0.7893 g ·cm -3)=58.37cm 3·mol -1=58.37×10-6m 3·mol -1

由公式(2.4.14)可得:

1

1111119213136112

,,963.94337.1930.1141011.1)1012.1(1037.5815.29330.114 /--------------??=??-??=?÷?????-??=-=K mol J K mol J K mol J Pa K mol m K K mol J TV C C T

V m m p m V κα

2-14 容积为27m 3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa 的大气相通,以维持容器内空气的压力恒定。今利用加热器件使容器内的空气由0℃加热至20℃,问需供给容器内的空气多少热量。已知空气的11,4.20--??=K mol J C m V 。

假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:假设空气为理想气体 RT

pV

n =

kJ

J J T T R pV R C T d R

pV

C dT RT pV C dT nC H Q Q m

V T T m

p T T m p T T m p p 59.6658915

.27315.293ln 8.314271000008.314)(20.40 ln

)(ln 1

2

,,,,2

1

2

12

1==??

+=+====?==?

?

?

2-15 容积为0.1m 3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4 mol 的Ar (g )及150℃,2mol 的Cu (s )。现将隔板撤掉,整个系统达到热平衡,求末态温度t 及过程的△H 。

已知:Ar (g )和Cu (s )的摩尔定压热容C p ,m 分别为20.7861

1--??K

mol J 及24.43511--??K mol J ,且假设均不随温度而变。

解:用符号A 代表Ar (g ),B 代表Cu (s );因Cu 是固体物质,C p ,m ≈C v ,m ;而

Ar (g ):1111,472.12)314.8786.20(----??=??-=K mol J K mol J C m V 过程恒容、绝热,W=0,Q V =△U=0。显然有

{}{}0

)()(n(B)C )()(n(A)C )

()(12m V,12m V,=-+-=?+?=?B T T B A T T A B U A U U

K

K B C B n A C A n B T B C B n A T A C A n T m V m V m V m V 38.34724.435

212.4724423.15

24.4352273.1512.4724 )

()()()()

()()()()()(,,1,1,2=?+???+??=

++=

所以,t=347.38-273.15=74.23℃

{}{}

)()(n(B)C )()(n(A)C )

()(12m p,12m p,B T T B A T T A B H A H H -+-=?+?=?

kJ

J J J J J H 47.2246937036172 )15.42338.347(435.242)15.27338.347(786.204==-=-??+-??=?

2-16水煤气发生炉出口的水煤气温度是1100℃,其中CO (g )及H 2(g )的体积分数各为0.50。若每小时有300kg 水煤气有1100℃泠却到100℃,并用所回收的热来加热水,使水温有25℃升高到75℃。试求每小时生产热水的质量。

CO (g )和H 2(g )的摩尔定压热容Cp ,m 与温度的函数关系查本书附录,水(H 2O ,l )的比定压热容c p =4.18411--??K g J 。

解:已知 5.0y ,01.28M ,016.222

H CO ====CO H

y M

水煤气的平均摩尔质量

013.15)01.28016.2(5.022=+?=+=CO CO H H M y M y M

300kg

水煤气的物质的量 mol mol n 19983013

.15103003

=?=

由附录八查得:273K —3800K 的温度范围内

2316213112,103265.010347.488.26)(T K mol J T K mol J K mol J H C m p --------???-???+??= 231621311,10172.1106831.7537.26)(T K mol J T K mol J K mol J CO C m p --------???-???+??=

设水煤气是理想气体混合物,其摩尔热容为

2

3162131

1,)(,10)172.13265.0(5.0 10)6831.7347.4(5.0 )537.2688.26(0.5)(T K mol J T K mol J K mol J B C y C B

m p B mix m p --------???+?-???+?+??+?==∑

2

31621311)(,1074925.0 1001505.67085.26T K mol J T K mol J K mol J C mix m p --------???-???+??= 得 dT C H Q K

K mix m p m m p ?=?=15.37315.1373)(,,

{}

dT

T K mol J T K mol J K mol

J Q K K

p 231621315.37315.13731

1

1074925.0100151.6 7085.26--------???-???+??=?

= 26.7085×(373.15-1373.15)1-?mol J

+2

1×6.0151×(373.152-1373.152)×10-31-?mol J

-3

1×0.74925×(373.153-1373.153)×10-61-?mol J

= -26708.51-?mol J -5252.081-?mol J +633.661-?mol J

=313271-?mol J =31.3271-?mol kJ 19983×31.327=626007kJ

kg kg g kg C Q m kg p p 35

,1099.2387.29922992387)

2575(184.410626007t ?===-??=??-=

2-17 单原子理想气体A 与双原子理想气体B 的混合物共5mol ,摩尔分数y B =0.4,始态温度T 1=400 K ,压力p 1=200 kPa 。今该混合气体绝热反抗恒外压p=100 kPa 膨胀到平衡态。求末态温度T 2及过程的W ,△U ,△H 。

解:先求双原子理想气体B 的物质的量:n (B )=y B ×n=0.4×5 mol=2mol ;则

单原子理想气体A 的物质的量:n (A )=(5-2)mol =3mol 单原子理想气体A 的R C m V 2

3,=,双原子理想气体B 的R C m V 2

5,=

过程绝热,Q=0,则 △U=W

)())(()())(()(1212,12,V V p T T B C B n T T A C A n amb m V m V --=-+-

1

2112121211212125.055)/()(5)(5.4)(25

2)(233T T T p p n nT T T T T p nRT p nRT p T T R T T R amb amb

amb ?+-=?+-=-?+-????? ??--=-?+-?

于是有 14.5T 2=12T 1=12×400K 得 T 2=331.03K

33222213761.010000003.331314.85//--=÷??===m m p nRT p nRT V abm

3311108314.0200000400314.85/--=÷??==m m p nRT V

kJ J V V p W U amb 447.5)08314.013761.0(10100)(312-=-??-=--==?

kJ

J J J J V p V p U pV U H 314.8831428675447 )08314.010********.010(100-5447J )

()(331122-=-=--=??-??+=-+?=?+?=? 2-18 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol ,0℃的单原子理想气体A 及5mol ,100℃的双原子理想气体B ,两气体的压力均为100 kPa 。活塞外的压力维持 100kPa 不变。 今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T 及过程的W ,△U 。

解:单原子理想气体A 的R C m p 2

5,=,双原子理想气体B 的R C m p 2

7,=

因活塞外的压力维持 100kPa 不变,过程绝热恒压,Q=Q p =△H=0,于是有

)15.373(5.17)15.273(50)15.373(2

7

5)15.273(2520)15.373)(()()15.273)(()(,,=-?+-?=-?+-?=-+-K T K T K T R K T R K T B C B n K T A C A n m p m p

于是有 22.5T=7895.875K 得 T=350.93K

W -369.3J 2309.4-1940.1J )15.37393.350(2

3145

.855)15.27393.350(23145.832 )

15.373)(()()15.273)(()(,,===-???+-???

=-+-=?J J K T B C B n K T A C A n U m V m V

物理化学课后答案

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1—2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3 ,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441。153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1—4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,总质量为125.0000g 。若改用充以25℃、13。33kPa 的某碳氢化合物气体,则总质量为25。0163g 。试估算该气体的摩尔质量。 解:先求容器的容积33 ) (0000.1001 0000.100000 .250000.1252 cm cm V l O H == -= ρ n=m/M=pV/RT mol g pV RTm M ?=?-??== -31.3010 13330) 0000.250163.25(15.298314.84 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气.若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。 解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ??? ? ??+=???? ??+ =+=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1

物理化学第五版下册习题答案

第七章 电化学 7、1 用铂电极电解CuCl 2溶液。通过的电流为20A,经过15min 后,问:(1)在阴极上能析出多少质量的Cu?(2)在的27℃,100kPa 下阳极上能析出多少体积的的Cl 2(g)? 解:电极反应为:阴极:Cu 2+ + 2e - → Cu 阳极: 2Cl - -2e - → Cl 2(g) 则:z= 2 根据:Q = nzF =It ()22015Cu 9.32610mol 296500 It n zF -?= ==?? 因此:m (Cu)=n (Cu)× M (Cu)= 9、326×10-2×63、546 =5、927g 又因为:n (Cu)= n (Cl 2) pV (Cl 2)= n (Cl 2)RT 因此:3223Cl 0.093268.314300Cl 2.326dm 10010 n RT V p ??===?()() 7、2 用Pb(s)电极电解PbNO 3溶液。已知溶液浓度为1g 水中含有PbNO 3 1、66×10-2g 。通电一定时间后,测得与电解池串联的银库仑计中有0、1658g 的银沉积。阳极区的溶液质量为62、50g,其中含有PbNO 31、151g,计算Pb 2+的迁移数。 解法1:解该类问题主要依据电极区的物料守恒(溶液就是电中性的)。显然阳极区溶液中Pb 2+的总量的改变如下: n 电解后(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 迁移(12 Pb 2+) 则:n 迁移(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 电解后(12 Pb 2+) n 电解(1 2Pb 2+)= n 电解(Ag ) = ()()3Ag 0.1658 1.53710mol Ag 107.9 m M -==? 223162.501.1511.6610(Pb ) 6.15010mol 12331.22 n -+--??==??解前()电 2311.151(Pb ) 6.95010mol 12331.22 n +-==??解后电 n 迁移(12 Pb 2+)=6、150×10-3+1、537×10-3-6、950×10-3=7、358×10-4mol () 242321Pb 7.358102Pb 0.4791 1.53710(Pb )2n t n +-+-+?==?移解()=迁电

天津大学第五版_刘俊吉_物理化学课后习题答案(全)

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之

物理化学课后习题答案

四.概念题参考答案 1.在温度、容积恒定的容器中,含有A 和B 两种理想气体,这时A 的分压 和分体积分别是A p 和A V 。若在容器中再加入一定量的理想气体C ,问A p 和A V 的 变化为 ( ) (A) A p 和A V 都变大 (B) A p 和A V 都变小 (C) A p 不变,A V 变小 (D) A p 变小,A V 不变 答:(C)。这种情况符合Dalton 分压定律,而不符合Amagat 分体积定律。 2.在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的 物质的量、分压和分体积分别为A A A ,,n p V 和B B B ,,n p V ,容器中的总压为p 。试 判断下列公式中哪个是正确的 ( ) (A) A A p V n RT = (B) B A B ()pV n n RT =+ (C) A A A p V n RT = (D) B B B p V n RT = 答:(A)。题目所给的等温、等容的条件是Dalton 分压定律的适用条件,所 以只有(A)的计算式是正确的。其余的,,,n p V T 之间的关系不匹配。 3. 已知氢气的临界温度和临界压力分别为633.3 K , 1.29710 Pa C C T p ==?。 有一氢气钢瓶,在298 K 时瓶内压力为698.010 Pa ?,这时氢气的状态为 ( ) (A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定 答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界 区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力, 都不能使氢气液化。 4.在一个绝热的真空容器中,灌满373 K 和压力为 kPa 的纯水,不留一点 空隙,这时水的饱和蒸汽压 ( ) (A )等于零 (B )大于 kPa (C )小于 kPa (D )等于 kPa 答:(D )。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了, 其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。

关于物理化学课后习题答案

关于物理化学课后习题 答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 如图所示,一带隔板的容器中,两侧分别有同温、不同压的H2与N2,P(H2)=20kpa,P(N2)=10kpa,二者均可视为理想气体。 H2 3dm3 P(H2) T N2 1dm3 P(N2) T (1) 两种气体混合后的压力; (2)计算混合气体中H2和N2的分压力; (3)计算混合气体中H2和N2的分体积。 第二章 1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水,求过程的功。假 设:相对水蒸气的体积,液态水的体积可以忽略不计。 1mol某理想气体与27℃,的始态下,先受某恒定外压恒温压缩至平衡态, 在恒容升温至℃,。求过程的W,Q, ΔU, ΔH。已知气体的体积Cv,m=*mol-1 *K-1。 容积为 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 C,4 mol的Ar(g)及150 C,2 mol的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度

t及过程的。已知:Ar(g)和Cu(s)的摩尔定压热容分别为 及,且假设均不随温度而变。 解:图示如下 假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计 则该过程可看作恒容过程,因此 假设气体可看作理想气体,,则 冰(H2O,S)在100kpa下的熔点为0℃,此条件下的摩尔熔化焓 ΔfusHm=*mol-1 *K-1。已知在-10~0℃范围内过冷水(H2O,l)和冰的摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm(H2O,S)=*mol-1 *K-1。求在常压及-10℃下过冷水结冰的摩尔凝固焓。 O, l)在100 C的摩尔蒸发焓。水和水蒸气已知水(H 2 在25~100℃间的平均摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm (H2O,g)=*mol-1 *K-1。求在25C时水的摩尔蒸发焓。 应用附录中有关物资的热化学数据,计算 25 C时反应 的标准摩尔反应焓,要求:(1)应用25 C的标准摩尔生成焓数据;

物理化学第五版课后习题答案

第五章 化学平衡 5-1.在某恒定的温度和压力下,取n 0﹦1mol 的A (g )进行如下化学反应:A (g ) B (g ) 若0B μ﹦0 A μ,试证明,当反应进度ξ﹦0.5mol 时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。 解: 设反应进度ξ为变量 A (g ) B (g ) t ﹦0 n A , 0﹦n 0 0 ξ0﹦0 t ﹦t 平 n A n B ξ ξ﹦ B B n ν n B ﹦νB ξ,n A ﹦n 0-n B ﹦n 0-νB ξ,n ﹦n A +n B ﹦n 0 气体的组成为:y A ﹦ A n n ﹦00 B n n νξ-﹦01n ξ-,y B ﹦B n n ﹦0 n ξ 各气体的分压为:p A ﹦py A ﹦0 (1)p n ξ - ,p B ﹦py B ﹦ p n ξ 各气体的化学势与ξ的关系为:0 000ln ln (1)A A A A p p RT RT p p n ξμμμ=+=+- 0 000ln ln B B B B p p RT RT p p n ξμμμ=+=+? 由 G =n A μA +n B μB =(n A 0A μ+n B 0 B μ)+00ln (1)A p n RT p n ξ-+0 ln B p n RT p n ξ ? =[n 0-ξ0A μ+ξ0 B μ]+n 00ln p RT p +00()ln(1)n RT n ξξ--+0 ln RT n ξ ξ 因为 0B μ﹦0A μ,则G =n 0(0 A μ+0ln p RT p )+00()ln(1)n RT n ξξ--+0 ln RT n ξ ξ ,0()ln T p G RT n ξξξ?=?- 20,20()()T p n RT G n ξξξ?=-?-<0 令 ,( )0T p G ξ?=? 011n ξξξξ ==-- ξ﹦0.5 此时系统的G 值最小。

物理化学第五版下册习题答案

第七章 电化学 7.1 用铂电极电解CuCl 2溶液。通过的电流为20A ,经过15min 后,问:(1)在阴极上能析出多少质量的Cu?(2)在的27℃,100kPa 下阳极上能析出多少体积的的Cl 2(g )? 解:电极反应为:阴极:Cu 2+ + 2e - → Cu 阳极: 2Cl - -2e - → Cl 2(g ) 则:z= 2 根据:Q = nzF =It ()22015 Cu 9.32610mol 296500 It n zF -?= ==?? 因此:m (Cu )=n (Cu )× M (Cu )= 9.326×10-2×63.546 =5.927g 又因为:n (Cu )= n (Cl 2) pV (Cl 2)= n (Cl 2)RT 因此:3 223 Cl 0.093268.314300Cl 2.326dm 10010 n RT V p ??===?()() 7.2 用Pb (s )电极电解PbNO 3溶液。已知溶液浓度为1g 水中含有PbNO 3 1.66×10-2g 。通电一定时间后,测得与电解池串联的银库仑计中有0.1658g 的银沉积。阳极区的溶液质量为62.50g ,其中含有PbNO 31.151g ,计算Pb 2+的迁移数。 解法1:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阳极区溶液中Pb 2+的总量的改变如下: n 电解后(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 迁移(1 2Pb 2+) 则:n 迁移(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 电解后(1 2 Pb 2+) n 电解(12 Pb 2+)= n 电解(Ag ) = ()()3Ag 0.1658 1.53710mol Ag 107.9 m M -==? 2 23162.501.1511.6610(Pb ) 6.15010mol 1 2331.22 n -+--??==??解前()电 2311.151(Pb ) 6.95010mol 1 2331.22 n +-==??解后电 n 迁移(1 2 Pb 2+)=6.150×10-3+1.537×10-3-6.950×10-3=7.358×10-4mol () 242321Pb 7.358102Pb 0.4791 1.53710 (Pb )2 n t n + -+ -+?==?移解()=迁电

物理化学第五版课后习题答案

第十章界面现象 10-1 请回答下列问题: (1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生? (2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象? (3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么? (5) 在一定温度、压力下,为什么物理吸附都是放热过程? 答:(1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。 (2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”,根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。 (3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。 (4) 最本质区别是分子之间的作用力不同。物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。 (5) 由于物理吸附过程是自发进行的,所以ΔG<0,而ΔS<0,由ΔG=ΔH-TΔS,得 ΔH<0,即反应为放热反应。

10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面张力为0.4865 N ·m -1。 解: 3143r π=N×3243r π N =3 132 r r ΔG =2 1 A A dA γ?= (A 2-A 1)=4·( N 2 2 r -21 r )=4 ·(3 12 r r -21r ) =4× ×(339 (110)110 --??-10-6) =5.9062 J 10-3 计算时373.15K 时,下列情况下弯曲液面承受的附加压力。已知时水的表面张力为58.91×10-3 N ·m -1 (1) 水中存在的半径为0.1μm 的小气泡;kPa (2) 空气中存在的半径为0.1μm 的小液滴; (3) 空气中存在的半径为0.1μm 的小气泡; 解:(1) Δp =2r γ=36 258.91100.110--???=1.178×103 kPa (2) Δp =2r γ =36 258.91100.110--???=1.178×103 kPa (3) Δp =4r γ=36 458.91100.110--???=2.356×103 kPa 10-4 在293.15K 时,将直径为0.1nm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能防止液面上升?若不加压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N ·m -1,密度为789.4 kg ·m -3,重力加速度为9.8 m ·s -2。设乙醇能很好地润湿玻璃。

天津大学第五版-刘俊吉-物理化学课后习题答案(全)

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1 211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,总质量为125.0000g 。若改用充以25℃、13.33kPa 的某碳氢化合物

物理化学第五版课后习题答案

第七章 电化学 7-1.用铂电极电解CuCl 2溶液。通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu ? (2) 在阳阴极上能析出多少体积的27℃, 100 kPa 下的Cl 2(g )? 解:(1) m Cu = 201560635462.F ???=5.527 g n Cu =201560 2F ??=0.09328 mol (2) 2Cl n =2015602F ??=0.09328 mol 2Cl V =00932830015 100 .R .??=2.328 dm 3 7-2.用Pb (s )电极电解Pb (NO 3) 2溶液,已知溶液浓度为1g 水中含有Pb (NO 3) 21.66×10-2g 。通电一段时间,测得与电解池串联的银库仑计中有0.1658g 的银沉积。阳极区溶液质量为62.50g ,其中含有Pb (NO 3) 21.151g ,计算Pb 2+的迁移数。 解: M [Pb (NO 3) 2]=331.2098 考虑Pb 2+:n 迁=n 前-n 后+n e =262501151166103312098(..)..--??-11513312098..+01658 21078682 ..? =3.0748×10-3-3.4751×10-3+7.6853×10-4 =3.6823×10-4 mol t +(Pb 2+ )=4 4 36823107685310..--??=0.4791 考虑3NO -: n 迁=n 后-n 前 =1151 3312098 ..-262501151166103312098(..)..--??=4.0030×10-3 mol t -(3 NO -)=4 4 40030107658310..--??=0.5209 7-3.用银电极电解AgNO 3溶液。通电一段时间后,阴极上有0.078 g 的Ag 析出,阳极区溶液溶液质量为23.376g ,其中含AgNO 3 0.236 g 。已知通电前溶液浓度为1kg 水中溶有7.39g 的AgNO 3。求Ag +和3NO -的迁移数。 解: 考虑Ag +: n 迁=n 前-n 后+n e =3233760236739101698731(..)..--??-023********..+00781078682 .. =1.007×10- 3-1.3893×10- 3+7.231×10- 4

天津大学第五版-刘俊吉-物理化学课后习题答案(全)

第一章 气体得p VT 关系 1-1物质得体膨胀系数与等温压缩系数得定义如下: 试导出理想气体得、与压力、温度得关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-2 气柜内有121、6k Pa、27℃得氯乙烯(C 2H3Cl)气体300m 3,若以每小时90kg 得流量输往使用车间,试问贮存得气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯得物质得量为 每小时90kg 得流量折合p 摩尔数为 n/v =(14618、623÷1441、153)=10、144小时 1-3 0℃、101、325k Pa 得条件常称为气体得标准状况。试求甲烷在标准状况下得密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空得球形容器,质量为25、0000g 。充以4℃水之后,总质量为125、0000g 。若改用充以25℃、13、33k Pa得某碳氢化合物气体,则总质量为25、0163g 。试估算该气体得摩尔质量。 解:先求容器得容积

n=m /M=pV/R T mol g pV RTm M ?=?-??== -31.3010 13330) 0000.250163.25(15.298314.84 1-5 两个体积均为V 得玻璃球泡之间用细管连接,泡内密封着标准状况条件下得空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气得压力。 解:方法一:在题目所给出得条件下,气体得量不变。并且设玻璃泡得体积不随温度而变化,则始态为 终态(f)时 1-6 0℃时氯甲烷(CH 3Cl)气体得密度ρ随压力得变化如下。试作ρ/p—p 图,用外推法求氯甲烷得相对分子质量。 解:将数据处理如下: P/kPa 101、325 67、550 50、663 33、77 5 25、331 (ρ /p)/(g ·dm -3·kP a) 0、02277 0、02 260 0、 02250 0、02242 0、0223 7 作(ρ/p)对p 图

物理化学课后(下册)部分习题答案

第十一章化学动力学 1. 反应为一级气相反应,320 oC时。问在320 oC加热90 min的分解分数为若干? 解:根据一级反应速率方程的积分式 答:的分解分数为11.2% 2. 某一级反应的半衰期为10 min。求1h后剩余A的分数。 解:同上题, 答:还剩余A 1.56%。 3.某一级反应,反应进行10 min后,反应物反应掉30%。问反应掉50%需多少时间? 解:根据一级反应速率方程的积分式 答:反应掉50%需时19.4 min。 4. 25 oC时,酸催化蔗糖转化反应 的动力学数据如下(蔗糖的初始浓度c0为1.0023 mol·dm-3,时刻t的浓度为c) 0 30 60 90 130 180 0 0.1001 0.1946 0.2770 0.3726 0.4676 解:数据标为 0 30 60 90 130 180 1.0023 0.9022 0.8077 0.7253 0.6297 0.5347 0 -0.1052 -0.2159 -0.3235 -0.4648 -0.6283

拟合公式 蔗糖转化95%需时 5. N -氯代乙酰苯胺异构化为乙酰对氯苯胺 为一级反应。反应进程由加KI溶液,并用标准硫代硫酸钠溶液滴定游离碘来测定。KI只与 A反应。数据如下: 0 1 2 3 4 6 8 49.3 35.6 25.75 18.5 14.0 7.3 4.6 解:反应方程如下 根据反应式,N -氯代乙酰苯胺的物质的量应为所消耗硫代硫酸钠的物质的量的二分之一, 0 1 2 3 4 6 8

4.930 3.560 2.575 1.850 1.400 0.730 0.460 0 -0.3256 -0.6495 -0.9802 -1.2589 -1.9100 -2.3719 。 6.对于一级反应,使证明转化率达到87.5%所需时间为转化率达到50%所需时间的3倍。对 于二级反应又应为多少? 解:转化率定义为,对于一级反应, 对于二级反应, 7.偶氮甲烷分解反应 为一级反应。287 oC时,一密闭容器中初始压力为21.332 kPa,1000 s后总压为 22.732 kPa,求。 解:设在t时刻的分压为p, 1000 s后,对密闭容器中的 气相反应,可以用分压表示组成:

物理化学第五版课后习题答案

第十章 界面现象 10-1 请回答下列问题: (1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生? (2) 在一个封闭的钟罩,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象? (3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么? (5) 在一定温度、压力下,为什么物理吸附都是放热过程? 答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。 (2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。 (3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。 (4) 最本质区别是分子之间的作用力不同。物理吸附是固体表面分子与气体分子间的作用力为德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。 (5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。 10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面力为0.4865 N ·m -1。 解: 3143r π=N ×3243r π N =3132 r r ΔG =2 1 A A dA γ? =γ(A 2-A 1)=4πγ·( N 22 r -21 r )=4πγ·(3 12 r r -21r )

物理化学第五版答案

物理化学第五版答案 内容介绍本书是在第四版的基础上,遵照教育部高等学校化学与化工学科教学指导委员会2004年通过的“化学专业和应用化学专业化学教学基本内容”进行了适当的调整和增删。全书重点阐述了物理化学的基本概念和基本理论,同时考虑到不同读者的需要也适当介绍了一些与学科发展趋势有关的前沿内容。各章附有扩展阅读的参考文献和书目,拓宽了教材的深度和广度。为便于读者巩同所学到的知识,提高解题能力,同时也为了便于自学,书中编入了较多的例题,每章末分别有复习题和习题,供读者练习之用。全书采用以国际单位制(SI)单位为基础的“中华人民共和国法定计量单位”和国家标准(GB 3100~3102 93)所规定的符号。全书分上、下两册,共14章。上册内容包括:气体,热力学第一定律,热力学第二定律,多组分系统热力学,相平衡,化学平衡和统计热力学基础。下册内容包括:电解质溶液,可逆电池电动势的测定和应用,电解和极化,化学动力学基础,表面化学和胶体分散系统等。即将与本书配套出版的有:学习与解题指导书,多媒体电子教案,多媒体网络课程等,形成一套新型的立体 《物理化学》为教育部普通高等教育“十一五”国家级规划教材。1999年出版的《物理化学》第四版,内容大致与国际趋势接轨。本版则是一个精要版,是在第四版的基础上修订而成。它并不降低基本要求,而是从实际出发,进一步取其精华,提高质量,篇幅比第四版减少约三分

之一。全书仍分为5篇共18章。平衡篇包括物质的pVT关系和热性质、化学热力学、相平衡和化学平衡。速率篇包括传递现象和化学动力学。结构篇有量子力学基础、化学键和分子间力的理论,以及波谱原理。统计篇有独立子系统和相倚子系统的统计热力学,以及速率理论。... [显示全部]

天津大学第五版刘俊吉物理化学课后习题答案全

天津大学第五版刘俊吉物 理化学课后习题答案全 The following text is amended on 12 November 2020.

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(÷)=小时 1-3 0℃、的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为。充以4℃水之后,总质量为。若改用充以25℃、的某碳氢化合物气体,则总质量为。试估算该气体的摩尔质量。 解:先求容器的容积33) (0000.1001 0000.100000.250000.1252 cm cm V l O H ==-=ρ n=m/M=pV/RT 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。

物理化学第三章课后答案完整版

第三章热力学第二定律 3.1 卡诺热机在的高温热源和的低温热源间工作。求 (1)热机效率; (2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热 。 解:卡诺热机的效率为 根据定义 3.2 卡诺热机在的高温热源和的低温热源间工作,求: (1)热机效率; (2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出 (2) 3.3 卡诺热机在的高温热源和的低温热源间工作,求 (1)热机效率; (2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。 解:(1)

(2) 3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺 热机得到的功r W 等于不可逆热机作出的功-W 。假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修 斯说法。 证: (反证法) 设 r ir ηη> 不可逆热机从高温热源吸热,向低温热源 放热 ,对环境作功 则 逆向卡诺热机从环境得功 从低温热源 吸热 向高温热源 放热 则 若使逆向卡诺热机向高温热源放出的热 不可逆热机从高温热源吸收的热 相等,即 总的结果是:得自单一低温热源的热 ,变成了环境作功 ,违背了热 力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给 低温热源,求此过程。 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程 3.6 不同的热机中作于的高温热源及的低温热源之间。求下列三种 情况下,当热机从高温热源吸热时,两热源的总熵变。 (1)可逆热机效率。 (2)不可逆热机效率。 (3)不可逆热机效率。 解:设热机向低温热源放热,根据热机效率的定义 因此,上面三种过程的总熵变分别为。 3.7 已知水的比定压热容。今有1 kg,10℃的水经下列三种不同过程加 热成100 ℃的水,求过程的。 (1)系统与100℃的热源接触。 (2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。 (3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。 解:熵为状态函数,在三种情况下系统的熵变相同 在过程中系统所得到的热为热源所放出的热,因此

物理化学下册习题测验答案(全部)

第七章化学反应动力学 1.以氨的分解反应2NH3==== N2+3H2为例,导出反应进度的增加速率与 ,,之间的关系,并说明何者用于反应速率时与选择哪种物质为准无关。 解: ∴,, 2.甲醇的合成反应如下: CO+2H2 ===== CH3OH 已知,求,各为多少? (答案:2.44,4.88mol·dm-3·h-1) 解:, 3.理想气体反应2N2O5→ 4NO2+O2,在298.15 K的速率常数k是1.73×10-5s-1,速率方程为。(1)计算在298.15K、、12.0 dm3的容 器中,此反应的和即各为多少?(2)计算在(1)的反应条件下,1s内被分解的N2O5分子数目。(答案:(1)7.1×10-8,-1.14×10-7md·dm-3·s-1 (2)1.01×1018) 解:(1)mol·dm-3

mol·dm-3·s-1 ∴mol·dm-3·s-1 (2)1.4×10-7×12.0×6.022×1023=1.01×1018个分子 4.已知每克陨石中含238U 6.3×10-8g,He为20.77×10st1:chmetcnv UnitName="cm" SourceValue="6" HasSpace="False" Negative="True" NumberType="1" TCSC="0">-6cm3(标准状态下),238U的衰变为一级反应:238U → 206Pb+84He由 实验测得238U的半衰期为=4.51×109 y,试求该陨石的年龄。(答案:2.36×109年) 解:每克陨石中含He: mol 最开始每克陨石中含238U的量: mol 现在每克陨石中含238U的量: mol 衰变速率常数: ∴ 5.303.01 K时甲酸甲酯在85%的碱性水溶液中水解,其速率常数为4.53 mol-1·L·s-1。 (1) 若酯和碱的初始浓度均为1×10-3mol·L-1,试求半衰期。 (2 )若两种浓度,一种减半,另一种加倍,试求量少者消耗一半所需的时间为多少。 (答案:220.8,82.36s) 解:(1) 甲酸甲酯的水解反应为二级反应,且当酯和碱的初始浓度相等时,其速率方程可化为纯二级反应速率方程形式:

物理化学第四版课后答案

第一章气体的pVT性质 1.1物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100 ?C,另一个球则维持0 ?C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态:

因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。 (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计, 试 求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同? (3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干? 解:(1)等温混合后

即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。 解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为 ,

因此 。 1.13 今有0 ?C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。实验值为。 解:用理想气体状态方程计算 气(附录七) 用van der Waals计算,查表得知,对于N 2 ,用MatLab fzero函数求得该方程的解为 也可以用直接迭代法,,取初值 ,迭代十次结果 1.16 25 ?C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ?C,使

物理化学课后习题答案

第一章 1、5两个容积均为V得玻璃球泡之间用细管连结,泡内密封着标准状态下得空气。若将其中得一个球加热到100 ?C,另一个球则维持0 ?C,忽略连接细管中气体体积,试求该容器内空气得压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1、8 如图所示,一带隔板得容器中,两侧分别有同温、不同压得H2与N2,P(H2)=20kpa,P(N2)=10kpa,二者均可视为理想气体。

H2 3dm3 P(H2)T N2 1dm3 P(N 2) T (1)保持容器内温度恒定,抽去隔板,且隔板本身得体积可忽略不计,试求两种气体混合后得压力; (2)计算混合气体中H2与N2得分压力; (3)计算混合气体中H2与N2得分体积。 第二章 2、2 1mol水蒸气(H2O,g)在100℃,101、325kpa下全部凝结成液态水,求过程得功。假设:相对水蒸气得体积,液态水得体积可以忽略不计。 2、11 1mol某理想气体与27℃,101、325kpa得始态下,先受某恒定外压恒温压缩至平衡态,在恒容升温至97、0℃,250、00kpa。求过程得W,Q, ΔU, ΔH。已知气体得体积Cv,m=20、92J*mol-1 *K-1。 2、15 容积为0、1 m3得恒容密闭容器中有一绝热隔板,其两侧分别为0 ?C,4 mol 得Ar(g)及150 ?C,2 mol得Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程得。已知:Ar(g)与Cu(s)得摩尔定压热容分别为 及,且假设均不随温度而变。 解:图示如下

假设:绝热壁与铜块紧密接触,且铜块得体积随温度得变化可忽略不计 则该过程可瞧作恒容过程,因 此 假设气体可瞧作理想气体, ,则 2、25 冰(H2O,S)在100kpa下得熔点为0℃,此条件下得摩尔熔化焓ΔfusHm=6、012KJ*mol-1 *K-1。已知在-10~0℃范围内过冷水(H2O,l)与冰得摩尔定压热容分别为Cpm(H2O,l)=76、28J*mol-1 *K-1与Cpm(H2O,S)=37、20J*mol-1 *K-1。求在常压及-10℃下过冷水结冰得摩尔凝固焓。 O, l)在100 ?C得摩尔蒸发焓。水2、26 已知水(H 2 与水蒸气在25~100℃间得平均摩尔定压热容分别为Cpm(H2O,l)=75、75J*mol-1 *K-1与Cpm(H2O,g)=33、76J*mol-1 *K-1。求在25?C时水得摩尔蒸发焓。 2、29 应用附录中有关物资得热化学数据,计算 25 ?C时反应 得标准摩尔反应焓,要求:

相关主题
文本预览
相关文档 最新文档