当前位置:文档之家› 异质结建模

异质结建模

异质结建模
异质结建模

异质结建模

最近,有许多朋友询问我如何进行异质结建模的问题,在下不才,学习了一点这方面的知识,对于异质结,我的理解就是与树木嫁接一样,只有截面差不多大的树木才能嫁接存活,在此总结了一些异质结建模步骤分享给大家。

一.MoS2 与ZnO

首先,导入ZnO(或者也可以根据晶胞参数进行建立),建立MoS2(P63 a=b=3.17 c=12.3 S1 0.333 0.667 0.8789 S2 0.333 0.667 0.6211 Mo 0.333 0.667 0.25)如图所示:

相应的参数信息:

ZnO:

MoS2:

然后你会发现它们都是六方晶系,a,b的值又很相近,这个时候我们想到可以做关于001方向的异质结,那么接下来我们来建立异质结。这个时候有人会问做多大的异质结可以晶格匹配,那么我告诉你,1×1,2×2,3×3……都可以,不信我们来看看。

二.首先,分别做与ZnO 与MoS2 的001切面

点击Build,surfaces,Cleave Surface,

这里的top指的是切面的位置,调节这个可以使裸露在表面的原子不同,Thichness 指的是厚度,根据自己的需要改变值,自己可以试着玩下。

点击Crystals,建立真空层,真空层一般选用15埃。

MoS2删除一层

接下来建立异质结,一种是将框子摆正,选择一层复制,粘贴到另外一个框子里面,然

后调节位置,,具体细节很简单,大家可以试试。另外一种是通过软件建立选项建立,Build,Build Layers,建立异质结界面,

强调下选择下面这个,然后建立真空层(Build,15埃真空层,与前面操作一样。

这里的距离可以调节,一般的范德华力作用范围在3埃左右。右边是用同样的方法做的2×2的异质结,主要是最开始需要分别做2×2的晶胞,后面操作一样。

二.MoS2与石墨烯

导入石墨烯,建立MoS2。

在这里我们发现它们的晶格常数不一样,那么为了晶格匹配,我们需要在摸个方向进行拓展,做超胞。经过计算,我们做4×4的石墨烯超胞,3×3的MoS2超胞,顺便说一下,不止这一种,大家可以经过计算得出不同的配比。

后面的方法一样,这里直接得到结果如下:

三.Ni3S4(311)切面与石墨烯

下面接力一个311切面的异质结,这个与前面的不同,我们来看下吧。首先根据Ni3S4晶体数据,建立结构,同样导入石墨烯。不过这个时候我们导入矩形的石墨烯。

做Ni3S4的311切面。

这时候你会发现这个是斜的,没关系,我们进行旋转,,点开黑三角,里面有各种角度旋转,旋转的时候需要把对象全选,点第四个,得到如图所示

切面的时候我们改变U,V的值,如图所示,top 为1,Thickness根据自己的需要改变,这里我选择1,得到如下图形。

这时候还是斜的,我们再旋转,还是黑三角,得到不同的视图。

这时我们考虑晶格匹配,对比矩形石墨烯晶格常数,我们可以确定石墨烯为5×9超胞

上面石墨烯还是旋转得到,还是黑三角选项,这时候我们切001切面,Thickness为2,加真空层,删掉一层,将UV的值改过来。

四.黑磷与石墨烯

这个我就只发主要步骤,大家可以练习下。

下面是部分异质结文献链接,需要的可以下载看看链接:https://www.doczj.com/doc/5a10092240.html,/s/1i5OAuPn 密码:ibym

异质结发展现状及原理

异质结发展现状及原理 pn结是组成集成电路的主要细胞。50年代pn结晶体管的发明和其后的发展奠定了这一划时代的技术革命的基础。pn结是在一块半导体单晶中用掺杂的办法做成两个导电类型不同的部分。一般pn结的两边是用同一种材料做成的(例如锗、硅及砷化镓等),所以称之为“同质结”。如果把两种不同的半导体材料做成一块单晶,就称之为“异质结“。结两边的导电类型由掺杂来控制,掺杂类型相同的为“同型异质结”。掺杂类型不同的称为“异型异质结”。另外,异质结又可分为突变型异质结和缓变型异质结,当前人们研究较多的是突变型异质结。 1 异质结器件的发展过程 pn结是组成集成电路的主要细胞,50年代pn结晶体管的发明及其后的发展奠定了现代电子技术和信息革命的基础。 1947年12月,肖克莱、巴丁和布拉顿三人发明点接触晶体管。1956年三人因为发明晶体管对科学所做的杰出贡献,共同获得了科学技术界的最高荣誉——诺贝尔物理学奖。 1949年肖克莱提出pn结理论,以此研究pn结的物理性质和晶体管的放大作用,这就是著名的晶体管放大效应。由于技术条件的限制,当时未能制成pn结型晶体管,直到1950年才试制出第一个pn结型晶体管。这种晶体管成功地克服了点接触型晶体管不稳定、噪声大、信号放大倍数小的缺点。 1957年,克罗默指出有导电类型相反的两种半导体材料制成异质结,比同质结具有更高的注入效率。 1962年,Anderson提出了异质结的理论模型,他理想的假定两种半导体材料具有相同的晶体结构,晶格常数和热膨胀系数,基本说明了电流输运过程。 1968年美国的贝尔实验室和联的约飞研究所都宣布做成了双异质结激光器。 1968年美国的贝尔实验室和RCA公司以及联的约飞研究所都宣布做成了GaAs—AlxGal—。As双异质结激光器l;人5).他们选择了晶格失配很小的多元合金区溶体做异质结对. 在70年代里,异质结的生长工艺技术取得了十分巨大的进展.液相夕随(LPE)、气相外延(VPE)、金属有机化学气相沉积(MO—CVD)和分子束外延(MBE)等先进的材料生长方法相继出现,因而使异质结的生长日趋完善。分子束外延不

(完整版)设计院BIM建模标准

目录 第一章建模精度标准及相关规定 (2) 第一节建模精度 (2) 1. 建筑专业 (2) 2. 结构专业 (2) 3. 给排专业 (3) 4. 暖通专业 (3) 5. 电气专业 (4) 第二节建模规定 (4) 1. 单位和坐标 (4) 2. 模型依据。 (4) 3. 模型拆分规定 (4) 4. 模型色彩规定 (5) 5. BIM 建模管控要点 (6) 6. 管线综合管控要点 (6) 第三节BIM 软件规定 (6) 1. 建模软件 (6) 2. 其他BIM软件要求 (6) 第二章模型族类型命名 (6) 第一节结构模型 (7) 1. 族的分类 (7) 2. 剪力墙的命名 (7) 3. 梁(除地梁)的命名 (7) 4. 柱的命名 (7) 5. 板的命名 (7) 6. 楼梯的命名 (8) 7. 基础承台的命名 (8) 8. 地梁的命名 (8) 9. 补充说明 (8) 第二节建筑模型 (8) 1. 族的分类 (8) 2. 墙的命名 (9) 3. 柱的命名 (9) 4. 天花板的命名 (9) 5. 门窗的命名 (9) 第三节安装模型 (10)

第一章建模精度标准及相关规定 第一节建模精度 1. 建筑专业 2. 结构专业

3. 给排专业 4. 暖通专业

5. 电气专业 第二节建模规定 1. 单位和坐标 1.1. 项目长度单位为毫米,标高的单位为米。 1.2. 使用相对标高,土0.000即为坐标原点Z轴坐标点;建筑结构及机电使用自 己相应的相对标高。 1.3. 为所有BIM数据定义通用坐标系。建筑、结构和机电统一采用一个轴网文 件,保证模型整合时能够对齐,对正。 2. 模型依据。 1.1. 以建设单位或设计单位提供的通过审查的有效图纸为数据来源进行建模。1. 2. 根据国家规范和标准图集为数据进行建模。 1.3. 根据设计变更为数据来进行模型更新。 3. 模型拆分规定 3.1建筑专业 3.1.1. 按建筑分区 3.1.2. 按子项 3.1.3. 按施工缝 3.1. 4. 按楼层 3.1.5. 按建筑构件,如外墙、楼梯、楼板等。 3.2结构专业 3.2.1. 按建筑分区 3.2.2. 按子项 3.2.3. 按施工缝

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

结构建模

结构建模 程序组成 结构建模分为四部分程序: 1.Beams & Columns 2.Panels & Plates 3.ASL Modeller(Access,Stairs and Ladders) 4.Walls & Floors 型钢及型钢等级 PDMS内置了国外很多国家的型钢标准库,称为型钢等级Profile Specification。

型钢的连接 两个型钢的连接会产生一个 SJOI (Secondary joint),而SJOI从属于SNOD (Secondary Nodes)。 练习一:生成项目管理层 1.Creat>Site,命名为STABILIZER。Position>Explicitly修改SITE的标高为UP 100000mm。 2.Creat>Zone,生成以下四个层次,注意它们是同一层次。 ZONE /EQUIP.ZONE ZONE /PIPE.ZONE ZONE /STEEL.ZONE ZONE /CIVIL.ZONE 结构模型的层次及层次设置 练习中的用到的层次设置: ZONE STEEL.ZONE EQUIPRACK 设备框架 STRU FRMW EQUIPRACK/MAIN 主框架 SBFR EQUIPRACK/MAIN/COLUMNS SBFR EQUIPRACK/MAIN/BEAMS SBFR EQUIPRACK/ACCESS/BEAMS 挑梁

STRU PIPEWORK 管廊 FRMW PIPEWORK/MAIN SBFR PIPEWORK/MAIN/COLUMNS SBFR PIPEWORK/MAIN/BEAMS FRMW BRACING-NORTH 斜撑 SBFR BRACING-N FRMW BRACING-SOUTH SBFR BRACING-S ZONE EQUIPRACK/ACCESS 设备框架附件 STRU EQRACK/7M-STAIR 上层斜梯 STRU EQRACK/5M-STAIR 下层斜梯 STRU EQRACK/7M-FLOOR 上层平台 STRU EQRACK/5M-FLOOR 下层平台 练习二:生成设备框架 框架的数据和型钢的大小请参考图集。 1.选择梁柱模块Design>Structure>Beams & column。 2.确认在结构分区 STEEL.ZONE下面。 3.Creat>Structure…命名为EQUIPRACK。 4.Creat>Framework…命名为EQUIPRACK/MAIN。是设备主框架。 5.Creat>SubFrame命名为EQUIPRACK/MAIN/COLUMNS。用于存放主框架的柱子。6.Creat>SubFrame命名为EQUIPRACK/MAIN/BEAMS。存放主框架的横梁。 7.Creat>Section>Specials在Secion Creation列表中选择2.Regular Structure。8.在弹出的对话框中首先要确定柱子(COLUMN)的存放位置。在Member List中定位在SBFR EQUIPRACK/MAIN/COLUMN,在对话框的Storage area栏中键入CE,表示在MemberList 中的当前元素。回车后,出现全称。 回车后, 出现全称 9.点取Profile按钮,选择柱子使用的型材。 10.设置框架梁的存放位置及使用的型材。注意:梁的对齐方式为顶对齐TOS。11.框架的西南角起点坐标为W314200 N292990 U0。 12.填入东(EAST)方向的起点坐标和跨距。 13.填入北(NORTH)方向的起点坐标和跨距。 14.填入两层框架的绝对标高。 15.选择Trim sections to plines。修剪两柱的连接处

《环境系统结构与建模》-习题解答

第三部分 大环境系统模型——环境质量基本模型 计算题 1、河流中稳定排放污水,污水排放量)(q 为·s -1,污水中BOD 5=30mg·L -1,河流径流量)(Q m 3·s -1,河水平均流速)(x u 为 m 3·s -1,河水BOD 5的本底浓度为 mg·L -1。已知,BOD 5的衰减速率常数12.0-=d k ,弥散系数1210-?=s m D x 。试求排放点下游10km 处BOD 5的浓度。 解(1)求起始点的5BOD 初始浓度 根据一维稳态初始浓度式,有(P36) 12 ,c q i o Q c c Q q += + q —污水流量 5.50.50.1530 0.15 5.5 ?+?= + 11.2832()mg L -=? ~ (2)求下游10km 处的5BOD 浓度 a.河流推流和弥散共同作用下的i c ,任一维稳态浓度分布公式,有: ,exp 12x i i o x u x c c D ?? ?=? ? ??? ?? (P36) (3) 30.310101.2832exp 1210?? ???=-?? ?????? 11.18793()mg L -=? b.忽略弥散作用,只考虑推流的i c ,exp i i o x kx c c u ?? =- ??? P36(4) ()310.2/8640010101.2832exp 0.31.18791() mg L -?? ??=-?? ??=?

} 由题可见,在稳态条件下,考虑和忽略弥散,两者的计算结果几乎一致,说明存在对流作用时。纵向弥散对污染物的影响可忽略。 2、连续点源排放,源强为50g.s -1,河流水深m .h 51=,流速-130s .m .u x =,横向弥散系数-125s .m D y =,污染衰减速率常数0=k 。试求: ⑴在无边界的情况下,)102000()(m ,m y ,x =处污染物的浓度; ⑵在边界上排放,环境宽度无限大时,)102000()(m ,m y ,x =处的污染物浓度; ⑶在边界上排放,环境宽度m B 100=时,)102000()(m ,m y ,x =处的污染物浓度。 解(1)依无边界条件下二维的连续点源稳态排放公式 若忽略横向流速y u =0,且纵向扩散的影响远小于推(对)流的影响0x D =P38(4)无边界 ( 2(,)exp 4x i y x u y kx c x y D x u ????=--?? ??????? 则:20.310(2000,10)1452000i c ???=-??????? 10.17()mg L -=? (2)边界排放,环境宽度无限大的i c 依公式(5) 2exp 4x i y x u y kx c D x u ????=--?? ??????? 即此种情况下i c 为(1)的2倍 故21(2000,10)2(2000,10)0.34()i i c c mg L -==?()(1) (3)边界上排放,且B=100m 时的i c 公式(6) :

异质结

异质结 百科名片 异质结,两种不同的半导体相接触所形成的界面区域。按照两种材料的导电类型不同,异质结可分为同型异质结(P-p结或N-n结)和异型异质(P-n 或p-N)结,多层异质结称为异质结构。通常形成异质结的条件是:两种半导体有相似的晶体结构、相近的原子间距和热膨胀系数。利用界面合金、外延生长、真空淀积等技术,都可以制造异质结。异质结常具有两种半导体各自的PN结都不能达到的优良的光电特性,使它适宜于制作超高速开关器件、太阳能电池以及半导体激光器等。 目录[隐藏] [编辑本段] 基本特性 所谓半导体异质结构,就是将不同材料的半导体薄膜,依先后 异质结 次序沉积在同一基座上。例如图2所描述的就是利用半导体异质结构所作成的雷射之基本架构。半导体异质结构的基本特性有以下几个方面。 (1) 量子效应:因中间层的能阶较低,电子很容易掉落下来被局限在中间层,而中间层可以只有几十埃(1埃=10-10米)的厚度,因此在如此小的空间内,电子的特性会受到量子效应的影响而改变。例如:能阶量子化、基态能量增加、能态密度改变等,其中能态密度与能阶位置,是决定电子特性很重要的因素。 (2) 迁移率(Mobility)变大:半导体的自由电子主要是由于外加杂质的贡献,因此在一般的半导体材料中,自由电子会受到杂质的碰撞而减低其行动能力。然而在异质结构中,可将杂质加在两边的夹层中,该杂质所贡献的电子会掉到中间层,因其有较低的能量(如图3所示)。因此在空间上,电子与杂质是分开的,所以电子的行动就不会因杂质的碰撞而受到限制,因此其迁移率就可以大大增加,这是高速组件的基本要素。 (3)奇异的二度空间特性:因为电子被局限在中间层内,其沿夹层的方向是不能自由运动的,因此该电子只剩下二个自由度的空间,半导体异质结构因而提供了一个非常好的物理系统可用于研究低维度的物理特性。低维度的电子特性相当不同于三维者,如电子束缚能的增加、电子与电洞复合率变大,量子霍尔效应,分数霍尔效应[1]等。科学家利用低维度的特性,已经已作出各式各样的组件,其中就包含有光纤通讯中的高速光电组件,而量子与分数霍尔效应分别获得诺贝尔物理奖。

建筑专业BIM建模规范 2015-6-4

编写依据: 设计企业BIM实施标准指南 建筑工程设计信息模型应用统一标准 建筑工程设计信息模型交付标准 建筑工程设信息模型分类和编码标准 北京市地方标准《民用建筑信息模型(BIM)设计基础标准》 中色科技股份有限公司建筑工程设计信息模型交付标准 设计院BIM建模标准 中南集团BIM课题组——协调建模工作标准 建筑专业BIM建模规范 一、建模方法 1.建模总则 1.1.模型拆分原则 1.1.1. 按建筑分区 1.2.1. 按楼号 1.3.1. 按施工缝 1.4.1. 按单个楼层或一组楼层 1.5.1. 按建筑构件,如外墙、屋顶、楼梯、楼板 1.2.文件命名规则 1.2.1.在服务器\\192.1.6.77中由管理员建立子项目名称文件夹(依据计划表的子项目名称来建),设计人员在子项目名称文件夹中建立项

目名称,若一个子项中含有多个分子项,可以在“建筑专业中心文件”夹中并列建立另一个分子项文件。 如\\192.1.6.77(服务器)重庆汇程铸锭铣床(子项名称文件夹)建筑专业中心文件锯切机铣床控制室/破碎机隔音罩(另一个分子项)。 1.2.2.原点文件夹与此命名相同。 1.2.3.存到本机上的文件命名规则是在分子项名称后加“本地”两字。 如锯切机铣床控制室(本地) 1.3.模型定位基点设置规则 以项目基点作为纵横轴的左下角交点,其目的便于各专业的链接时自动原点对原点,及碰撞检查的需要,建立轴网后再隐藏项目基点。 1.4.轴网与标高定位基础规则 1.4.1.使用相对标高,±0.000即为坐标原点Z轴坐标点;建 筑、结构、电气和公用专业使用自己相应的相对标高。 1.4.2.建筑专业建立原点文件(包含轴网和标高),上传到服务器。 结构、电气和公用专业复制监视建筑原点文件,步骤如下:第一步:插入——链接REVIT——打开“服务器文件夹中的原点文件”定位选择“自动原点到原点” 第二步:协作——复制/监视——复制——选择链接“ ——再次点击“完成” 第三步:插入——管理链接——卸载原点文件 1.5.工作集划分规则 1.5.1.利用协作——工作集工具,为项目新建工作集,命名为“混

异质结发展概况

异质结发展概况 半导体异质结是由两种禁带宽度不同的半导体材料形成的结。两种材料禁带宽度的不同以及其他特性的不同使异质结具有一系列同质结所没有的特性,在器件设计中将实现某些同质结不能实现的功能。例如,在异质结晶体管中用宽带一侧做发射极将得到很高的注入比,因而可获得较高的放大倍数。 早在二十世纪三十年代初期,前苏联列宁格勒约飞技术物理研究所的学者们就开始了对半导体异质结的探索,到了1951年,由Gubanov首先提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺技术的困难,一直没有实际制成异质结。20世纪60年代初期,pn结晶体管取得了巨大的成功,人们开始关注对异质结的研究,对异质结的能带图、载流子在异质结中的输运过程以及异质结的光电特性等提出了各种理论模型并做了理论计算。但是由于制备工艺的原因,未能制备出非常理想的异质结,所以实验特性和理论特性未能达到一致,实验上也未能制备出功能较好的器件。在20世纪70年代里,异质结的生长工艺技术取得了十分巨大的进展。液相外延(LPE)、气相外延(VPE)、金属有机化学气相淀积(MO-CVD)和分子束外延(MBE)等先进的材料生长方法相继出现,使异质结的发展逐渐趋于完善。分子束外延技术不仅能生长出很完整的异质结界面,而且对异质结的组分、掺杂、各层厚度都能在原子量级的范围内进行精确控制。 工艺技术的进步促进了对异质结进一步深入研究,对异质结的宏观性质,如pn结特性、载流子输运过程、光电特性、能带图、结构缺陷、复合和发光等方面的问题,有了更细致的了解。这对异质结器件的原理和设计都有指导作用。在异质结器件方面,首先在异质结半导体激光器上取得了突破性进展。异质结的禁带宽度之差造成了势垒对注入载流子的限制作用和高注入比特性,都有助于实现粒子数反转分布。两种材料折射率的不同,有助于实现光波导,以减少光在谐振腔以外的损失,因而异质结激光器能在室温下实现连续工作。 1968年江崎和朱兆祥提出了超晶格的思想,自此,对异质结超晶格的研究也逐步深化。目前,已有多种异质结对做成了超晶格结构,并对他们的电学、光学及输运特性进行了广泛的理论和实验研究。近几年,对异质

基于IFC标准的建筑结构模型的自动生成_邓雪原

土木工程学报CHINACIVILENGINEERINGJOURNAL 第40卷第2期2007年2月Vol.40No.2Feb. 2007 基于IFC标准的建筑结构模型的自动生成 邓雪原 张之勇 刘西拉 (上海交通大学,上海200030) 摘要:当前,在各种商业软件盛行的环境下,设计单位最紧迫的问题是要解决本单位各专业之间的信息交互,而在这些信息交互中,建筑与结构专业的信息交互最为急需。针对这一需要,本文介绍了现今国际上建筑信息模型的数据共享与交换的IFC标准,分析了建筑模型与结构模型信息的组成与特点,研究了通用建筑结构有限元模型的表达方法,建立以IFC标准为基础,通过建筑模型自动生成符合多种结构分析与设计软件的结构模型的基本方法。通过实例验证本研究方法的实用性与可行性,结果表明本方法为各种设计软件间信息的共享与交换提供了一种通用解决方案,为企业内部实现建筑设计集成化提供了技术保障。最后,文章讨论了该研究方向中基于IFC标准的建筑模型的结构构件偏心、节点连接、荷载处理等方面的问题和后续研究方向。 关键词:计算机辅助建筑设计;建筑结构模型;集成化建筑设计;有限元模型;数据交换;IFC标准中图分类号:TU201.4 文献标识码:A 文章编号:1000-131X(2007)02-0006-07 AutomaticgenerationofstructuralmodelfromIFC-basedarchitecturalmodel DengXueyuanChangTse?YungPLiuXila (ShanghaiJiaoTongUniversity,Shanghai200030,China) Abstract:Oneofthecommonproblemsinthebuildingdesignindustryisthedirectinformationexchangeanddatasharingwithoutrelyingonmanualinterpretationsamongvariousdisciplinesinbuildingdesign.Oftheseinformationexchangeandsharing,thatbetweenthearchitecturalandstructuralprofessionsisthemostcriticalone.Realizingsuchademand,thispaperintroducedtheIFCstandardforbuildinginformationmodeling,comparedtherepresentationsandfeaturesofarchitecturalandstructuralmodels,andstudiedthegeneralrepresentationtechniqueoffiniteelementmodelofbuildings.AnalgorithmforstructuralmodelconstructionfromtheIFC-basedarchitecturalmodelwasproposedtogetherwithanillustrationexample.TheexampleshowsthattheproposedmethodrepresentsageneralsolutionfortheinformationsharingandexchangebetweenmultipleCAADandstructuraldesignsoftwareapplications.Thetechnicalsupportfortheimplementationofanintegratedbuildingdesignapproachispresented.Anumberofissuesintherelatedarea,suchasrepresentationofmemberoffsets,clearidentificationofconnectedjoints,loadingextractionintheIFC-basedarchitecturalmodel,arediscussedwithsomedetailsfortheextensionofthepresentwork.Keywords:CAAD;structuralmodel;integratedbuildingdesign;finiteelementmodels;dataexchange;IndustryFoundationClasses(IFC)E-mail:dengxy@sjtu.edu.cn 应用计算机辅助建筑设计(CAAD),解决建筑设计过程中的建模、空间表达、数据计算、优化分析、工程制图等,提高工作效率,给建筑业带来了巨大的经济效益。市场上出现了大量的建筑绘图软件(AutoCAD、天正、理正等)、结构分析与设计软件(PKPM、ETABS、SAP2000、STAAD等)、给水排水、暖通空调及工程概预算等软件。由于这些应用软件都 是针对设计过程中的某一阶段或某一专业独立研制的,尽管各应用软件都基于同一个建筑模型,却因为缺乏共同的数据标准,而不能交换与共享数据模型,成为建筑工程集成化设计技术发展的瓶颈。集成化建筑设计系统(IntegratedBuildingDesignSystem,以下简称为IBDS)曾经在20世纪80~90年代是计算机辅助建筑设计领域一个十分活跃的课题。为了克服在结构设计、施工中大量数据交换的低效率和部门之间的分隔,美国斯坦福(Stanford) 大学从1988年开始进 行的CIFE计划是一个突出的代表[1]。他们当时准备投 作者简介:邓雪原,博士,讲师收稿日期:2006-04-03

UML系统建模与分析设计(刁成嘉)课后习题整理

一、选择 1、封装是指把对象的(A)结合在一起,组成一个独立的对象。 A.属性和操作B.信息流C.消息和事件D.数据的集合2、封装是一种(C)技术,目的是使对象的生产者和使用者分离,使对象的定义和实现分开。 A.工程化B.系统维护C.信息隐蔽D.产生对象3、面向对象方法中的(D)机制是子类可以自动地拥有复制父类全部属性和操作。 A.约束B对象映射C.信息隐蔽D.继承 4、使得在多个类中能够定义同一个操作或属性名,并在每一个类中有不同的实现的一种方法(B)。 A.继承B.多态性 C.约束 D.接口 5、UML 的软件以(A)为中心,以系统体系结构为主线,采用循环、迭代、渐增的方式进行开发。 A. 用例 B.对象 C.类 D.程序 6、UML 的(B)模型图由类图、对象图、包图、构件图和配置图组成。 A. 用例 B. 静态 C. 动态 D. 系统 7、UML的(C)模型图由活动图、顺序图、状态图和合作图组成。 A. 用例 B. 静态 C. 动态 D.系统 8、UML的最终产物就是最后提交的可执行的软件系统和(D)。 A.用户手册B.类图C.动态图D.相应的软件文档资料 9、在UML的需求分析建模中,(B)模型图必须与用户反复交流并加以确认。 A. 配置B. 用例C.包D. 动态 10、可行性研究分析包括经济可行性分析、技术可行性分析和(B)。 A.风险可行性分析 B.法律可行性分析 C.资源可行性分析 D.效益可行性分析 11、UML的客户分析模型包括(A)模型、类图、对象图和活动图组成。 A.用例 B.分析 C.属性 D.系统 12、UML客户需求分析使用的CRC卡上“责任”一栏的内容主要描述类的(C)和操作。 A.对象成员 B.关联对象 C.属性 D.私有成员 13、UML客户需求分析产生的系统模型描述了系统的(D) A.状态 B.体系结构 C.静态模型 D.功能要求 14、在UML的需求分析建模中,用例模型必须与(B)反复交流并加以确认。 A.软件生产商 B.用户 C.软件开发人员 D.问题领域专家 15、在UML的需求分析建模中,对用例模型中的用例进行细化说明应使用(A)。 A.活动图 B.状态图 C.配置图 D.构件图 16、活动图中的分劈和同步接合图符是用来描述(A) A.多进程的并发处理行为 B.对象的时序 C.类的关系 D.系统体系结构框架

异质结建模

异质结建模 最近,有许多朋友询问我如何进行异质结建模的问题,在下不才,学习了一点这方面的知识,对于异质结,我的理解就是与树木嫁接一样,只有截面差不多大的树木才能嫁接存活,在此总结了一些异质结建模步骤分享给大家。 一.MoS2 与ZnO 首先,导入ZnO(或者也可以根据晶胞参数进行建立),建立MoS2(P63 a=b=3.17 c=12.3 S1 0.333 0.667 0.8789 S2 0.333 0.667 0.6211 Mo 0.333 0.667 0.25)如图所示: 相应的参数信息: ZnO:

MoS2: 然后你会发现它们都是六方晶系,a,b的值又很相近,这个时候我们想到可以做关于001方向的异质结,那么接下来我们来建立异质结。这个时候有人会问做多大的异质结可以晶格匹配,那么我告诉你,1×1,2×2,3×3……都可以,不信我们来看看。 二.首先,分别做与ZnO 与MoS2 的001切面 点击Build,surfaces,Cleave Surface, 这里的top指的是切面的位置,调节这个可以使裸露在表面的原子不同,Thichness 指的是厚度,根据自己的需要改变值,自己可以试着玩下。 点击Crystals,建立真空层,真空层一般选用15埃。

MoS2删除一层 接下来建立异质结,一种是将框子摆正,选择一层复制,粘贴到另外一个框子里面,然 后调节位置,,具体细节很简单,大家可以试试。另外一种是通过软件建立选项建立,Build,Build Layers,建立异质结界面,

强调下选择下面这个,然后建立真空层(Build,15埃真空层,与前面操作一样。 这里的距离可以调节,一般的范德华力作用范围在3埃左右。右边是用同样的方法做的2×2的异质结,主要是最开始需要分别做2×2的晶胞,后面操作一样。 二.MoS2与石墨烯 导入石墨烯,建立MoS2。

结构建模合理

新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。(1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。具体操作是,首先根据工程实

际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。(3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。2.确定整体结构的合理性整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。(1)周期比是控制结构扭转效应的重要指标。它的目的是使抗侧力的构件的平面布置更有效更合理,使结

半导体异质结

异质结 半导体异质结构一般是由两层以上不同材料所组成,它们各具不同的能带隙。这些材料可以是GaAs 之类的化合物,也可以是Si-Ge之类的半导体合金。按异质结中两种材料导带和价带的对准情况可以把异质结分为Ⅰ型异质结和Ⅱ型异质结两种,两种异质结的能带结构如图1所示。 如图1(a)所示,I型异质结的能带结构是嵌套式对准的,窄带材料的导带底和价带顶都位于宽带材料的禁带中,ΔEc和ΔEv的符号相反,GaAlAs/GaAs和InGaAsP/InP都属于这一种。在Ⅱ型异质结中,ΔEc和ΔEv的符号相同。具体又可以分为两种:一种如图1(b)所示的交错式对准,窄带材料的导带底位于宽带材料的禁带中,窄带材料的价带顶位于宽带材料的价带中。另一种如图1(c)所示窄带材料的导带底和价带顶都位于宽带材料的价带中[14]。 Ⅱ型异质结的基本特性是在交界面附近电子和空穴空间的分隔和在自洽量子阱中的局域化。由于在界面附近波函数的交叠,导致光学矩阵元的减少,从而使辐射寿命加长,激子束缚能减少。由于光强和外加电场会强烈影响Ⅱ型异质结的特性,使得与Ⅰ型异质结相比,Ⅱ型异质结表现出不寻常的载流子的动力学和复合特性,从而影响其电学、光学和光电特性及其器件的参数。 在Ⅰ型异质结中能级的偏差量具有不同的符号,电子和空穴是在界面的同一侧(窄带材料一侧)由受热离化而产生的。这种情况下只有一种载流子被束缚在量子阱中(n-N结构中的电子,p-P结构中的空穴)。Ⅱ型异质结能级的偏差量具有相同的符号,电子和空穴是在界面的不同侧由受热离化而产生的。两种载流子被束缚在自洽的量子阱中,因此在Ⅰ型异质结中载流子复合发生在窄带材料一侧,Ⅱ型异质结中载流子复合主要是借助界面的隧道而不是窄带材料一侧。 不同半导体的能隙宽度可根据使用的要求做适当调整,办法可以是取代半导体元素(例如,用In或者Al代替Ga,用P、Sb或N代替As),也可以通过改变合金的成分。有多种方法可用于形成不同半导体层之间的突变界面,例如分子束外延法(MBE)和金属有机化学沉积法(MOCVD)。运用这些方法在基片上会有一层一层的原子以适当的晶格常数向外生长。异质结构对科学有重大影响,是高频晶体管和光电子器件的关键成分。

软件体系结构论文:一种面向方面软件体系结构模型

软件体系结构论文:一种面向方面软件体系结构模型 摘要: 为了分离软件系统中的核心关注点和横切关注点,通过引入面向方面软件开发的思想设计了一种面向方面软件体系结构模型,并详细分析了该模型的三个基本构成单元,即构件、连接件和方面构件。最后通过一个网上支付实例验证了该模型具有一定的理论意义和实用价值。 关键词: 面向方面软件体系结构;横切关注点;构件;连接件;方面构件 20世纪60年代的软件危机使得人们开始重视软件工程的研究。起初,人们把软件设计的重点放在数据结构和算法的选择上,然而随着软件系统规模越来越大,对总体的系统结构设计和规格说明变得异常重要。随着软件危机程度的加剧,软件体系结构(software architecture)这一概念应运而生。软件体系结构着眼于软件系统的全局组织形式,在较高层次上把握系统各部分之间的内在联系,将软件开发的焦点从成百上千的代码上转移到粒度较大的体系结构元素及其交互的设计上。与传统软件技术相比,软件体系结构理论的提出不仅有利于解决软件系统日益增加的规模和复杂度的问题,有利于构件的重用,也有利于软件生产率的提高。面向方面软件开发(AOSD)认为系统是由核心关注点(corn concern)和

横切关注点(cross-cutting concern)有机地交织在一起而形成的。核心关注点是软件要实现的主要功能和目标,横切关注点是那些与核心关注点之间有横切作用的关注点,如系统日志、事务处理和权限验证等。AOSD通过分离系统的横切关注点和核心关注点,使得系统的设计和维护变得容易很多。 Extremadura大学的Navasa等人[1]在2002年提出了将面向方面软件开发技术引入到软件体系结构的设计中,称之为面向方面软件体系结构(aspect oriented software architecture,AO-SA),这样能够结合两者的优点,但是并没有给出构建面向方面软件体系结构的详细方法。 尽管目前对于面向方面软件体系结构这个概念尚未形成统一的认识,但是一般认为面向方面软件体系结构在传统软件体系结构基础上增加了方面构件(aspect component)这一新的构成单元,通过方面构件来封装系统的横切关注点。目前国内外对于面向方面软件体系模型的研究还相对较少,对它的构成单元模型的研究更少,通常只关注方面构件这一构成单元。方面构件最早是由Lieberherr等人[2]提出的,它是在自适应可插拔构件(adaptive plug and play component,APPC)基础之上通过引入面向方面编程(AOP)思想扩展一个可更改的接口而形成的,但它关于请求接口和服务接口的定义很模糊,未能给出一个清晰的方面构件模型。Pawlak等人

异质结理论与半导体激光器的发展现状与趋势

摘要:本文介绍了有关异质结和半导体激光器的技术及其研究进展,首先简要介绍了异质结器件的历史发展过程,第二部分介绍了半导体激光器发展过程与应用,最终以半导体激光器为例,展望激光器和异质结技术发展方向。 关键词:异质结,激光器 Abstract: The paper is a review of technique and recent progress about heterojunction and LD. Above all the history of development progress of heterojunction were introduced .Secondly it’s about the development and application of LD. Finally take LD for example, prospected the development direction of heterojunction and LD. Key words:heterojunction, laser 引言 半导体的核心是pn结,pn结是在一块半导体中用掺杂的办法做成两个导电类型不同的部分。一般pn结的两边是用同一种材料做成的,也称为“同质结”。如果结两边是用不同的材料制成,就称为“异质结”。异质结相对于同质结来说有许多优良的特性,特别是在半导体激光器方面有的得天独厚的优势。 第一章异质结的发展历程 pn结是组成集成电路的主要细胞,50年代pn结晶体管的发明及其后的发展奠定了现代电子技术和信息革命的基础。然而,随着无线移动通信、GPS、雷达及高速数据处理系统的飞速发展以及全球范围的军事及空间技术走向民用,对器件和电路的性能,如频率特性、噪声特性、封装面积、功耗和成本等提出了更高的要求[1]。在20 世纪60 年代初期,当pn结晶体管刚刚取得巨大成功的时候,人们就开始了对半导体异质结的研究。相对于同质结,异质结器件会有一些独特的功能:比如,在异质结晶体管中用宽带一侧做发射极会得到很高的注入比,因而可以获得较高的放大倍数。还有,如果在异质结中两种材料的过渡是渐变的,则禁带宽度的渐变就相当于存在一个等效的电场,使载流子的渡越时间减小,器件的响应速度增加等等。 但是实验上很难得到非常理想的异质结,由于组成异质结的两种材料晶格常数不同,当他们长成同一块单晶时,晶格的周期性在界面附近发生畸变,晶格畸变形成大量位错和缺陷,除了这种由材料本身固有性质决定的缺陷以外,生长工艺上的不完善还会引进更多的附加缺陷。这些界面上的位错缺陷将成为少子的复合中心。早期生长的异质结中因为界面缺陷太多,无法实现少子注入功能,因而不能做出性能良好的异质结。到了20世纪70年代,随着液相外延(LPE),汽相外延(VPE) ,金属有机化学气相沉积(MO-CVD)和分子束外延(MBE)等先进的材料成长方法相继出现,使异质结的生长日趋完善,有利于异质结物理研究的深入开展,极大地促进了异质结器件和电路的快速发展[4]。自从1969年江崎和朱兆祥提出半导体超晶格的概念以来,“能带工程”愈来愈受到人们的重视,因为通过对不同材料能带的裁剪组合,利用异质结的能带突变和具有纳米尺度低维系统(二维、一维或零维)的量子限制效应,可以制作出性能优异的微波、超高速器件、电路及光电子器件。异质结构材料和器件的研究为大幅度提高器件和电路性能开辟了一条新的道路,并已成为“能带工程”的重要内容[2]。 目前的研究主要集中在①电子器件:制备开关器件、整流器件、场效应晶体管、异质结双极晶体管(HBT)和HEMT(High electron mobility transistor)②制备新型的发光设备取代传统光源如白光LED、制备异质结发光二极管③制备异质结激光器④制备太阳能电池⑤超晶格和多量子阱器件[3]。尤其是量子阱超晶格器件由于它优异的性能成为了目前半导体器件的研究热点。

结构方程模型+验证性因素分析过程指标

有的说每个观察变量最好有10 个样本,有的说200 到500 之间比较好。在SEM中,与一般的研究方法相同,样本量越大越好,但是在SEM中,绝对指标卡方容易受到样本量的影响,样本越大,越容易达到显著水平。 在结构方程建模中,在观察变量到潜在变量的路径系数中,必须规定一条为 1 做标准求的其他路径系数和潜变量的值。潜变量之间就不用规定为 1 了。 内衍变量和观察变量都要有一个误差量e。 指标变量包括观察变量和误差变量 如何让绘图区变宽:可以在view 里面的 interface properties 中点击 landscape 在进入模型检验之前,首先检验是否出现违反估计: 负的误差方差存在 标准化系数超过或太接近1(通常以0.95 ) 验证性因素分析 信度:建构信度 等于标准化因素负荷量和的平方/ (标准化因素负荷量和的平方+(1-标准化因素负荷量的平 方 )的和) 收敛效度:平均方差抽取量:是指可以直显示被潜在构念所解释的变异量有多少是来自测量 误差的,平均方差变异量越大,来自于测量误差越少,即因子对于观察数据的变异解释越大, 一般是平均方差抽取量要大于0.5,是一种收敛效度的指标。

等于标准化因素负荷量的平方之和/ 题目数目 验证性因素分析基本模型适配度检验摘要表: 是否没有负的误差变异量e1 e2e3 因素负荷量(潜在变量与观察变量之间的标准化系数)是否介于0.5 到 0.95 之间Variances 是否没有很大的标准误 (路径系数的标准误 ) 整体模型适配度检验摘要表: 绝对适配度指数 卡方值, p 大于 0.05,说明数据本身的协方差矩阵和模型的协方差矩阵是匹配的。 RMR 值小于 0.05, RMSEA小于 0.08(小于 0.05 优良,若是小于0.08 良好) GFI 大于 0.90,适配优度 AGFI 大于 0.90(调整后的适配度) 增值适配度指数 NFI 大于 0.90 RFI 大于 0.90 IFI 大于 0.90 TLI(也称为 NNFI) 大于 0.90 CFI大于 0.90 简约适配度指数: PGFI 大于 0.50 PNFI 大于 0.50 PCFI大于 0.50 CN 大于 200 卡方自由度比小于 2.0,或者小于 3.0 AIC 理论模型值小于独立模型值且二者同时小于饱和模型值 CAIC同 AIC 验证性因素分析的内在质量参数表

相关主题
文本预览
相关文档 最新文档