当前位置:文档之家› 基于OFDM的调制解调技术

基于OFDM的调制解调技术

基于OFDM的调制解调技术
基于OFDM的调制解调技术

湖南工业大学学报Journal of Hunan University of Technology Vol.24 No.3May 2010

第24卷 第3期2010年5月基于OFDM的调制解调技术

刘俊萍

(湖南工业大学电气与信息工程学院,湖南株洲412008)

摘要:介绍了OFDM 调制解调技术的基本原理及算法,基于IP Core-Xilinx Fast Fourier Transform V3.2软件,

设计了OFDM 调制解调系统各模块参数及硬件结构,并利用matlab 仿真验证了系统结构和各算法设计的正确性。

关键词:OFDM 调制解调;FFT ;matlab 仿真

中图分类号:TN915.05 文献标志码:A 文章编号:1673-9833(2010)03-0060-03

OFDM-Based Modulation and Demodulation Techniques

Liu Junping

(College of Electrical and Information Engineering, Hunan University of Technology ,Zhuzhou Hunan 412008,China )

Abstract :The basic principle and algorithms of OFDM modulation and demodulation are introduced. Based on IP Core-Xilinx Fast Fourier Transform V3.2, the module parameters and hardware structure of OFDM modution and demodution system are designed. And the system structure and algorithm design correctness are simulated with matlab.

Keywords :OFDM modulate and demodulate ;fast fourier transform ; matlab simulation

收稿日期:2010-03-19

通信作者:刘俊萍(1980-),女,山西五寨人,湖南工业大学教师,硕士,主要研究方向为电力电子与电子信息,E-mail :42817805@https://www.doczj.com/doc/599910974.html,

OFDM (orthogonal frequency division multiplexing ,即正交频分复用技术)是一种高效的多载波调制技术[1],它能够有效地对抗频率选择性衰落和窄带干扰。其主要思想是在信号传输频域内将给定信道分成许多正交子信道,在每个子信道上使用1个子载波进行调制,且各子载波并行传输[2]。它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成为单一的信号,从而完成信号的传送。

1OFDM调制解调基本原理

OFDM 是一种无线环境下的高速传输技术。无线

信道的频率响应曲线大多是非平坦的,而根据OFDM 技术的特点,尽管总的信道是非平坦的,具有频率选择性,但每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,

因此就可较好地消除信号波形间的干扰。由于在OFDM 系统中各子信道的载波相互正交,它们的频谱是相互重叠的,这样不仅减小了子载波间的相互干扰,同时还提高了频谱利用率。

OFDM 增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM 系统中,只会有一小部分载波受影响。通过合理地挑选子载波位置,可使OFDM 的频谱波形保持平坦,同时保证了各载波之间的正交。OFDM 的接收机实际上是通过FFT (fast fourier transform ,即快速傅里叶变换)实现的一组解调器。它将不同载波搬移至零频,然后在1个码元周期内积分,其它载波信号因其与所积分的信号正交,故不会对信息的提取产生影响。OFDM 的数据传输速率与子载波数量有关。

第3期612OFDM调制解调算法分析

OFDM 每个载波所使用的调制方法可以不同。各

载波可根据信道状况选择不同的调制方式,如BPSK

(二进制相位键控)、DPSK(差分相位键控)、8PSK(8

进制相位键控)、16Q A M(16进制正交振幅控制)、

64QAM(64进制正交振幅控制)等[3-4],以频谱利用率

和误码率之间的最佳平衡为原则。为了提高频谱利用

率,应该使用与信噪比相匹配的调制方式。

设在1个OFDM系统中有N个子信道,每个子信

道采用的子载波为:

,(1)

为第k路子载波振幅,它是一个复数,为第

式中:B

k

k路子信道的复输入数据,受基带码元调制;

f

为第k路子载波频率;

k

为第k路子载波的初始相位。

φ

k

则在此系统中的N路子信号之和可表示为:

,(2)

式(2)还可写成如下复数形式

。(3)

为了使这N路子信道的信号在接收时能够完全分

离,要求它们必须满足正交条件,即要求最小的子载

频间隔为

,所以式(4)可表示为:

,(5)

对式(5)进行速度为

湖南工业大学 学 报622010年

通过matlab 仿真计算得到OFDM 码元信号的实部和虚部,结果见表1。

最后,将调制解调后的输出信号与输入信号进行比较,即

输入信号 :(00011010001111001101101000101111),输出信号 :(00011010001111001101101000101111),发现两者是完全一致的,说明系统结构的设计合理,算法正确。这对OFDM 调制解调系统的设计具有重要的意义。

5结语

利用IFFT/FFT 的灵活性实现OFDM 的调制解调,

不仅可以提高处理速度,并且具有灵活性高,开发费用低、周期短,升级简单等特点。对于实现并行算法与硬件结构的优化配置起到一定的作用。参考文献:

[1]

汪裕民. OFDM 关键技术与应用[M]. 北京:机械工业出版社,2007:1-32.

Wang Yumin. OFDM Key Technologies and Applications [M]. Beijing :China Machine Press ,2007:1-32.

[2]

孙山林. OFDM 原理及技术浅析[J]. 桂林航天工业高等专科学校学报,2007 (3) :1-3.

Sun Shanlin. Analysis of OFDM Principle and Technology [J]. Journal of Guilin College of Aerospace Technology ,2007(3) :1-3.[3]

樊昌信,曹丽娜. 通信原理[M]. 6版. 北京:国防工业出版社,2007.

Fan Changxin ,Cao Lina. Principles of Communications[M].6th ed. Beijing :National Defence Industrial Press ,2007.[4]

杨兴,谢志远. OFDM 中FFT 处理器的设计及FPGA 实现[J]. 电测与仪表,2008,45(7) :37-40.

Yang Xing ,Xie Zhiyuan. Design and FPGA Implementation of FFT Processor for OFDM[J]. Electrical Measurement &Instrumentation ,2008,45(7):37-40.[5]

Proakis John G ,Salehi Masoud ,Bauch Gerhard. 现代通信系统[M]. 刘树棠,译. Matlab 版. 北京:电子工业出版社,2005.

Proakis John G ,Salehi Masoud ,Bauch Gerhard. Modern Communication Systems[M]. Liu Shutang ,Translated.Matlab Edition. Beijing :Publishing House of Electronics Industry ,2005.[6]

蒋青,吕翊. 一种OFDM 调制解调的FPGA 实现[J].信息技术,2006(4) :47-49.

Jiang Qing ,Lv Yi. Implementation of OFDM Modulator/Demodulator Based on FPGA[J]. Information Technology ,

2006(4) :47-49.

[7]

邓薇. MATLAB 函数速查手册[M]. 北京:人民邮电大学出版社,2008.

Deng Wei. Quick Look-Up Handbook of MATLAB Function [M]. Beijing :People ’s University of Posts and Telecom-munications Press ,2008.

(责任编辑:李玉珍)

图2

OFDM调制解调的matlab仿真图

Fig. 2The matlab simulation of OFDM

modulation and demodulation

表1OFDM码元信号的实部和虚部Table 1

The real and imaginary OFDM code

MIMO-OFDM技术概述

MIMO-OFDM技术概述

MIMO-OFDM技术概述 摘要 现代信息社会中,人们对宽带移动通信系统的数据需求量日益增长。为此,未来宽带移动通信系统必须提供更高的传输速率和更优的服务质量。MIMO技术能够利用信号的空时频域特性,可以很好地对抗平坦衰落信道,但对频率选择性信道却无能为力,而OFDM技术可以将频率选择性衰落转化为平坦衰落,MIMO和OFDM两种技术的结合和相互补充,既可以很好地解决未来无线宽带通信系统中信道多径衰落和带宽效率的问题,又能够提高系统容量和传输可靠性,因此采用MIMO 技术的OFDM 系统是现代移动通信的核心技术。本文首先介绍正交频分复用(OFDM)技术和多输入多输出(MIMO)系统的基本原理,简述MIMO-OFDM 技术及其特点,并初步探讨了MIMO-OFDM 系统的关键技术。 关键词:多输入多输出;正交频分复用;MIMO-OFDM;载波;编码 一、引言 正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作是一种复用技术。多载波传输把数据流分解成若干比特流,这样每个子数据将具有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号去调制相应的子载波,这构成了多个低速率符号并行发送的传输系统。OFDM是对多载波调制(Multi Carrier Modulation)的一种改进,它的特点是各子载波相互正交,所以扩频后的频谱可以相互重叠,不但减小了子载波间的相互干扰,还大大提高了频谱利用率,可以有效地抵抗频率选择性衰落。 多输入多输出(MIMO)技术是指利用多发送和多接收天线进行空间分集的技术,是无限移动通信领域智能天线技术的重大突破。在无线通信领域,对MIMO的研究源于对多个天线阵元空间分集的性能研究。从20世纪80年代开始,研究学者发现与合并技术结合的多天线空间分集可进一步改善无线链路性能并增加系统容量,Salzzai研究了单用户MIMO高斯信道,以两径传播信道模型分析了空间分集对信道容量和容量分布的影响。Winters讨论了干扰受限的无线系统中,利用多天线空间分集所能带来的容量增益,并明确地指出了增加分集天线数目可以增加系统容量。多输入多输出系统充分开发空间资源,利用多

OFDM调制技术

OFDM调制技术 (来源:福建金钱猫电子科技有限公司) 随着通信技术的不断成熟和发展,如今的通信传输方式可以说多种多样,变化日新月异,从最初的有线通信到无线通信,再到现在的光纤通信。然而,从通信技术的实质来看,上面所述基本上都是传输介质和信道的变化,突破性的进展并不多。 技术简介 OFDM是一种高速数据传输技术,该技术的基本原理是将高速串行数据变换成多路相对低速的并行数据并对不同的载波进行调制。这种并行传输体制大大扩展了符号的脉冲宽度,提高了抗多径衰落等恶劣传输条件的性能。传统的频分复用方法中各个子载波的频谱是互不重叠的,需要使用大量的发送滤波器和接受滤波器,这样就大大增加了系统的复杂度和成本。同时,为了减小各个子载波间的相互串扰,各子载波间必须保持足够的频率间隔,这样会降低系统的频率利用率。而现代OFDM系统采用数字信号处理技术,各子载波的产生和接收都由数字信号处理算法完成,极大地简化了系统的结构。同时为了提高频谱利用率,使各子载波上的频谱相互重叠,但这些频谱在整个符号周期内满足正交性,从而保证接收端能够不失真地复原信号。 当传输信道中出现多径传播时,接收子载波间的正交性就会被破坏,使得每个子载波上的前后传输符号间以及各个子载波间发生相互干扰。为解决这个问题,在每个OFDM传输信号前面插入一个保护间隔,它是由OFDM信号进行周期扩展得到的。只要多径时延超过保护间隔,子载波间的正交性就不会被破坏。 基本原理 OFDM —— OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-CarrierModulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部

新一代移动通信的核心技术ofdm调制技术.doc

新一代移动通信的核心技术OFDM调制技术 OFDM的发展状况 OFDM的历史要追溯到20世纪60年代中期,当时R.w.Chang发表了关于带限信号多信道传输合成的论文。他描述了发送信息可同时经过一个线性带限信道而不受信道问干扰(ICI)和符号间干扰(。ISI)的原理。此后不久,Saltzberg完成了性能分析。他提出"设计一个有效并行系统的策略应该是集中在减少相邻信道的交叉干扰(crosstalk)而不是完成单个信道,因为前者的影响是决定性的。" 1970年,OFDM的专利发表,其基本思想就是通过采用允许子信道频谱重叠,但又相互间不影响的频分复用(FDM)的方法来并行传送数据,不仅无需高速均衡器,有很高的频谱利用率,而且有较强的抗脉冲噪声及多径衰落的能力。OFDM 早期的应用有ANIGSC-1O(KATH-RYN)高频可变速率数传调制解调器(Modem)。该Mo-dem利用34路子信道并行传送34路低速数据,每个子信道采用相移键控(PSK)调制,且各子信道载波相互正交,间隔为84 Hz。但是在早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,且在相关接收时各副载波需要准确地同步,因此当子信道数很大时,系统就显得非常复杂和昂贵。 对OFDM做主要贡献的是Weinstein和Ebert在1971年的论文,Weinstein 和Ebert提出使用离散傅里叶变换(Discrete Fourier Transform,DFT),实现OFDM系统中的全部调制和解调功能的建议。因而简化了振荡器阵列以及相关接收机中本地载波之间的严格同步的问题,为实现OFDM的全数字化方案作了理论上的准备。用离散傅里叶变换(DFT)完成基带调制和解调,这项工作不是集中在单个信道,而是旨在引入消除子载波间干扰的处理方法。为了抗ISI和ICI,他们在时域的符号和升余弦窗之间用了保护时间,但在一个时间弥散信道上的子载波间不能保证良好的正交性。 另一个主要贡献是Peled和Ruiz在1980年的论文,他引入了循环前缀(Cyclic Prefix,CP)的概念,解决了正交性的问题。他们不用空保护间隔,而是用OFDM符号的循环扩展来填充,这可有效地模拟一个信道完成循环卷积,这意味着当CP大于信道的脉冲响应时就能保证子载波间的正交性,但有一个问题就是能量损失。

OFDM调制

OFDM:正交频分复用 主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。 正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰。 每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。 目前OFDM技术已经被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等。 一、时域分析OFDM 最简单的情况,sin(t)和sin(2t)是正交的【因为sin(t)·sin(2t)在区间[0,2π]上的积分为0】: 图示中,在[0,2π]的时长内,以最易懂的幅度调制方式传送信号:sin(t)传送信号a,因此发送a·sin(t),sin(2t)传送信号b,因此发送b·sin(2t)。其中,sin(t)和sin(2t)的用处是用来承载信号,是收发端预先规定好的信息,称为子载波;调制在子载波上的幅度信号a和b,才是需要发送的信息。因此在信道中传送的信号为a·sin(t)+b·sin(2t)。在接收端,分别对接收到的信号作关于sin(t)和sin(2t)的积分检测,就可以得到a和b了。

图一:发送a信号的sin(t) 图二:发送b信号的sin(2t)【注意:在区间[0,2π]内发送了两个完整波形】 图三:发送在无线空间的叠加信号a·sin(t)+b·sin(2t) 图四:接收信号乘sin(t),积分解码出a信号。【传送b信号的sin(2t)项,在积分后为0】

OFDM系统原理及其实现

通信系统综合设计 报告 题目:OFDM系统原理及其实现 学部: 班级: 姓名: 学号: 指导教师: 撰写日期:

目录 第一章................................................... 错误!未定义书签。 要求................................................. 错误!未定义书签。 系统基本原理及基本模块............................... 错误!未定义书签。 设计思路......................................... 错误!未定义书签。 系统基本模块..................................... 错误!未定义书签。第二章................................................... 错误!未定义书签。 编程思路及框架....................................... 错误!未定义书签。 信道编码映射..................................... 错误!未定义书签。 串并/并串变换.................................... 错误!未定义书签。 调制解调......................................... 错误!未定义书签。 添加/取出循环前缀................................ 错误!未定义书签。第三章................................................... 错误!未定义书签。 实验结果............................................ 错误!未定义书签。 码率计算:....................................... 错误!未定义书签。 试验结果......................................... 错误!未定义书签。总结..................................................... 错误!未定义书签。附录..................................................... 错误!未定义书签。 第一章 要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析。

OFDM技术及其应用

目录 OFDM技术及其应用 (3) 摘要 (3) Abstract (4) 前言 (5) 第1章OFDM技术 (6) 第1节OFDM基本原理简介 (9) 第2节OFDM的算法理论与基本系统结构 (10) 第3节OFDM技术特点 (13) 第4节OFDM技术突出的地方 (14) 第5节OFDM的技术优点 (15) 第6节OFDM的两个缺陷 (15) 第2章OFDM技术在各个领域中的应用 (17) 第1节高清晰度数字电视广播 (17) 第2节无线局域网 (17) 第3节宽带无线接入 (18) 第4节3G CDMA的新概念 (19) 第3章OFDM技术在设备制造和运行中的优势 (21) 第4章下一代移动通信系统中的OFDM技术 (24) 第5章OFDM技术的应用现状与前景 (29)

小结 (33) 致谢 (34) 参考文献 (35) 结束语 (36)

OFDM技术及其应用 摘要 OFDM技术是一种多载波调制技术,最初用于军事通信,由于采用DFT实现多载波调制,同时LSI的发展解决了IFFT/FFT的实现问题以及其他关键技术的突破,OFDM开始向诸多领域的实际应用转化,现在成为一种很有发展前途的调制技术。本文首先分析了OFDM的基本原理,并说明其技术优点和缺点,然后提及有关OFDM技术发展方面的一些信息。现在,OFDM在许多领域取得成功应用,这里对有关无线局域网中的OFDM应用现状作了简要说明,对OFDM的应用前景也作了展望。 关键词:正交频分复用(OFDM),原理,特点,发展,应用

Abstract Orthogonal Frequency Division Multiplexing(OFDM) is a kind of technology of Multi-Carrier Modulation(MCM).Depending on Discrete Fourier Transform( DFT) to realize MCM and the quick development of Large Scale Integration( LSI) to solve the question of the solution of IFFT/FFT,OFDM began to be using practically in many fields and is becoming a prosperous MCM-technique.In this paper,firistly the principles of OFDM are analyzed and its characters(merit and defect) are reviewed,then some information about the development of OFDM is introduced.At current time,OFDM has succeeded in many fields, given an example,the present situation of using OFDM on wireless local area net is stated,finally the prospect of using OFDM is imaged. Keywords:OrthogonalFrequencyDivisionMultiplexing(OFDM);Character;Devel opment;Present Situation and Prospect of Application

OFDM调制解调及FPGA实现

OFDM(正交频分复用)是一种高效的多载波调制技术,其最大的特点是传输速率高,具有很强的抗码间干扰和信道选择性衰落能力。 OFDM最初用于高速MODEM、数字移动通信和无线调频信道上的宽带数据传输,随着IEEE802.11a 协议、BRAN(Broadband Radio Access Network)和多媒体的发展,数字音频广播(DAB)、地面数字视频广播((DVB-T)和高清晰度电视((HDTV)都应用了OFDM技术。 OFDM利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调,调制解调的核心是快速傅立叶运算单元,在进行蝴蝶运算时,不可避免的要进行大量的乘法运 算。由于FPGA具有强大的并行处理和计算能力,以及丰富的存储资源和逻辑运算资源,因此在FPGA器件上实现OFDM调制解调结构,具有很好的通用性和灵活性。 OFDM与系统框图 OFDM的多个载波相互正交,一个信号内包含整数个载波周期,每个载波的频点和相邻载波零点重叠,这种载波间的部分重叠提高了频带利用率。OFDM每个子信道的频谱均 为sinx/x形,各子信道频谱相互交叠,但在每个子信道载频的位置来自其他子信道的干扰为零,如图1所示。 A图2QFDM ,系统堰图 OFDM系统如图2所示,OFDM系统的调制和解调分别由IFFT和FFT完成。首先将串 行输入数据d0, d1..., d(N-1)变换成并行数据,接下来进行编码和星座图映射,得到频域数据。经过IFFT后相当于调制到正交的N个f0, f1,…,fN-1子载波,完成正交频分复用。接下来加入循环前缀,进行并 /串转换,数/模转换,再调制到高频载波上发送。如果是基带传输,则不需要进行载波调制。 在接收端进行相反的操作,使用N个相同的子载波进行N路解调,再将这N路解调信 号并串输出,复现发送的原始信号。经过FFT变换后的数据相当于将时域数据再转换成频 域数据,即完成了OFDM信号的解调。 OFDM调制原理虽然是用N个正交的载波分别调制N路子信道码元序列,但实际中很难独立产生N个正交的载波。所以OFDM多采用VLSI技术,用FFT代替多载波调制和解调。当子信道数目比较多的时候,采用FFT可以大大减少系统的复杂度。而FPGA的并行 乘法器和加法器结构容易硬件实现OFDM的核心运算,有效地提高了OFDM调制解调速度。 软件仿真与设计 随着FPGA和VLSI的发展,大量的EAB(嵌入式阵列块)、LE(逻辑单元)、内嵌乘法器和高速FIFO存储器带来了OFDM/COFDM 的实用化,为OFDM提供了硬件支持。软件上可以采用MATLAB、硬件描述语言VHDL、Quartusn等软件进行仿真与设计。 仿真过程中采用了随机信号作为输入信号,经过4QAM编码映射后进行再IFFT调制, 然后进入信道进行数据传输,每帧信号为512点;同时采用简单的11点数字离散信道,其值为:[0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088]。 在一般OFDM系统中为使IFFT和FFT前后的信号功率保持不变,当N=2m(m为正整数)时,作如下定义: I IV-I FFT■=y ) (1)

基于OFDM的调制解调技术

湖南工业大学学报Journal of Hunan University of Technology Vol.24 No.3May 2010 第24卷 第3期2010年5月基于OFDM的调制解调技术 刘俊萍 (湖南工业大学电气与信息工程学院,湖南株洲412008) 摘要:介绍了OFDM 调制解调技术的基本原理及算法,基于IP Core-Xilinx Fast Fourier Transform V3.2软件, 设计了OFDM 调制解调系统各模块参数及硬件结构,并利用matlab 仿真验证了系统结构和各算法设计的正确性。 关键词:OFDM 调制解调;FFT ;matlab 仿真 中图分类号:TN915.05 文献标志码:A 文章编号:1673-9833(2010)03-0060-03 OFDM-Based Modulation and Demodulation Techniques Liu Junping (College of Electrical and Information Engineering, Hunan University of Technology ,Zhuzhou Hunan 412008,China ) Abstract :The basic principle and algorithms of OFDM modulation and demodulation are introduced. Based on IP Core-Xilinx Fast Fourier Transform V3.2, the module parameters and hardware structure of OFDM modution and demodution system are designed. And the system structure and algorithm design correctness are simulated with matlab. Keywords :OFDM modulate and demodulate ;fast fourier transform ; matlab simulation 收稿日期:2010-03-19 通信作者:刘俊萍(1980-),女,山西五寨人,湖南工业大学教师,硕士,主要研究方向为电力电子与电子信息,E-mail :42817805@https://www.doczj.com/doc/599910974.html, OFDM (orthogonal frequency division multiplexing ,即正交频分复用技术)是一种高效的多载波调制技术[1],它能够有效地对抗频率选择性衰落和窄带干扰。其主要思想是在信号传输频域内将给定信道分成许多正交子信道,在每个子信道上使用1个子载波进行调制,且各子载波并行传输[2]。它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成为单一的信号,从而完成信号的传送。 1OFDM调制解调基本原理 OFDM 是一种无线环境下的高速传输技术。无线 信道的频率响应曲线大多是非平坦的,而根据OFDM 技术的特点,尽管总的信道是非平坦的,具有频率选择性,但每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽, 因此就可较好地消除信号波形间的干扰。由于在OFDM 系统中各子信道的载波相互正交,它们的频谱是相互重叠的,这样不仅减小了子载波间的相互干扰,同时还提高了频谱利用率。 OFDM 增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM 系统中,只会有一小部分载波受影响。通过合理地挑选子载波位置,可使OFDM 的频谱波形保持平坦,同时保证了各载波之间的正交。OFDM 的接收机实际上是通过FFT (fast fourier transform ,即快速傅里叶变换)实现的一组解调器。它将不同载波搬移至零频,然后在1个码元周期内积分,其它载波信号因其与所积分的信号正交,故不会对信息的提取产生影响。OFDM 的数据传输速率与子载波数量有关。

OFDM基本原理

现代社会对通信的依赖和要求越来越高,于是设计和开发效率更高的通信系统成了通信工程界不断追求的目标。通信系统的效率,说到底是频谱利用率和功率利用率。特别是在无线通信的情况下,对两个指标的利用率更高,尤其是频谱利用率。于是,各种各样具有较高频谱效率的通信技术不断被开发出来,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)是一种特殊的多载波调制技术,它利用载波间的正交性进一步提高频谱利用率,而且可以抗窄带干扰和抗多经衰落。OFDM通过多个正交的子载波将串行数据并行传输,可以增大码元的宽度,减少单个码元占用的频带,抵抗多径引起的频率选择性衰落,可以有效克服码间串扰,降低系统对均衡技术的要求,是支持未来移动通信,特别是移动多媒体通信的主要技术之一。 1 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: 式中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式(2),最后信号经并/串变换及D/A 转换,由发送天线发送出去。

OFDM调制的过程及原理解释-个人笔记

1.OFDM调制/解调 1.1. 概述 1.1.1.OFDM调制基本原理 如图OFDM调制的过程就是将待发送的多个数据分别与多路子载波相乘合成基带复信号s(t)的过程,而OFDM解调的过程就是由复信号s(t)求解傅立叶系数的过程。复信号s(t)是时域信号,而傅立叶系数就是频域的数据。需要明确的是:对于OFDM调制来讲,输入的数据是频域数据,而输出是S(t)就是时域数据;对于OFDM解调来讲,输入的s(t)是时域信号,而输出的数据就是频域数据。当使用IDFT/DFT实现OFDM调制/解调的时候,IDFT 的输入是频域数据,输出是时域数据;DFT的输入是时域数据,输出是频域数据。 基于快速离散傅里叶变换的产生和接收OFDM信号原理:在发射端,输入速率为Rb 的二进制数据序列先进行串并变换,将串行数据转化成N个并行的数据并分配给N个不同的子信道,此时子信道信号传输速率为Rb/N。N路数据经过编码映射成N个复数子符号Xk。(一个复数子符号对应速率为Rb的一路数据)随后编码映射输出信号被送入一个进行快速傅里叶逆变换IFFT的模块,此模块将频域内N个复数子符号Xk变换成时域中2N个实数样值Xk。(两个实数样值对应1个复数子符号,即对应速率为Rb的一路数据)由此原始数据就被OFDM按照频域数据进行处理。计算出的IFFT变换之样值,被一个循环前缀加到

样值前,形成一个循环扩展的OFDM信息码字。此码字在此通过并串变换,然后按照串行方式通过D/A和低通滤波器输出基带信号,最后经过上变频输出OFDM信号。 1.1. 2.OFDM的优缺点 1.1. 2.1. OFDM优点 1.1. 2.1.1.频谱效率高 由于FFT处理使各个子载波可以部分重叠,因为理论上可以接近乃奎斯特极限。以OFDM为基础的多址技术OFDMA(正交频分多址)可以实现小区内各用户之间的正交性,从而避免用户间干扰。这使OFDM系统可以实现很高的小区容量。 1.1. 2.1.2.带宽扩展性强 由于OFDM系统的信号带宽取决于使用的子载波数量,因此OFDM系统具有很好的带宽扩展性。小到几百kHz,大到几百MHz,都很容易实现。尤其是随着移动通信宽带化(将由5MHz增加到最大20MHz),OFDM系统对大带宽的有效支持,称为其相对于单载波技术的“决定性优势”。 1.1. 2.1. 3.抗多径衰落 由于OFDM将宽带传输转化为很多子载波上的窄带传输,每个子载波上的信道可以看做水平衰落信道,从而大大降低了接收机均衡器的复杂度。相反,单载波信号的多径均衡的复杂度随着宽带的增大而急剧增加,很难支持较大的带宽(如20MHz)。 1.1. 2.1.4.频谱资源灵活分配 OFDM系统可以通过灵活地选择适合的子载波进行传输,来实现动态的频域资源分配,从而充分利用频率分集和多用户分集,以获得最佳的系统性能。 1.1. 2.1.5.实现MIMO技术较简单 由于每个OFDM子载波内的信道可看做水平衰落信道,因为多天线(MIMO)系统带来的额外复杂度可以控制在较低的水平(随着天线数量呈线性增加。)相反,单载波MIMO 系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。

无线通讯OFDM调制技术介绍和设计实现.

无线通讯OFDM调制技术介绍和设计实现 OFDM是现代宽带 图1:3GPP LTE下的帧结构1,可用于TDD、FDD系统。 图2:3GPP LTE下的帧结构2,可用于TDD系统。 OFDM调制的实现 下面将讨论如何实现OFDM调制及解调中循环前缀的插入与消除。 FFT与FFT反变换:在OFDM调制中最关键的运算就是IFFT,相类似,OFDM解调的核心为FFT。宽带系统中的高FFT吞吐率是至关重要的,尤其是在FFT被多路数据通道共享时。 在WiMAX以及3GPP LTE这类现代可扩展无线系统中,在运行中可重新配置的能力同样成为系统要求的一个重要指标。可变流模式下的FFT MegaCore函数瞄准的是可重新配置的无线 FFT的MegaCore函数被设定为可变流模式,它允许FFT的大小和方向逐包改变。它还采用了存储效率模式——这是FFT核的唯一模式,直接从FFT的蝶形引擎中输出位反转符号。可以在FFT核之外结合带有循环前缀插入的位反转。这样,整个OFDM调制可以节省出一个单缓冲器。 FFT模块复用:为了减少逻辑门数,FFT模块通常采用比其他基带模块更快的时钟频率并复用。FFT模块可以被不同的源共享,譬如,多路天线、时分双工(TDD)复用中的发射与接收,以及频分双工(FDD)系统。FFT模块也可以与其他功能模块共享,如振幅因数减小或信道估计模块。不过,这些复用取决于用户特定的算法,而非通用设计。这篇文章将集中讨论最常见的无线通讯系统应用:如MIMO技术、TDD和FDD通信。 TDD操作:在TDD基站中,发送和接收发生在不重叠的时隙中。FFT模块可以很容易地在采用合适的信号多路复用技术的发射机和接收机之间共享。图3显示一个典型的单一天线TDD OFDM调制器。 图3:单天线TDD系统中OFDM调制解调的共享。

OFDM技术的优缺点分析

1.3 OFDM技术优点 首先,抗衰落能力强。OFDM把用户信息通过多个子载波传输,在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,使OFDM对脉冲噪声(ImpulseNoise)和信道快衰落的抵抗力更强。同时,通过子载波的联合编码,达到了子信道间的频率分集的作用,也增强了对脉冲噪声和信道快衰落的抵抗力。因此,如果衰落不是特别严重,就没有必要再添加时域均衡器。 其次,频率利用率高。OFDM允许重叠的正交子载波作为子信道,而不是传统的利用保护频带分离子信道的方式,提高了频率利用效率。 再者,适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪音背景的不同使用不同的调制方式。当信道条件好的时候,采用效率高的调制方式。当信道条件差的时候,采用抗干扰能力强的调制方式。再有,OFDM加载算法的采用,使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM技术非常适合高速数据传输。 此外,抗码间干扰(ISI)能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性的干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。OFDM由于采用了循环前缀,对抗码间干扰的能力很强。 OFDM技术的优点 OFDM 技术的最大优点是,对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但在多载波系统中,仅有很小一部分载波会受到干扰。对这些信道可以采用纠错码来进行纠错。可以有效地对抗信号波形间的干扰。适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好的多。 通过各子载波的联合编码,具有很强的抗衰落能力。OFDM 技术本身已经利用了信道的频率分集,如果衰落不是很严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。 OFDM 技术抗窄带干扰性很强,因为这些干扰仅仅影响到很小一部分的子信道。可以选用基于IFFT/FFT 的OFDM 实现方法。信道利用率很高,这一点在频谱资源有限的无线

Matlab实现OFDM调制

Matlab实现OFDM调制 一、实验目的 1、进一步加深对matlab的了解和使用,熟练掌握matlab的相关库函数。 2、学习OFDM调制的原理,通过实验加深对其理解。 3、学会用matlab实现BPSK调制和QPSK调制。 二、实验原理 OFDM调制原理: OFDM ——OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-CarrierModulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,OFDM 是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM,多带-OFDM。

三、实验内容 实验要求:(1)不加噪声时,调制出来的信号与原信号进行对比。(2)加噪声时的误码率曲线图。 1、 解调的原理框图

2、BPSK调制:f(0)=1,f(1)=-1 代码: original=randint(1,512*100,2); %源为0和1的随机序列,为1行51200列;用512个子载波,做100次 bpsk=(-1).^original; %BPSK调制,将源中的0替换为-1,生成1行51200列的1和-1序列 m=1; ioriginal=zeros(1,512*100); %生成零矩阵,定义变量初值 ofdm=zeros(100,512); iofdm=zeros(100,512); iiofdm=zeros(1,512*100); cp=zeros(100,512+10); cpsend=zeros(1,(512+10)*100); icp=zeros(100,512); ibpsk=zeros(1,512*100); while m~=101 ofdm(m,:)=bpsk(((m-1)*512+1):(m*512)); %将bpsk矩阵转化为100行512列的矩阵ofdm ofdm(m,:)=ifft(ofdm(m,:),512); %OFDM调制,返回512点的逆向DFT cp(m,1:10)=ofdm(m,503:512); %添加长度为10的循环前缀, cp(m,11:end)=ofdm(m,:); %生成矩阵cp为100*(512+10) cpsend(((m-1)*(512+10)+1):(m*(512+10)))=cp(m,:);%cpspend为1*((512+10)*100) m=m+1; end cp1=cpsend; %没有添加噪声是调制生成的矩阵 snr=-2:1:5; %信噪比 ber=zeros(1,length(snr)); light=1; for t=-2:1:5 m=1; %解调 while m~=101 icp(m,:)=cpsend(((m-1)*512+m*10+1):(m*(512+10))); %去前缀10 iofdm(m,:)=fft(icp(m,:),512); %将icp做返回512点的DFT iiofdm(((m-1)*512+1):(m*512))=iofdm(m,:); %iiofdm为1*(512*100) m=m+1; end for n=1:(512*100) real_iiofdm=real(iiofdm(n)); image_iiofdm=imag(iiofdm(n)); distance1=sqrt((real_iiofdm+1)^2+image_iiofdm^2); %根据距

OFDM

OFDM技术综述 现代社会已步入信息时代,在各种信息技术中,信息的传输即通信起着支撑作用。世界各国都在致力于现代通信技术的研究和开发,而无线通信是现代通信系统中不可缺少的组成部分。今天,无线通信已经成为人们日常生活不可缺少的重要通信方式之一,而人们对无线通信业务的需要的迅速增加是无线通信技术的根本推动力。 正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplex)是一种多载波调制方式,通过减小和消除码间串扰的影响来克服信道的频率选择性衰落。正交频分复用多载波系统采用了正交频分信道,能够在不需要复杂的均衡技术情况下支持高速无线数据传输,并具有很强的抗衰落和抗符号间干扰的能力,现在OFDM已经在欧洲的数字音视频广播,欧洲和北美的高速无线局域网系统,高比特数字用户线以及电力载波通信中得到了广泛应用。 它的基本原理是将信号分割为N个子信号,然后用N个子信号分别调制N 个相互正交的子载波。由于子载波的频谱相互重叠,因而可以得到较高的频谱效率。并且OFDM技术以其较高的频谱利用率和信息传输效率,以及较强的抗多径衰落的能力在无线通信领域得到广泛的应用。OFDM (正交频分复用)技术最早提出于20世纪60年代,当时的实际应用是军用无线高频通信链路。近年来,由于DSP (数字信号处理)技术飞速发展,OFDM作为一种可有效对抗码间干扰、频谱利用率高的高速传输系统,引起人们广泛关注。 数字通信中,如果发射信号的带宽超过了信道相关带宽,信号通过信道时将经历频率选择性衰落,信道呈现出频率选择衰落特性,我们称信道呈现出频率选择特性的数字通信为宽带数字通信。在宽带数字通信中,如果使用单载波调制方式,并且接收端没有采用相应的均衡处理消除频率选择性衰落,系统性能将严重恶化,甚至失去通信能力。而系统采用的信道均衡方法在复杂度和性能之间不容易很好地折衷。为此上个世纪60年代,研究人员提出了与单载波调制方式相对应的多载波调制方式,具体方法是将发射的高速数据流分配为多个低速的支数据流在多个载波上独立并行的传输,每个支数据流独立占用一个子载波,但系统共占用的带宽将小于信道相关带宽,从而各支数据流的信号经过信道将经历平坦衰落,各符号间也不存在码间干扰(ISI),多载波系统采用复杂度相对较低的信道均衡措施就能够很好的消除子载波上的平坦衰落,并且得到很好的传输性能。同时,多载波系统可以通过信道编码充分利用频率分集增益。 在使用多载波技术进行并行数据传输的发展过程中,研究人员提出了三种典型的方法对系统所占频带进行子载波划分。每一种划分方法之间最大的区别是在各个子载波上发射的信号功率谱之间是否存在重叠和重叠程度,从系统频谱利用

OFDM调制及解调系统的设计

OFDM调制及解调系统的设计 一、基本原理概述 O FDM背景介绍 随着无线通信的迅速发展,以OFDM为代表的多载波调制技术凭借其强大的抗多径衰落能力和较高的频谱利用率,被认为是最有前途的4G方案之一。 OFDM通信技术是多载波传输技术的典型代表。多载波传输把数据流分解为若干个独立的子载波比特流,每个子数据流将具有低得多的比特速率,用这样低比特速率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。 OFDM系统的基本原理 OFDM是一种多载波调制技术,其原理是用N个子载波把整个信道分割成N个子信道,即将频率上等间隔的N个子载波信号调制并相加后同时发送,实现N个子信道并行传输信息。这样每个符号的频谱只占用信道带宽的1/N,且使各子载波在OFDM符号周期内保持频谱的正交性。 图1-1是在一个OFDM符号内包含4个子载波的实例。其中,所有的子载波都具有相同的幅值和相位,但在实际应用中,根据数据符号的调制方式,每个子载波都有相同的幅值和相位是不可能的。从图1-1可以看出,每个子载波在一个OFDM符号周期内都包含整数倍个周期,而且各个相邻的子载波之间相差1个周期。这一特性可以用来解释子载波之间的正交性,即

这种正交性还可以从频域的角度来解释,图1-2给出了相互覆盖的各个子信道内经过矩形波成形得到的符号sinc 函数频谱。每个子载波频率最大值处,所以其他子信道的频谱值恰好为零。因为在对OFDM 符号进行解调过程中,需要计算这些点上所对应的每个子载波频率的最大值,所以可以从多个相互重叠的子信道符号中提取每一个子信道符号,而不会受到其他子信道的干扰。从图1-2中可以看出OFDM 符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。因此这种子信道频谱出现最大值而其他子信道频谱为零的特点可以避免载波间干扰(ICI )的出现。 {}{}0 0 1exp exp 1 T n m m n j t j t dt m n T ωω=?=? ≠?? 图1-1 OFDM 符号内包括4个子载波的情况

OFDM调制解调

西北工业大学明德学院毕业论文(设计)开题报告

OFDM的应用又涉及到了利用移动调频和单边带(SSB)信道进行高速数据通信、陆地移动通信,数字音频广播(DAB)、高清晰度数字电视(HDTV)和无线局域网(WLAN)。随着DSP芯片技术的发展,格栅编码技术、软判决技术、信道自适应技术等成熟技术的应用,OFMD技术的实现和完善指日可待。 由于技术的可实现性,在二十世纪90年代,OFDM广泛用干各种数字传输和通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSI〕,数字音频广播(D AB)系统,数字视频广播(DVB)和HDTV地面传播系统。1999年,IEEE802.ll a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口和10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。欧洲电信组织(ETsl)的宽带射频接入网的局域网标准HiperiLAN2也把OFDM定为它的调制标准技术。2001年,IEEE802.16通过了无线局域网标准,该标准根据使用频段的不同,具体可分为视距和非视距两种。其中,使用2一11GHz许可和免许可频段,由于在该频段波长较长,适合非视距传播,此时系统会存在较强的多径效应,而在免许可频段还存在干扰问题,所以系统采用了抵抗多径效应、频率选择性衰落或窄带干扰上有明显优势的OFDM调制,多址方式为OFDMA。而后,I EEE802.16的标准每年都在发展,2006年2月,IEEE802.16e(移动宽带无线城域网接入空中接口标准)形成了最终的出版物。当然,采用的调制方式仍然是OFDM。 2004年11月,根据众多移动通信运营商、制造商和研究机构的要求,3GPP 通过被称为LongTermEvolution(LTE)即“3G长期演进”的立项工作。项目以制定3G演进型系统技术规范作为目标。3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM,上行SC(单载波关FDMA。OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本和功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还是采用了SC一FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD一CDM一OFDM的方案B3G/4G是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内和静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 目前OFDM技术已经被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准

相关主题
文本预览
相关文档 最新文档