当前位置:文档之家› 物理化学教程课后习题答案

物理化学教程课后习题答案

物理化学教程课后习题答案
物理化学教程课后习题答案

第一章 化学热力学基础

姓名:刘绍成 学号 :120103208026 金材10-1-16-34

P 82(1-1) 10 mol 理想气体由25℃,1.00MPa 。设过程为:(i )向真空膨胀;(ii )对抗恒外压0.100MPa 膨胀。分别计算以上各过程的

(i)

外(ii)

(ii )P 1V 11=24.777m 3;

因为是恒温过程,故 V 2=21

P P V 1=6

6

101.0101777.24???=247.77m 3

W=-?2

1

v v Pdv =-P(V 2-V 1)=-22.2995J

小结:此题考查真空膨胀的特点及恒外压做功的求法,所用公式有:PV=nRT;

T

PV

=常数;W=-?2

1

v v Pdv 等公式。

P 82(1-3) 473k, 0.2MPa ,1dm 3的双原子分子理想气体,连续经过下列变化:(I )定温膨胀到3 dm 3;(II )定容升温使压力升到0.2MPa ;(III )保持0.2MPa 降温到初始温度473K 。(i )在p-v 图上表示出该循环全过程;(ii )计算各步及整个循环过程的Wv 、Q ,ΔU ,及ΔH 。已知双原子分子理想气体C p,m =27R 。

解:

dT=0 dV=0 dP=0

P 1V 1=nRT 1 n=1

11RT V P =

473

3145.8101102.03

6????-mol=0.0509mol,

P 1V 1=P 2V 2 ∴P 2=21V V

P 1=3

1×0.2×106=0.067MPa,

T 2=

2

1

P P T 1=

63

1

6102.0102.0???×473K=1419K.

(i) 恒温膨胀A B △U i =0,△H i =0. W i =-?2

1

v v

Pdv =-nRTln 12

v v =-0.0509×8.3145×473×ln3=-219.92J.

∴Q i =-W=219.92J.

(ii) 等体过程 B C 因为是等体积过程所以W ii =0, Q ii =△U ii =nC V,m △T=n(C p,m -R)(T 2-T 1)=0.0509×(2

7

-1)×8.3145×

(1419-473)=1000.89J;

△ H ii =nC p,m △T=0.0509×3.5×8.3145×(1419-473)=1401.2J.

T 1=473k P 1=0.2MPa V 1=1dm 3 A T 1=473k P 2= V 2=3dm 3 B T 2=

P 1=0.2MPa V 2=3dm 3 C T 1=473k

P 1=0.2MPa V 1=1dm 3 A

(iii) 等压过程 C A

W iii =-P △V=-P(V 1-V 2)=-0.2×106×(1-3)×10-3=400J;

△ H iii =nC p,m △T=0.0509×3.5×8.3145×(473-1419)=-1401.2J △ U iii =nC V,m

T=0.0509

×

2.5

×

8.3145

×

(473-1419)=-1000.89J Q=△U-W=-1000.89-400=-1400.89J

在整个过程中由于温度不变所以△U=0, △H=0; Q=-W=-180.08J.

小结:此题考查了恒温过程、等体过程以及等压过程的公式应用,内能和焓只是过于温度的函数。所用公式有:C p,m -C V,m =R; △U=nC V,m △T; △H=nC p,m △T; W=-P △V

P 82(1-4) 10mol 理想气体从2×106 Pa 、10-3m 3定容降温,使压力降到2×105 Pa ,再定压膨胀到2×10-2?,求整个过程的Wv ,Q ,ΔU 和ΔH 。

解: n=10mol,P 1=2×106 Pa,V 1=10-3m 3,

,T 3

) P 2=2×105 Pa V 2=2×10-2m 3

V

P 1V 1=nRT 1 T 1=

nR

V P 1

1=23.77K

T 2=1

2P P T 1=0.1×23.77K=2.377K; T 3=1

2

v v T 2=23.77K;

W I

=0 W II =-?2

1

v v Pdv =-P 2(T 2-T 1)

Q I =△U I =nC v,m △T= nC v,m (T 2-T 1) △U 2= nC v,m (T 3-T 2)

△H I =△U I +△PV=△U+nR(T 2-T 1) Q II =△H II =△U II +△PV=△U II +nR(T 3-T 2) W V = W I + W II =-P 2(T 2-T 1)=-2×105×(10-2-10-3)=-1800J 因为T 1=T 2所以△U=0,△H=0; Q=-W=1800J.

小结:此题考查U=f(T);H=f(T);以及热力学第一定律的公式U=W+Q.

P 821-5 10mol 理想气体由25℃,106Pa 膨胀到25℃,105Pa ,设过程为:(i )自由膨胀;(ii )对抗恒外压105Pa 膨胀;(iii )定温可逆膨胀。分别计算以上各过程的W 、Q 、ΔU 和ΔH 。

解:(i )自由膨胀 P 外=0,由W=-P ΔV 得 W=0;又因是等温过程,所以△H=0,△U=0,故 Q=0.

(ii )因是等温过程,所以△H=0,△U=0; W v =-P(V 2-V 1)=-105(2

P nRT -

1

P nRT ) =-105×(

5

10298

314.810??-

6

10298314.810??)=22.3J

Q=△U-W=22.3J

(iii )因是等温过程,所以△H=0,△U=0; W v =-?

2

1

v v Pdv =-nRTln 12

v v =-10×8.314×298×ln10=-57.05KJ;

Q=-W v =57.05KJ

小结:此题考查U=f(T);H=f(T); W v =-?2

1

v v Pdv 等公式

P 82 (1-6) 氢气从1.43 dm 3,3.04×105Pa ,298.15K 可逆膨胀到2.86 dm 3。氢气的C p,m =28.8 J ·K -1·mol -1,按理想气体处理。(i )求终态的温度和压力;(ii )求该过程的Q 、Wv 、ΔU 和ΔH 。

解:C v,m =28.8-8.3145=20.4855 J ·K -1·mol -1 r=

m

v m

p C C ,,=7/5

(i )由理想气体绝热可逆过程方程得:

T 1V r-1

= T 2V

2

r-1 T 2=(2

1

v v )r-1T 1=0.50.4×298.15=225.9K; P 1V 1=常数

2=(2

1

v v )r P 1=0.51.4×3.04×105=1.15×105Pa;

(iii) 有题知 Q=0,

RT

PV

=15.2983145.81043.11004.335????-=0.175mol

W v =△U= nC V,m (T 2- T 1)=0.175×20.4855×(225.9-298.15)=-259.1J

△ H=△U+△PV=△U+nR △T=-259.1+0.175×8.3145×(225.9-298.15)=-364.3J.

小结:此题考查理想气体绝热可逆过程的方程应用,有T 1V r-1= T 2V 2r-1; P 1V 1=常数;△H=△U+△PV=△U+nR △T

P 82(1-7) 2mol 的单原子理想气体,由600k,1000MPa 对抗恒外压100KPa 绝热膨胀到100KPa 。计算该过程的Q 、Wv 、ΔU 和ΔH 。

W v

=-P su △V=-P su nR(

2

2P T -

1

1P T )

△U=nC v,m (T 2

-T 1) 所以nC v,m (T 2-T 1)= -P su nR(2

2

P T -

1

1P T )

则 T 2=2

,1,P su P R

m

v C P su

P R

m

v C +

+×T 1=[3/2+1/10]/[3/2+1/1]

×600=384k

W v =△U= nC v,m (T 2-T 1)=2×3/2×8.3145×(384-600)=-5.388kJ △ H= nC p,m (T 2-T 1)=2×5/2×8.3145×(384-600)=-8.980kJ 小结:对于理想气体要谨记单原子的C v,m =3/2×R ,

双原子分子C v,m =5/2×R 且C p,m -C v,m =R;此题还有一个陷阱,那就是容易让人使用绝热可逆过程的方程。此题之说了绝热而没说绝热可逆所以要审清题

P 821-8 在298.15K ,6×101.3kPa 压力下,1mol 单原子理想气体进行绝热过程,最终压力为101.3kPa,若为:(i )可逆过程;(ii )对抗恒外压101.3kPa 膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所做的体积功;气的热力学能变化及焓变。已知Cp,m=5R/2。

(i) 绝热可逆膨胀

设最终温度为 T2 ,由式 T γ1 P 11-γ= T γ2P 21-γ ,对单原子理想气体

γ=C p,m /Cv,m=1.67 所以T 2=(

)

γ

γ

-12

1P P T 1=60.4×298.15=145 .6 K

W v =ΔU=nC v,m ( T2 - T1 )=-1×1.5×8.3145×152.55=-1902.6J ΔH = nCp,m ( T 2 – T 1 ) =-1×8 .3145 (145 .6 - 298 .15) = -3170.8J

(ii) 对抗恒外压 101 .3 kPa 迅速膨胀

W v =-P 外(V 2-V 1) △U=n C v,m ( T 2 – T 1 ) 因为是绝热过程 Q = 0 所以 W v = ΔU 即:-P 2()1

1

2

2P nRT P

nRT -=n

C

v,m

( T 2 – T 1 )

把C v,m =2

3R 代入上式消去 R 值,得

- T 2+

6

1

T 1=2

3T 2-

2

3T 1 解得 T = 198 .8 K

W v =ΔU = nC v,m ( T 2 – T 1 )=1.5×8.3145×(198.8-298.15)=-1239 ΔH = nCp,m ( T2 - T1 )=1×2.5×8 .3145 × (198 .8 - 298 .15)

=- 2065 J

小结:此题主要考查绝热可逆过程一系列方程的应用,有PV γ=C ;

T γ1 P 11-γ= T γ2P 21-γ;V γ-1T=C ;同时也考查了热力学能变化及焓变的求解公式ΔU = nC v,m ( T 2 – T 1 );ΔH = nCp,m ( T2 - T1 ),此题有一误区那就是容易使用此公式W v =-?

2

1

v v Pdv =-nRTln 12

v v ,要注意的是此公式只用于温度恒定

的情况下,而此题是绝热,所以不能用! P 82(1-10) 已知反应

(i )CO (g )+H2O (g )→CO2(g )+H2(g ),(298.15K )=-41.2kJ

?mol -1

,(ii)CH4(g)+2H2O(g)→CO2(g)+4H2(g), (298.15K)=165.0 kJ?mol-1

计算下列反应的(298.15K)

(iii)CH4(g)+H2O(g)→CO(g)+3H2(g)

解:(iii)=(ii)-(i)

所以(298.15K)=165.0KJ.mol-1-(-41.2 KJ.mol-1)

=206.2 KJ.mol-1

小结:一个化学反应不管是一步完成还是经过多步完成,反应总的标准摩尔焓变是相同的,这就是盖斯定律,而此题正是其应用

P831-18 1mol的理想气体由25℃,1MPa膨胀到0.1MPa,假设过程分为:(i)定温可逆膨胀;(ii)向真空膨胀。计算各过程的熵变。解:定温可逆

1 mol 298K 1MPa 0.1MPa

向真空膨胀

(1)在定温可逆过程中

△S=?21v v T Qδ= nRTln12v v/T= nRln21P P=1×8.3145×ln10=19.14J.K-1 (2)向真空膨胀因为熵是状态函数所以有:

△S=19.14 J.K-1

小结:此题考查恒温可逆过程的熵的计算,所用公式为

△S=?21v v T Qδ= nRTln12v v/T= nRTln21P P,第二问主要考察熵是状态函数,它的变化量只与初末状态有关与路径无关。

P831-19 2mol,27℃,20 dm3 理想气体,在定温条件下膨胀到49.2 dm3,假设过程为:(i)可逆膨胀;(ii)自由膨胀;(iii)对抗恒外压1.013×105Pa膨胀。计算个过程的Q、W、ΔU、ΔH和ΔS。

解:

(1)可逆膨胀过程

W v=-?21v v Pdv=-nRTln12v v=-2×8.3145×ln2.46×300=-4490.6J

因为dT=0 所以△U=0,△H=0 所以Q=-W=4490.6J

△S=?21v v T Qδ= nRln12v v=2×8.3145×ln2.46=14.97J

(2)自由膨胀W v=0 因为dT=0 所以△U=0,△H=0所以Q=-W=0

△S=14.97J

(3)恒外压1.013×105Pa

W v=-P外(V2-V1)=-1.013×105×(49.2×10-3-20×10-3)

=-2957.96J

因为dT=0 所以△U=0,△H=0 所以Q=-W=2957.96J

ΔS=14.97J

小结:此题再一次考查了熵是状态函数,它的变化量只与初末状态有关,与路径无关,所以在此题中无论经过怎样的变化,其变化量始终为14.97J,同时此题也考查了自由膨胀的特点即W v=0;

等温可逆变化的过程功的计算,所用公式有W v=-?21v v Pdv =-nRTln12v v ;△S=?21v v T Qδ= nRTln12v v/T= nRln21P P以及恒外压时功的计算即

W v=-P外(V2-V1).

P831-26 4mol理想气体从300K,P?下定压加热到600K,求此过程的ΔU、ΔH、ΔS、ΔA、ΔG。已知理想气体的(300K)=150.0J·K-1·mol-1,C?p,m=30.00 J·K-1·mol-1。

解:定压加热

4 mol 300k P 4 mol 600k

在此过程中C v,m= C p,m-R=30-8.3145=21.6855J.mol-1.K-1

ΔU = nC v,m(T2– T1) =4×21.6855×(600-300)=26022.6J

ΔH = nC p,m(T2– T1) = 4 mol×30 .0× (600 - 300) = 36 .00 kJ

△S=?21T T T Qδ= n C p,m ln12T T=4×30×ln2=83.18J

由ΔS = n[ Sm (600 K) - Sm (300 K)]得:

Sm (600 K)=170 .8 J·K-1·mol-1

Δ( TS) = n[ T2 Sm ( T2 ) – T1 Sm ( T1 )]

=4× (600×170 .8 - 300×150) = 229920J

ΔA = ΔU - Δ( TS) = 26022.6- 229920 =-203 .9 kJ

ΔG = ΔH - Δ( TS) = 36000 - 229920 = - 193 .9 kJ

小结:此题主要考查ΔU 、ΔH 、ΔS 、ΔA 、ΔG 的求法及其之间的关系,难点在于熵的变化ΔS = n[ Sm (600 K) - Sm (300 K)]如果想到这一步,此题可以说是解决了一大半,如果在能把

Δ( TS) = n[ T 2 Sm ( T 2 ) – T 1 Sm ( T 1 )]想到,那么此题便没有了障碍,一切都可迎刃而解,所用公式有ΔU = nC v,m (T 2 – T 1); ΔH = nC p,m (T 2 – T 1 );△S=?2

1

T T T Q

δ=

n C p,m ln 12

T T ;ΔA = ΔU - Δ( TS);

ΔG = ΔH - Δ( TS)。

第二章 相平衡

P 147 2-3 已知水和冰的体积质量分别为 0 .9998 g ·cm -3 和0 .9168 g ·cm -3 ;冰在 0 ℃ 时的质量熔化焓为 333 .5 J ·g -1 。试计算在 - 0 .35 ℃ 的气温下,要使冰熔化所需施加的最小压力为多少 ? 解 T 1 = 273 .15 K,P 1 = 101325 Pa,ΔHm = 333 .5 J ·g -1 ×18 g ·mol -1 =6003 J·mol , T2 = 272 .8 K

由克拉伯龙方程 dT dP =V T H m

??V T H m

??dT 两边同时积分

P 2=

V

H m

??ln 1

2T

T +P 1, △V=(9168.01

9998.01-)×18×10-6将其带入上式得 P 2 = 4823 kPa

小结:此题主要考查克拉伯龙方程的积分式的应用,在做题时一定要

看清方向,此题要求冰融化即冰 水的过程,另外要看清已知条件,题目给的是质量熔化焓,要把它转化为摩尔熔化焓再往下求。

P 147 2-4 已 知 HNO 3(l) 在 0 ℃ 及 100 ℃ 的 蒸 气 压 分 别 为1 .92 kPa 及 171 kPa 。试计算: (i)HNO 3 (l) 在此温度范围内的摩尔汽化焓;(ii)HNO3(l)的正常沸点。

解 (i) 因为 T 1 = 273 .15 K, T 2= 373 .15 K, P 1= 1 .92 kPa, P 2 = 171 kPa

由克拉珀龙 -克劳修斯方程: ln

1

2

P P =()2112T RT T T H m -?

ΔH m =

1

21

2

21ln

T T T RT P P -=

100

ln 15.373.2733145.892

.1

171

???=38.045K J·mo l -1

(ii) 因为正常沸点下,HNO 3(l) 的饱和蒸气压 P *= 101 .3kPa ln

1

*

P P =

()

b

b m T

RT T T H *11

*-?b *=

66

.90063804575

.10391991-=357.8K

所以正常沸点为357.8k

小结:此题再一次考查了克——克方程的变形形式即积分式 ln 1

2P P =()2112T RT T T H m -?,要根据已知条件求出未知量。

P 147 2-15 100℃ 时,纯CCl 4 及纯 SnCl 4 的蒸气压分别1 .933×105Pa

及 0.666×105Pa。这两种液体可组成理想液态混合物。假定以某种配比混合成的这种混合物,在外压为 1 .013×105 Pa 的条件下,加热到 100 ℃时开始沸腾。计算:(i) 该混合物的组成;(ii) 该混合物开始沸腾时的第一个气泡的组成。

解分别以 A,B代表 CCl4和 SnCl4 ,则

P A*= 1 .933×105 Pa; P B*= 0 .666×105 Pa

(i) P= P A*X A+ P B*X B

1.013×105=1 .933×105X A+0 .666×105X B

=1 .933105X A+0 .666×105(1- X A)

1.267X A =0.347

X A=0.273 X B=1- X A=0.726

(ii) 开始沸腾时第一个气泡的组成, 即上述溶液的平衡气相组成,设为y A,则由理想也太混合物分压定律得y A P= P A*X A

所以y A= P A*X A/P=1 .933×105×0.273/1.013×105=0.52

y B=1-y A=0.48

小结:此题主要考查理想液态混合物的组分求法,用的知识点是分压定律,所用公式有P= P A*X A+ P B*X B分压定律y A P= P A*X A=P A

P148 2-16 C6H6 (A)-C2 H4 C12 (B)的混合液可视为理想液态混合物。

50 ℃时,P*A = 0 .357×105 Pa, P*B = 0 .315×105 Pa。试分别计算50 ℃时X A = 0 .250,0 .500,0 .750 的混合物的蒸气压及平衡气相组成。

解因为二组分都遵守拉乌尔定律,所以

p = pB + ( pA - pB ) xA

当xA = 0 .250 时, P=0.315×105+(0.357×105-0.315×105) ×0 .250 = 0 .326×105 Pa

y A P= P A*X A y A=0.357×0.25/0.326=0.274

当 xA = 0 .500 时, P= 0.315×105+(0.357×105- 0.315×105) ×0 .500 = 0 .336×10 Pa

P= P A*X A y A=0.357× 0.5/0.336=0.53

当xA = 0 .750 时,P= 0.315×105+(0.357×105-0.315×105) ×0 .750 = 0 .3465×105 Pa

y A P= P A*X A y A=0.357×0.75/0.3465=0.772

小结:此题亦是考查理想液态混合物各组分的求法,主要是总压及分压定律的应用。在一定温度下,液态混合物中任意组分A在全部组成范围内都遵守拉乌尔定律即P= P A*X A这就是理想液态混合物。总压

P=P A+P B= P A*X A+ P B*X B分压定律P A=y A P= P A*X A.

物理化学课后答案

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1—2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3 ,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441。153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1—4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,总质量为125.0000g 。若改用充以25℃、13。33kPa 的某碳氢化合物气体,则总质量为25。0163g 。试估算该气体的摩尔质量。 解:先求容器的容积33 ) (0000.1001 0000.100000 .250000.1252 cm cm V l O H == -= ρ n=m/M=pV/RT mol g pV RTm M ?=?-??== -31.3010 13330) 0000.250163.25(15.298314.84 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气.若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。 解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ??? ? ??+=???? ??+ =+=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1

物理化学第五版下册习题答案

第七章 电化学 7、1 用铂电极电解CuCl 2溶液。通过的电流为20A,经过15min 后,问:(1)在阴极上能析出多少质量的Cu?(2)在的27℃,100kPa 下阳极上能析出多少体积的的Cl 2(g)? 解:电极反应为:阴极:Cu 2+ + 2e - → Cu 阳极: 2Cl - -2e - → Cl 2(g) 则:z= 2 根据:Q = nzF =It ()22015Cu 9.32610mol 296500 It n zF -?= ==?? 因此:m (Cu)=n (Cu)× M (Cu)= 9、326×10-2×63、546 =5、927g 又因为:n (Cu)= n (Cl 2) pV (Cl 2)= n (Cl 2)RT 因此:3223Cl 0.093268.314300Cl 2.326dm 10010 n RT V p ??===?()() 7、2 用Pb(s)电极电解PbNO 3溶液。已知溶液浓度为1g 水中含有PbNO 3 1、66×10-2g 。通电一定时间后,测得与电解池串联的银库仑计中有0、1658g 的银沉积。阳极区的溶液质量为62、50g,其中含有PbNO 31、151g,计算Pb 2+的迁移数。 解法1:解该类问题主要依据电极区的物料守恒(溶液就是电中性的)。显然阳极区溶液中Pb 2+的总量的改变如下: n 电解后(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 迁移(12 Pb 2+) 则:n 迁移(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 电解后(12 Pb 2+) n 电解(1 2Pb 2+)= n 电解(Ag ) = ()()3Ag 0.1658 1.53710mol Ag 107.9 m M -==? 223162.501.1511.6610(Pb ) 6.15010mol 12331.22 n -+--??==??解前()电 2311.151(Pb ) 6.95010mol 12331.22 n +-==??解后电 n 迁移(12 Pb 2+)=6、150×10-3+1、537×10-3-6、950×10-3=7、358×10-4mol () 242321Pb 7.358102Pb 0.4791 1.53710(Pb )2n t n +-+-+?==?移解()=迁电

物理化学上册习题答案

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3 ,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(÷)=小时 1-3 0℃、的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为。充以4℃水之后,总质量为。若改用充以25℃、的某碳氢化合物气体,则总质量为。试估算该气体的摩尔质量。 解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρ n=m/M=pV/RT mol g pV RTm M ?=?-??== -31.3010 13330) 0000.250163.25(15.298314.84 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其

物理化学上册的答案_第五版上册

气体pVT 性质 1. 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每 小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 每小时90kg 的流量折合p 摩尔数为 133153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33714.015 .273314.81016101325444--?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,总质量为125.0000g 。若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。试估算该气体的摩尔质量。 解:先求容器的容积33)(0000.1001 0000.100000.250000.1252cm cm V l O H ==-=ρ n=m/M=pV/RT 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。

解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ??? ? ??+=???? ??+=+=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。试作ρ/p —p 图,用外推法求氯甲烷的相对分子质量。 解:将数据处理如下: P/kPa 101.325 67.550 50.663 33.775 25.331 (ρ/p)/ (g ·dm -3·kPa ) 0.02277 0.02260 0.02250 0.02242 0.02237 作(ρ/p)对p 图 当p →0时,(ρ/p)=0.02225,则氯甲烷的相对分子质量为 1-7 今有20℃的乙烷-丁烷混合气体,充入一抽真空的200 cm 3容器中,直至压力达101.325kPa ,测得容器中混合气体的质量为0.3879g 。试求该混合气体中两种组分的摩尔分数及分压力。 解:设A 为乙烷,B 为丁烷。 B A B B A A y y mol g M y M y n m M 123.580694.30 867.46008315 .03897.01+=?==+==- (1) 1=+B A y y (2) 联立方程(1)与(2)求解得401.0,599.0==B B y y

物理化学课后习题答案

四.概念题参考答案 1.在温度、容积恒定的容器中,含有A 和B 两种理想气体,这时A 的分压 和分体积分别是A p 和A V 。若在容器中再加入一定量的理想气体C ,问A p 和A V 的 变化为 ( ) (A) A p 和A V 都变大 (B) A p 和A V 都变小 (C) A p 不变,A V 变小 (D) A p 变小,A V 不变 答:(C)。这种情况符合Dalton 分压定律,而不符合Amagat 分体积定律。 2.在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的 物质的量、分压和分体积分别为A A A ,,n p V 和B B B ,,n p V ,容器中的总压为p 。试 判断下列公式中哪个是正确的 ( ) (A) A A p V n RT = (B) B A B ()pV n n RT =+ (C) A A A p V n RT = (D) B B B p V n RT = 答:(A)。题目所给的等温、等容的条件是Dalton 分压定律的适用条件,所 以只有(A)的计算式是正确的。其余的,,,n p V T 之间的关系不匹配。 3. 已知氢气的临界温度和临界压力分别为633.3 K , 1.29710 Pa C C T p ==?。 有一氢气钢瓶,在298 K 时瓶内压力为698.010 Pa ?,这时氢气的状态为 ( ) (A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定 答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界 区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力, 都不能使氢气液化。 4.在一个绝热的真空容器中,灌满373 K 和压力为 kPa 的纯水,不留一点 空隙,这时水的饱和蒸汽压 ( ) (A )等于零 (B )大于 kPa (C )小于 kPa (D )等于 kPa 答:(D )。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了, 其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。

物理化学傅献彩上册习题答案

第二章 热力学第一定律 思考题.:1. 一封闭系统,当始终态确定后:(a )当经历一个绝热过程,则功为定值;(b )若经历一个等容过程,则Q 有定值:(c )若经历一个等温过程,则热力学能有定值:(d )若经历一个多方过程,则热和功的和有定值。 解释:始终态确定时,则状态函数的变化值可以确定,非状态函数则不是确定的。但是热力学能U 和焓没有绝对值,只有相对值,比较的主要是变化量。 2. 从同一始态A 出发,经历三种不同途径到达不同的终态: (1)经等温可逆过程从A→B;(2)经绝热可逆过程从A→C;(3)经绝热不可逆过程从A→D。 试问: (a )若使终态的体积相同,D 点应位于BC 虚线的什么位置,为什么? (b )若使终态的压力相同,D 点应位于BC 虚线的什么位置,为什么,参见图 12p p (a) (b) 图 2.16 解释: 从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的 终态体积V 2或相同的终态压力p 2时,绝热可逆过程比绝热不可逆过程作功大,又因为W (绝热)=C V (T 2-T 1),所以T 2(绝热不可逆)大于T 2(绝热可逆),在V 2相同时,p=nRT/V,则p 2(绝热不可逆)大于 p 2(绝热可逆)。在终态p 2相同时,V =nRT/p ,V 2(绝热不可逆)大于 V 2(绝热可逆)。 不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T 2(等温可逆)大于T 2(绝热不可逆);在V 2相同时, p 2(等温可逆)大于 p 2(绝热不可逆)。在p 2相同时,V 2(等温可逆)大于 V 2(绝热不可逆)。 综上所述,从同一始态出发经三种不同过程, 当V 2相同时,D 点在B 、C 之间,p 2(等温可逆)>p 2(绝热不可逆)> p 2(绝热可逆)当p 2相同时,D 点在B 、C 之间,V 2(等温可逆)> V 2(绝热不可逆)>V 2(绝热可逆)。 总结可知:主要切入点在温度T 上,绝热不可逆做功最小。

物理化学第五版课后习题答案

第十章界面现象 10-1 请回答下列问题: (1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生? (2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象? (3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么? (5) 在一定温度、压力下,为什么物理吸附都是放热过程? 答:(1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。 (2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”,根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。 (3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。 (4) 最本质区别是分子之间的作用力不同。物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。 (5) 由于物理吸附过程是自发进行的,所以ΔG<0,而ΔS<0,由ΔG=ΔH-TΔS,得 ΔH<0,即反应为放热反应。

10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面张力为0.4865 N ·m -1。 解: 3143r π=N×3243r π N =3 132 r r ΔG =2 1 A A dA γ?= (A 2-A 1)=4·( N 2 2 r -21 r )=4 ·(3 12 r r -21r ) =4× ×(339 (110)110 --??-10-6) =5.9062 J 10-3 计算时373.15K 时,下列情况下弯曲液面承受的附加压力。已知时水的表面张力为58.91×10-3 N ·m -1 (1) 水中存在的半径为0.1μm 的小气泡;kPa (2) 空气中存在的半径为0.1μm 的小液滴; (3) 空气中存在的半径为0.1μm 的小气泡; 解:(1) Δp =2r γ=36 258.91100.110--???=1.178×103 kPa (2) Δp =2r γ =36 258.91100.110--???=1.178×103 kPa (3) Δp =4r γ=36 458.91100.110--???=2.356×103 kPa 10-4 在293.15K 时,将直径为0.1nm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能防止液面上升?若不加压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N ·m -1,密度为789.4 kg ·m -3,重力加速度为9.8 m ·s -2。设乙醇能很好地润湿玻璃。

关于物理化学课后习题答案

关于物理化学课后习题 答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 如图所示,一带隔板的容器中,两侧分别有同温、不同压的H2与N2,P(H2)=20kpa,P(N2)=10kpa,二者均可视为理想气体。 H2 3dm3 P(H2) T N2 1dm3 P(N2) T (1) 两种气体混合后的压力; (2)计算混合气体中H2和N2的分压力; (3)计算混合气体中H2和N2的分体积。 第二章 1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水,求过程的功。假 设:相对水蒸气的体积,液态水的体积可以忽略不计。 1mol某理想气体与27℃,的始态下,先受某恒定外压恒温压缩至平衡态, 在恒容升温至℃,。求过程的W,Q, ΔU, ΔH。已知气体的体积Cv,m=*mol-1 *K-1。 容积为 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 C,4 mol的Ar(g)及150 C,2 mol的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度

t及过程的。已知:Ar(g)和Cu(s)的摩尔定压热容分别为 及,且假设均不随温度而变。 解:图示如下 假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计 则该过程可看作恒容过程,因此 假设气体可看作理想气体,,则 冰(H2O,S)在100kpa下的熔点为0℃,此条件下的摩尔熔化焓 ΔfusHm=*mol-1 *K-1。已知在-10~0℃范围内过冷水(H2O,l)和冰的摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm(H2O,S)=*mol-1 *K-1。求在常压及-10℃下过冷水结冰的摩尔凝固焓。 O, l)在100 C的摩尔蒸发焓。水和水蒸气已知水(H 2 在25~100℃间的平均摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm (H2O,g)=*mol-1 *K-1。求在25C时水的摩尔蒸发焓。 应用附录中有关物资的热化学数据,计算 25 C时反应 的标准摩尔反应焓,要求:(1)应用25 C的标准摩尔生成焓数据;

物理化学(天津大学第四版)上册答案完整版

一章气体的pVT关系 1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时? 解:假设气柜内所贮存的气体可全部送往使用车间。 1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度? 解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT =101.32516/8.314273.15(kg/m3) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。试估算该气体的摩尔质量。水的密度1g·cm3计算。 解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3 将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w M w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6) M w =30.51(g/mol)

1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。试作p p -ρ 图,用外推法求氯甲烷的相对 分子质量。

物理化学第五版下册习题答案

第七章 电化学 7.1 用铂电极电解CuCl 2溶液。通过的电流为20A ,经过15min 后,问:(1)在阴极上能析出多少质量的Cu?(2)在的27℃,100kPa 下阳极上能析出多少体积的的Cl 2(g )? 解:电极反应为:阴极:Cu 2+ + 2e - → Cu 阳极: 2Cl - -2e - → Cl 2(g ) 则:z= 2 根据:Q = nzF =It ()22015 Cu 9.32610mol 296500 It n zF -?= ==?? 因此:m (Cu )=n (Cu )× M (Cu )= 9.326×10-2×63.546 =5.927g 又因为:n (Cu )= n (Cl 2) pV (Cl 2)= n (Cl 2)RT 因此:3 223 Cl 0.093268.314300Cl 2.326dm 10010 n RT V p ??===?()() 7.2 用Pb (s )电极电解PbNO 3溶液。已知溶液浓度为1g 水中含有PbNO 3 1.66×10-2g 。通电一定时间后,测得与电解池串联的银库仑计中有0.1658g 的银沉积。阳极区的溶液质量为62.50g ,其中含有PbNO 31.151g ,计算Pb 2+的迁移数。 解法1:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阳极区溶液中Pb 2+的总量的改变如下: n 电解后(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 迁移(1 2Pb 2+) 则:n 迁移(12Pb 2+)= n 电解前(12Pb 2+)+ n 电解(12Pb 2+)- n 电解后(1 2 Pb 2+) n 电解(12 Pb 2+)= n 电解(Ag ) = ()()3Ag 0.1658 1.53710mol Ag 107.9 m M -==? 2 23162.501.1511.6610(Pb ) 6.15010mol 1 2331.22 n -+--??==??解前()电 2311.151(Pb ) 6.95010mol 1 2331.22 n +-==??解后电 n 迁移(1 2 Pb 2+)=6.150×10-3+1.537×10-3-6.950×10-3=7.358×10-4mol () 242321Pb 7.358102Pb 0.4791 1.53710 (Pb )2 n t n + -+ -+?==?移解()=迁电

物理化学上册习题

第二章热力学第一定律 1.热力学第一定律ΔU=Q+W 只适用于 (A) 单纯状态变化 (B) 相变化 (C) 化学变化 (D) 封闭物系的任何变化 答案:D 2.关于热和功, 下面的说法中, 不正确的是 (A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上 (B) 只有在封闭系统发生的过程中, 功和热才有明确的意义 (C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量 (D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消 答案:B 3.关于焓的性质, 下列说法中正确的是 (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 答案:D。因焓是状态函数。 4.涉及焓的下列说法中正确的是 (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0 则ΔH<ΔU。 5.下列哪个封闭体系的内能和焓仅是温度的函数 (A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体 答案:D 6.与物质的生成热有关的下列表述中不正确的是 (A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A。按规定,标准态下最稳定单质的生成热为零。 7.dU=CvdT 及dUm=Cv,mdT 适用的条件完整地说应当是 (A) 等容过程 (B)无化学反应和相变的等容过程 (C) 组成不变的均相系统的等容过程 (D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能 只与温度有关的非等容过程 答案:D 8.下列过程中, 系统内能变化不为零的是 (A) 不可逆循环过程 (B) 可逆循环过程 (C) 两种理想气体的混合过程 (D) 纯液体的真空蒸发过程 答案:D。因液体分子与气体分子之间的相互作用力是不同的故内能不同。另外,向真 空蒸发是不做功的,W=0,故由热力学第一定律ΔU=Q+W 得ΔU=Q,蒸发过程需吸热Q>0,

物理化学第五版课后习题答案

第七章 电化学 7-1.用铂电极电解CuCl 2溶液。通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu ? (2) 在阳阴极上能析出多少体积的27℃, 100 kPa 下的Cl 2(g )? 解:(1) m Cu = 201560635462.F ???=5.527 g n Cu =201560 2F ??=0.09328 mol (2) 2Cl n =2015602F ??=0.09328 mol 2Cl V =00932830015 100 .R .??=2.328 dm 3 7-2.用Pb (s )电极电解Pb (NO 3) 2溶液,已知溶液浓度为1g 水中含有Pb (NO 3) 21.66×10-2g 。通电一段时间,测得与电解池串联的银库仑计中有0.1658g 的银沉积。阳极区溶液质量为62.50g ,其中含有Pb (NO 3) 21.151g ,计算Pb 2+的迁移数。 解: M [Pb (NO 3) 2]=331.2098 考虑Pb 2+:n 迁=n 前-n 后+n e =262501151166103312098(..)..--??-11513312098..+01658 21078682 ..? =3.0748×10-3-3.4751×10-3+7.6853×10-4 =3.6823×10-4 mol t +(Pb 2+ )=4 4 36823107685310..--??=0.4791 考虑3NO -: n 迁=n 后-n 前 =1151 3312098 ..-262501151166103312098(..)..--??=4.0030×10-3 mol t -(3 NO -)=4 4 40030107658310..--??=0.5209 7-3.用银电极电解AgNO 3溶液。通电一段时间后,阴极上有0.078 g 的Ag 析出,阳极区溶液溶液质量为23.376g ,其中含AgNO 3 0.236 g 。已知通电前溶液浓度为1kg 水中溶有7.39g 的AgNO 3。求Ag +和3NO -的迁移数。 解: 考虑Ag +: n 迁=n 前-n 后+n e =3233760236739101698731(..)..--??-023********..+00781078682 .. =1.007×10- 3-1.3893×10- 3+7.231×10- 4

物理化学课后(下册)部分习题答案

第十一章化学动力学 1. 反应为一级气相反应,320 oC时。问在320 oC加热90 min的分解分数为若干? 解:根据一级反应速率方程的积分式 答:的分解分数为11.2% 2. 某一级反应的半衰期为10 min。求1h后剩余A的分数。 解:同上题, 答:还剩余A 1.56%。 3.某一级反应,反应进行10 min后,反应物反应掉30%。问反应掉50%需多少时间? 解:根据一级反应速率方程的积分式 答:反应掉50%需时19.4 min。 4. 25 oC时,酸催化蔗糖转化反应 的动力学数据如下(蔗糖的初始浓度c0为1.0023 mol·dm-3,时刻t的浓度为c) 0 30 60 90 130 180 0 0.1001 0.1946 0.2770 0.3726 0.4676 解:数据标为 0 30 60 90 130 180 1.0023 0.9022 0.8077 0.7253 0.6297 0.5347 0 -0.1052 -0.2159 -0.3235 -0.4648 -0.6283

拟合公式 蔗糖转化95%需时 5. N -氯代乙酰苯胺异构化为乙酰对氯苯胺 为一级反应。反应进程由加KI溶液,并用标准硫代硫酸钠溶液滴定游离碘来测定。KI只与 A反应。数据如下: 0 1 2 3 4 6 8 49.3 35.6 25.75 18.5 14.0 7.3 4.6 解:反应方程如下 根据反应式,N -氯代乙酰苯胺的物质的量应为所消耗硫代硫酸钠的物质的量的二分之一, 0 1 2 3 4 6 8

4.930 3.560 2.575 1.850 1.400 0.730 0.460 0 -0.3256 -0.6495 -0.9802 -1.2589 -1.9100 -2.3719 。 6.对于一级反应,使证明转化率达到87.5%所需时间为转化率达到50%所需时间的3倍。对 于二级反应又应为多少? 解:转化率定义为,对于一级反应, 对于二级反应, 7.偶氮甲烷分解反应 为一级反应。287 oC时,一密闭容器中初始压力为21.332 kPa,1000 s后总压为 22.732 kPa,求。 解:设在t时刻的分压为p, 1000 s后,对密闭容器中的 气相反应,可以用分压表示组成:

物理化学第五版课后习题答案

第十章 界面现象 10-1 请回答下列问题: (1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生? (2) 在一个封闭的钟罩,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象? (3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么? (5) 在一定温度、压力下,为什么物理吸附都是放热过程? 答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。 (2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。 (3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。 (4) 最本质区别是分子之间的作用力不同。物理吸附是固体表面分子与气体分子间的作用力为德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。 (5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。 10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面力为0.4865 N ·m -1。 解: 3143r π=N ×3243r π N =3132 r r ΔG =2 1 A A dA γ? =γ(A 2-A 1)=4πγ·( N 22 r -21 r )=4πγ·(3 12 r r -21r )

物理化学第三章课后答案完整版

第三章热力学第二定律 3.1 卡诺热机在的高温热源和的低温热源间工作。求 (1)热机效率; (2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热 。 解:卡诺热机的效率为 根据定义 3.2 卡诺热机在的高温热源和的低温热源间工作,求: (1)热机效率; (2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出 (2) 3.3 卡诺热机在的高温热源和的低温热源间工作,求 (1)热机效率; (2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。 解:(1)

(2) 3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺 热机得到的功r W 等于不可逆热机作出的功-W 。假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修 斯说法。 证: (反证法) 设 r ir ηη> 不可逆热机从高温热源吸热,向低温热源 放热 ,对环境作功 则 逆向卡诺热机从环境得功 从低温热源 吸热 向高温热源 放热 则 若使逆向卡诺热机向高温热源放出的热 不可逆热机从高温热源吸收的热 相等,即 总的结果是:得自单一低温热源的热 ,变成了环境作功 ,违背了热 力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给 低温热源,求此过程。 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程 3.6 不同的热机中作于的高温热源及的低温热源之间。求下列三种 情况下,当热机从高温热源吸热时,两热源的总熵变。 (1)可逆热机效率。 (2)不可逆热机效率。 (3)不可逆热机效率。 解:设热机向低温热源放热,根据热机效率的定义 因此,上面三种过程的总熵变分别为。 3.7 已知水的比定压热容。今有1 kg,10℃的水经下列三种不同过程加 热成100 ℃的水,求过程的。 (1)系统与100℃的热源接触。 (2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。 (3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。 解:熵为状态函数,在三种情况下系统的熵变相同 在过程中系统所得到的热为热源所放出的热,因此

物理化学下册习题测验答案(全部)

第七章化学反应动力学 1.以氨的分解反应2NH3==== N2+3H2为例,导出反应进度的增加速率与 ,,之间的关系,并说明何者用于反应速率时与选择哪种物质为准无关。 解: ∴,, 2.甲醇的合成反应如下: CO+2H2 ===== CH3OH 已知,求,各为多少? (答案:2.44,4.88mol·dm-3·h-1) 解:, 3.理想气体反应2N2O5→ 4NO2+O2,在298.15 K的速率常数k是1.73×10-5s-1,速率方程为。(1)计算在298.15K、、12.0 dm3的容 器中,此反应的和即各为多少?(2)计算在(1)的反应条件下,1s内被分解的N2O5分子数目。(答案:(1)7.1×10-8,-1.14×10-7md·dm-3·s-1 (2)1.01×1018) 解:(1)mol·dm-3

mol·dm-3·s-1 ∴mol·dm-3·s-1 (2)1.4×10-7×12.0×6.022×1023=1.01×1018个分子 4.已知每克陨石中含238U 6.3×10-8g,He为20.77×10st1:chmetcnv UnitName="cm" SourceValue="6" HasSpace="False" Negative="True" NumberType="1" TCSC="0">-6cm3(标准状态下),238U的衰变为一级反应:238U → 206Pb+84He由 实验测得238U的半衰期为=4.51×109 y,试求该陨石的年龄。(答案:2.36×109年) 解:每克陨石中含He: mol 最开始每克陨石中含238U的量: mol 现在每克陨石中含238U的量: mol 衰变速率常数: ∴ 5.303.01 K时甲酸甲酯在85%的碱性水溶液中水解,其速率常数为4.53 mol-1·L·s-1。 (1) 若酯和碱的初始浓度均为1×10-3mol·L-1,试求半衰期。 (2 )若两种浓度,一种减半,另一种加倍,试求量少者消耗一半所需的时间为多少。 (答案:220.8,82.36s) 解:(1) 甲酸甲酯的水解反应为二级反应,且当酯和碱的初始浓度相等时,其速率方程可化为纯二级反应速率方程形式:

2014物理化学复习题(上)

第二章 热力学第一定律 一、单选题 1.一定量的理想气体,在绝热条件下,由始态反抗恒外压至终态,结果体系对外作了功。对体系,下列表示不正确的是(C ) A.U ?<0 B.H ?<0 C.W >0 D.p ?=0 2.如图,将CuSO 4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是:(A ) (A)绝热箱中所有物质 ; (B)两个铜电极 ; (C)蓄电池和铜电极 ; (D) CuSO 4水溶液 。 3.x 为状态函数,下列表述中不正确的是(D ) (A)dx 为全微分 ; (B) 当状态确定,x 的值确定 ; (C)?x = ∫dx 的积分与路经无关,只与始终态有关; (D) 当体系状态变化, x 值一定变化 。 4.1mol 理想气体在恒容情况下,由T 1、P 1的状态变到T 2、P 2的状态,下列表达式不正确的是(A ) A.)T T (C H 12m ,p -=? B.Q H =? C.)T T (C Q 12m ,V -= D.)T T (R U H 12-==?? 5.关于热力学可逆过程,下列表述正确的是(A ) A.可逆过程中体系作最大功; B.可逆过程发生后,体系和环境一定同时复原; C.可逆过程中不一定无其它功;D 一般化学反应都是热力学可逆过程。 6.对标准态的理解下述正确的是(D ) A .标准态就是273.15K 、101.325kPa 下的状态; B .标准态就是不能实现的假想状态; C .标准态就是活度等于1的状态; D .标准态就是人为规定的某些特定状态。 7.1mol 理想气体在恒容情况下,由T 1、P 1的状态变到T 2、P 2的状态,下列表达式不正确的是(A ) A.)T T (C H 12m ,p -=? B.Q H =? C.)T T (C Q 12m ,V -= D.)T T (R U H 12-==?? 8..对封闭体系,下列公式的适用范围,正确的是(D ) A.dT nC dU m ,V =只适用理想气体的等容过程 s B.dT nC dH m ,p =适用气体的任何变温过程 C.V Q U =?适用作其它功的等容过程 D.p Q H =?适用有相变或化学变化而无其它功的等压过程

物理化学课后答案

第一章 气体的pVT 关系 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3 ,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时? 解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为 mol RT pV n 623.1461815 .300314.8300 106.1213=???== 每小时90kg 的流量折合p 摩尔数为 13 3153.144145 .621090109032-?=?=?=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时 1-3 0℃、101.325kPa 的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。 解:33 714.015 .273314.81016101325444 --?=???=?=?=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。充以4℃水之后,总质量为125.0000g 。若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。试估算该气体的摩尔质量。 解:先求容器的容积33 ) (0000.1001 0000.100000 .250000.1252 cm cm V l O H == -= ρ n=m/M=pV/RT mol g pV RTm M ?=?-??== -31.3010 13330) 0000.250163.25(15.298314.84 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。 解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ??? ? ??+=???? ??+ =+=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1

相关主题
文本预览
相关文档 最新文档