当前位置:文档之家› 水分检测的几种方法

水分检测的几种方法

水分检测的几种方法
水分检测的几种方法

水分检测的几种方法

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下:

1、热干燥法:

① 常压干燥法(此法用的广泛);

② 真空干燥法(有的样品加热分解时用);

③ 红外线干燥法(此法用的广泛);

④ 真空器干燥法(干燥剂法);

2、蒸馏法

3、卡尔费休法

4、水分活度A

W

的测定

下面我们分别讲述测定水分的方法。

一、常压干燥法

1、特点与原理

⑴ 特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。

⑵ 原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。

2、干燥法必须符合下列条件(对食品而言):

⑴ 水分是唯一挥发成分

这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。

⑵ 水分挥发要完全

对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。

⑶ 食品中其它成分由于受热而引起的化学变化可以忽略不计。

例:还原糖+氨基化合物△→变色(美拉德反应)+H

2

O↑

还有 H

2C

4

H

4

O

6

(酒石酸)+ 2NaHCO

3

→ NaC

4

H

4

O

6

(酒石酸钠)+2H

2

O+2CO

2

发酵糖(NaHCO

3+KHC

4

H

4

O

6

) △→H

2

O+CO

2

+ NaKC

4

H

4

O

6

高糖高脂肪食品不适应

只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。

我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗?

例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,

造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时)

所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。

3、烘箱干燥法的测定要点

⑴ 取样(称样)

在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。

⑵ 干燥条件的选择

三个因素:①温度;②压力(常压、真空)干燥;③时间。

一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。

4、操作方法

清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重)

*油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。

*对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。*对于液体与半固体样品,要在称量皿中加入海砂,使样品疏松,扩大蒸发的接触面,并且用一个玻璃棒作为容器。先放到沸水浴中烘,烘的差不多,再放到烘箱烘,否则不加海砂样品容易使表面形成一层膜,造成水分不易出来,另外易沸腾的液体飞沫使重量损失。

计算:水分= G

2- G

1 /

W

固形物(%)=100 -水分%

G

1

——恒重后称量皿重量(g)

G

2

——恒重后称量皿和样品重量(g)

W ——样品重量(g)

固形物——指食品内将水分排除以后的全部残留物。其组分有蛋白质、脂肪、粗纤维、无氮抽出物和灰分等。

5、烘箱干燥法产生误差的原因

⑴ 样品中含有非水分易挥发性物质(酒精、醋酸、香精油、磷脂等);

⑵ 样品中的某些成分和水分的结合,使测的结果偏低(如蔗糖水解为二分子单糖),主要是限制水分挥发;

⑶ 食品中的脂肪与空气中的氧发生氧化,使样品重量增重;

⑷ 在高温条件下物质的分解(果糖对热敏感);

果糖 C

6H

12

O

6大于70℃

△→C

6

H

6

O

3

+ 3H

2

O

⑸ 被测样品表面产生硬壳,妨碍水分的扩散;尤其是对于富含糖分和淀粉的样品;

⑹ 烘干到结束样品重新吸水。

二、真空干燥法

1、原理:利用较低温度,在减压下进行干燥以排除水分,样品中被减少的量为样品的水分含量。

本法适用于在100℃以上加热容易变质及含有不易除去结合水的食品。其测定结果比较接近真正水分。

2、操作方法

准确称2.00~5.00g样品→于烘至恒重的称量皿→至真空烘箱→70℃、真空度93.3~98.6KPa(700~740mmHg)→烘5小时→于干燥皿冷却→称至恒重

W

计算:水分= G

/

G ——样品中干燥后的失重(g)

W ——样品重量(g)

真空干燥法测水分,一般用于100℃以上容易变质、破坏或不易除去结合水的样品,如糖浆、味精、砂糖、糖果、蜂蜜、果酱和脱水蔬菜等样品都可采用真空干燥法测定水分。

三、蒸馏法测定水分(迪安—斯达克)

蒸馏发出现在二十世纪初,当时它采用沸腾的有机液体,将样品中水分分离出来,此法直到如今仍在适用。

1、原理:把不溶于水的有机溶剂和样品放入蒸馏式水分测定装置中加热,试样中的水分与溶剂蒸汽一起蒸发,把这样的蒸汽在冷凝管中冷凝,由水分的容量而得到样品的水分含量。

2、步骤

准确称2.00~5.00g样品→于250ml水分测定蒸馏瓶中→加入约50~75ml有机溶剂→接蒸馏装置→徐徐加热蒸馏→至水分大部分蒸出后→在加快蒸馏速度→至刻度管水量不在增加→读数

计算:

水分=V/W

V ——刻度管中水层的容量ml

W ——样品的重量(g)

3、常用的有机溶剂及选择依据

常用的有机溶剂有比水清的,也有比水重的。

苯甲苯二甲苯 CCl

4

密度 0.88 0.86 0.86 1.59

沸点80℃80℃140℃76.8℃

选择依据:对热不稳定的食品,一般不采用二甲苯,因为它的沸点高,常选用低沸点的有机溶剂,如苯。对于一些含有糖分,可分解释放出水分的样品,如脱水洋葱和脱水大蒜可采用苯,要根据样品的性质来选择有机溶剂。

4、蒸馏法的优缺点

优点:

⑴ 热交换充分

⑵ 受热后发生化学反应比重量法少

⑶ 设备简单,管理方便

缺点:

⑴ 水与有机溶剂易发生乳化现象

⑵ 样品中水分可能完全没有挥发出来

⑶ 水分有时附在冷凝管壁上,造成读数误差

对分层不理想,造成读数误差,可加少量戊醇或异丁醇防止出现乳浊液。

这种方法用于测定样品中除水分外,还有大量挥发性物质,例如,醚类、芳香油、挥发酸、CO

2

等。目前AOAC规定蒸馏法用于饲料、啤酒花、调味品的水分测定,特别是香料,蒸馏法是唯一的、公认的水分检验分析方法。

四、卡尔—费休法

众所周知,卡尔费休法是测定各种物质中微量水分的一种方法,这种方法自从

1935年由卡尔费休提出后,一直采用I

2、SO

2

、吡啶、无水CH

3

OH(含水量在

0.05%以下)配制而成,并且国际标准化组织把这个方法定为国际标准测微量水分,我们国家也把这个方法定为国家标准测微量水分。

1、原理:在水存在时,即样品中的水与卡尔费休试剂中的SO

2与I

2

产生氧化还

原反应。

I 2 + SO

2

+ 2H

2

O → 2HI + H

2

SO

4

但这个反应是个可逆反应,当硫酸浓度达到0.05%以上时,即能发生逆反应。如果我们让反应按照一个正方向进行,需要加入适当的碱性物质以中和反应过程中生成的酸。经实验证明,在体系中加入吡啶,这样就可使反应向右进行。

3 C

5H

5

N+H

2

O+I

2

+SO

2

→ 2氢碘酸吡啶+硫酸酐吡啶

生成硫酸酐吡啶不稳定,能与水发生反应,消耗一部分水而干扰测定,为了使它稳定,我们可加无水甲醇。

硫酸酐吡啶 + CH

3

OH(无水)→甲基硫酸吡啶

我们把这上面三步反应写成总反应式为:

I 2+SO

2

+H

2

O+3吡啶+CH

3

OH 2氢碘酸吡啶+甲基硫酸吡啶

从反应式可以看出1mol水需要1mol碘,1mol二氧化硫和3mol吡啶及1mol甲醇而产生2mol氢碘酸吡啶、1mol甲基硫酸吡啶。这是理论上的数据,但实际

上,SO

2、吡啶、CH

3

OH的用量都是过量的,反应完毕后多余的游离碘呈现红棕

色,即可确定为到达终点。

I 2︰SO

2

︰C

5

H

5

N = 1︰3︰10

2、卡尔费休试剂的配制与标定

若以甲醇作溶剂,则试剂中I

2、SO

2

、C

5

H

5

N(含水量在0.05%以下)三者的克分子

数比例为

I 2︰SO

2

︰C

5

H

5

N = 1︰3︰10

这种试剂有效浓度取决于碘的浓度。新配制的试剂其有效浓度不断降低,其原因是由于试剂中各组分本身也含有一些水分,但试剂浓度降低的主要原因是由一些副反应引起的,较高消耗了一部分碘。

这也说明了配制这种试剂要单独配,分甲乙两种试剂并且分别贮存,临用时再混合,而且要标定。

甲液 I

2的CH

3

OH溶液

乙液 SO

2的CH

3

OH吡啶溶液

这种方法对试剂要求严格,要求甲醇、吡啶都是无水的,并且要求有KF水分测定仪(上海化工研究所制)

配制:

称85gI

2→于干燥的有塞棕色烧瓶中→加670ml无水CH

3

OH→塞上瓶塞→振摇使

I 2全部溶解→加270ml吡啶→混匀→于冰水浴冷却→通干燥的SO

2

气体60g→塞

上瓶塞→于暗处24小时后标定使用

标定:

先加50ml无水甲醇→于反应器中→接通电源→启动电磁搅拌器→用KF试剂滴入甲醇中使甲醇中尚残留的痕量水分与试剂达到终点(即指针到达一定刻度,不记录KF试剂用量)→保持一分钟→用10μl注射器从反应器加料口注入10μl 蒸馏水(相当于0.01g水)→电流表指针接近零点→用KF试剂滴定到原定终点→记录

F =G*100/V

F —— KF试剂的水当量(mg/ml)

V —— KF滴定消耗试剂的体积(ml)

G ——水的重量(g)

3、步骤

对于固体样,如糖果必须预先粉碎,称0.30~0.50g样于称样瓶中

取50 ml甲醇→ 于反应器中,所加甲醇要能淹没电极,用KF试剂滴定50 ml 甲醇中痕量水→ 滴至指针与标定时相当并且保持1min不变时→ 打开加料口→ 将称好的试样立即加入→ 塞上皮塞→ 搅拌→ 用KF试剂滴至终点保持1min不变→ 记录

计算:

水分=FV/W

F —— KF试剂的水当量(mg/ml)

V ——滴定所消耗的卡尔费休试剂(ml)

W ——样品重量(g)

注:① 此法适用于食品中糖果、巧克力、油脂、乳糖和脱水果蔬类等样品;

② 样品中有强还原性物料,包括维生素C的样品不能测定;

③ 卡尔费休法不仅可测得样品中的自由水,而且可测出结合水,即此法测得结果更客观地反映出样品中总水分含量。

④ 固体样品细度以40目为宜,最好用粉碎机而不用研磨,防止水分损失。

五、水分活度值的测定

食品中水分活度的检验方法很多,如蒸汽压力法、电湿度计法、附感敏器的湿动仪法、溶剂萃取法、扩散法、水分活度测定仪法和近似计算法等。一般常用的是水分活度测定仪法(A

W

测定仪法)、溶剂萃取法和扩散法。水分活度测定仪法操作简便,能在较短时间得到结果。

1、A

W

测定仪法

⑴ 原理:在一定温度下主要利用A

W

测定仪中的传感器根据食品中水的蒸汽压力的变化,从仪器的表头上读出指针所示的水分活度。在样品测定前需用氯化

钡和溶液校正A

W 测定仪的A

W

为9.000。

⑵ 步骤

① 仪器校正

两张滤纸→浸于氯化钡饱和液中→用小夹子轻轻地把它放在仪器的样品盒内→然后将传感器的表头放在样品盒上,轻轻地拧紧→于20℃恒温烘箱→加热恒温3小时后→将校正螺丝校正A

W

为9.00

② 样品测定

取样→于15~25℃恒温后→(果蔬样品迅速捣碎取汤汁与固形物按比例取样→肉和鱼等固体试样需适当切细)→于容器样品盒内→将传感器的表头置于样品盒上轻轻地拧紧→于20℃恒温烘箱中→加热2小时后→不断观察表头仪器指针的

变化情况→等指针恒定不变时→所指的数值即为此温度下试样的A

W

2、溶剂萃取法

⑴ 原理:食品中的水可用不混溶的溶剂苯来萃取。苯在一定温度下其萃取的水量随样品中水分活度而变化,即萃取的水量与水相中的水分活度成比例,其结果与同温度下测定的苯中饱和溶解水值与水相中的水的比值即为该样品的水分活度。

⑵ 步骤

称样1.00g → 于250 ml磨口三角烧瓶→ 加100ml苯→ 塞上瓶塞→ 振摇1小时→ 静置10分钟→

吸50ml → 于卡尔费休水分测定器中→ 加无水甲醇70ml → 混合→ 用KF 试剂滴至微红色→ 置电

流指针再不变即为终点→ 记录

求苯中饱和溶解水值:

取蒸馏水10ml代替样品→ 加苯100 ml → 振摇2分钟→ 静置5分钟→ 同上样品测定

⑶ 计算

A W =[H

2

O]

n

×10/[H

2

O]

A

W

——样品中水分活度值

[H

2O]

n

——从食品中萃取的水量,即从KF试剂滴定度乘滴定样品消耗KF试剂

毫升数

[H

2O]

——测定纯水中萃取水量

3、扩散法

样品在康威氏微量扩散皿密封和恒温下,分别在较高和较低的标准饱和溶液中扩散平衡后,根据样品重量的增加和减少的量,求出样品中A

W

值。

六、其它测定水分方法

1、化学干燥法

化学干燥法就是将某种对于水蒸汽具有强烈吸附作用的化学药品与含水样品同装入一个干燥器(玻璃或真空干燥器),通过等温扩散及吸附作用而使样品达到干燥恒重,然后根据干燥前后样品的失重即可计算出其水分含量,此法在室温下干燥,需要较长时间,几天、几十天甚至几个月。

干燥剂有五氧化二磷、氧化钡、高氯酸镁、氢氧化锌、硅胶、氧化氯等。

2、微波法

微波是指频率范围为103~3×105MH

Z

的电磁波。当微波通过含水样品时,因水分引起的能量损耗远远大于干物质所引起的损耗,所以测量微波能量的损耗就可以求出样品含水量。

3、红外吸收光谱法

红外线属于电磁波,波长0.75~1000μm的光。红外波段可分三部分:① 近红外区 0.75~2.5μm;② 中红外区 2.5~25μm;③ 远红外区 25~1000μm。根据水分对某一波长的红外光的吸收程度与其在样品中含量存在一定的关系的事实即建立了红外光谱测定水分方法。

GBT煤中全水分的测定方法

211—2007 煤中全水分的测定方法 GB/T 211-2007 代替GB/T 211-1996 1 范围 本标准规定了测定煤中全水分的试剂、仪器设备、操作步骤、结果计算及精密度。 在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种;在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;微波干燥法(方法C)适用于烟煤和褐煤。 以方法A1作为仲裁方法。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 474 煤样的制备方法 GB/T 煤碳机械化采样第2部分:煤样的制备(GB/T ,ISO 13909-4:2001,NEQ)

211—2007 GB/T 212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999,eqv ISO 1171:1997,eqv ISO 562:1998) 3 方法提要 3.1 方法A(两步法) 3.1.1 方法A1:在氮气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.1.2 方法A2:在空气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.2 方法B(一步法) 3.2.1 方法B1:在氮气流中干燥 称取一定量的粒度<6mm的煤样,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样干燥后的质量损失计算出全水分。 3.2.2 方法B2:在空气流中干燥 称取一定量的粒度<13mm(或<6mm)的煤样,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样干燥后的质量损失计算出全水分。 3.3 方法C(微波干燥法)

水质检测方法

水质化验分析方法(常规) 1水质pH值的测定玻璃电极法 水质-pH值的测定一玻璃电极法 1.1范围 1.1.1本方法适用于饮用水、地面水及工业废水pH值的测定。 1.1.2水的颜色、浊度、胶体物质、氧化剂、还原剂及较高含盐量均不干扰测定;但在pH小于1的强酸性溶液中,会有所谓酸误差,可按酸度测定;在pH大于1;的碱性溶液中,因有大量钠离子存在,产生误差,使读数偏低,通常称为钠差。消除钠差的方法,除了使用特制的低钠差电极外,还可以选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校 正。温度影响电极的电位和水的电离平衡。须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在土1C之内。 1.2原理 pH是从操作上定义的(此定义引自GB3100-31C2-82 “量和单位))第151页)?对于溶液X,测出伽伐尼电池参比电极IKC1浓溶液11溶液XIH2IPt的电动势Ex。将未知pH(x) 的溶液x换成标准pH溶液S,同样测出电池的电动势E。,则pH(X) =pH(S)+(Es-Ex)F/(RTInl0)因此,所定义的pH是无量纲的量。pH没有理论上的意义,萁定义为一种实用定义。但是在物质的量浓度小于O.lmol/dm3的稀薄水溶液有限范围,既非强 酸性又非强碱性(2

煤样水分的测定

煤样水分的测定 一、内水的测定 1 测定原理:空气干燥法 称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的质量分数。 2 仪器、设备: 干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内; 干燥器:内装变色硅胶; 玻璃称量瓶:直径40mm ,高25mm ,并带有严密的磨口盖; 分析天平:感量。 3测定步骤: 在预先干燥并恒重过(精确至的称量瓶中称取粒度小于 mm 以下的空气干燥煤样(1±)g ,精确至,平摊在称量瓶中。打开称量瓶盖,放入预先鼓风(预先鼓风是为了使温度均匀。将称好装有煤样的称量瓶放入干燥箱前 3~5min 就开始鼓风)并已加热到105~110℃的干燥箱中。在一直鼓风的条件下,烟煤干燥1h ,无烟煤干燥1~.从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min) 后,称量。然后进行检查性干燥,每次30min ,直到连续两次干燥煤样的质量减少不超过 .或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。水分在%以下时,不必进行检查性干燥。 4 结果计算: 空气干燥煤样的水分按下式计算: Mad == m m 1 × 100 式中: Mad ——空气干燥煤样的水分含量,%; m1——煤样干燥后失去的质量,g ;

m——煤样的质量,g。 5水分测定的精密度: 水分测定的重复性如下表规定。 附: 仪器分析(内水测定简易操作步骤) 1准备好水/灰分坩埚,试验样品,样勺,检查控制线路和电源线路是否坚固好。 2打开电源,启动计算机。 3双击《SDTGA5000a》软件 4单击《设置》中的《参数设置》,水分方法[自定义水]单击《保存》 5单击〈〈实验〉〉中的〈〈称样〉〉;称量项目[水分],测试方法[自定义水],试样个数[],新编号;单击〈〈开始〉〉,按提示操作(放入坩埚,加入试样),点击〈〈确认〉〉。该试验一般需用时30min。 6实验结束后,系统进入“恒温”状态。 7退出〈〈SDTGA5000a〉〉软件,关闭计算机。 二. 外水的测定 1 测定原理:空气干燥法 称取一定量的空气干燥煤样,置于70~80℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的质量分数。 2 仪器、设备: 干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内; 干燥器:内装变色硅胶; 浅盘:有镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成;其面积能以大约cm2煤样的比例容

煤中全水分的测定方法

煤中全水分的测定方法 2008-06-08 00:12 煤中全水分的测定方法 Determination of total moisture in coal 国家标准局1984-08-07 发布1985-05-01 实施 本标准适用于褐煤、烟煤和无烟煤的商品煤样、生产煤样和煤层煤样的全水分测定。全水分是指煤样在采取时所含水分的总量。 本标准规定测定煤中全水分的三种方法,其中方法A 仅适用于烟煤和无烟煤,并作为测定烟煤和无烟煤全水分的仲裁方法。而方法B 和C 适用于褐煤、烟煤和无烟煤,并以方法B 作为测定褐煤全水分的仲裁方法。 方法要点:煤样在105~110℃或145±5℃的干燥箱中干燥至恒重,以煤样的失重计算水分的百分含量。 1 仪器设备 1.1 干燥箱:内附鼓风机,并带有自动调温装置,温度能保持在105~110℃或145±5℃范围内。 1.2 浅盘:由镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成,其面积能以大约每平方厘米0.8g煤样的比例容纳500g 煤样。而且盘的重量应小于500g。 1.3 托盘天平:感量为1g 和5g 各一台。 1.4 干燥器:内装干燥剂(变色硅胶或未潮解的块状无水氯化钙)。 1.5 玻璃称量瓶:直径为70mm,高为35~40mm,并带有严密的磨口盖。 1.6 分析天平:感量为1mg。 2 煤样的制备

2.1 按照GB 474—83《煤样的制备方法》中第 3.9 条缩制煤样。 2.2 方法A 和B 采用最大粒度不超过13mm,煤样量约2kg。方法C 采用最大粒度不超过6mm,煤样量不应少于300g①。 2.3 在测定全水分之前,首先应检查装有煤样的容器的密封情况,然后将其表面擦拭干净,用托盘天平(1.3)称重②,并与容器上标签所注明的重量进行核对。如果称出的煤样毛重(即煤样与容器的总重量)小于标签上所注的毛重(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减轻的重量作为煤样在运送过程中的水分损失量。并计算出该量对煤样净重(标签上煤样毛重减去容器的重量)的百分数(W1),在计算煤样全水分时,应加入这项损失,并将容器中的煤样充分地混合。 注:①GB474—83《煤样的制备方法》中3.9.3 全水分煤样粒度小于 3mm,煤样量100g 的规定改为本条的规定。 ②当煤样与容器的总重量不超过1kg 时,应采用感量为1g 的托盘天平进行称重。 3 测定步骤 3.1 方法A 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。将装有煤样的浅盘放入预先鼓风注并加热到105~110℃的干燥箱(1.1)中,在不断鼓风的条件下烟煤干燥2~2.5h,无烟煤干燥3~3.5h。再从干燥箱中取出浅盘,趁热称重。然后进行检查性的试验,每次试验30min,直到煤样的减量不超过1g 或者重量有所增加时为止。在后一情况下,应采用增重前的一次重量作为计算依据。 注:将称好煤样的盘子放入干燥箱之前3~5min 开始鼓风。 3.2 方法B 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。

煤炭化验设备化验水分的方法

https://www.doczj.com/doc/595661601.html, 根据GB/T213-2008《煤的水份测定方法》的要求,为大家简介叙述煤炭化验设备化验煤炭水分的方法: 1做水分前先把鼓风干燥箱升温至105度(国标的标准温度),恒温等待实验。 2全水又叫外水用字母(mar)表示。我们做全水时称取粒度小于6mm的空气煤样1g,称准到0.0001g放入干燥箱里进行烘干。两个半小时以后取出,在空气中自然冷却,大约5-10min 后放入天平进行称量。 3全水份=减少的重量比上空气煤样*100% 4分析水也叫内水用字母(mad)表示。我们做分析水时取小于0.2mm的煤样1g,称准到0.0001g。放入105度恒温的干燥箱里。烘干2.5个小时,取出后放在空气中自然冷却,5-10min 放入天平称量。 5分析水=减少的重量比上空气煤样*100% 这种方法目前我国大部分地区最常用的做水分的方法,精度高,不过时间过长,不适合大批量做样。有我们全自动水分测定仪10-20min可连续测量9个样品,有需要的朋友可以参考一下。 根据GB/T213-2008《煤的水份测定方法》的要求,为大家简介叙述煤炭化验设备化验煤炭水分的方法: 1做水分前先把鼓风干燥箱升温至105度(国标的标准温度),恒温等待实验。 2全水又叫外水用字母(mar)表示。我们做全水时称取粒度小于6mm的空气煤样1g,称准到0.0001g放入干燥箱里进行烘干。两个半小时以后取出,在空气中自然冷却,大约5-10min 后放入天平进行称量。 3全水份=减少的重量比上空气煤样*100% 4分析水也叫内水用字母(mad)表示。我们做分析水时取小于0.2mm的煤样1g,称准到0.0001g。放入105度恒温的干燥箱里。烘干2.5个小时,取出后放在空气中自然冷却,5-10min 放入天平称量。 5分析水=减少的重量比上空气煤样*100% 这种方法目前我国大部分地区最常用的做水分的方法,精度高,不过时间过长,不适合大批量做样。有我们全自动水分测定仪10-20min可连续测量9个样品,有需要的朋友可以参考一下。 1题目:煤中全水分的测定GB/T 211 –1996 方法B(空气干燥法) 2目的:测定煤的空气干燥基水分 3煤炭化验设备: 3.1 电热恒温鼓风干燥箱 3.2 玻璃称量皿:直径70mm,高35--40mm,并带有严密的磨口盖。 3.3 干燥器:内装变色硅胶。 3.4 电子天平:JF1004型感量0.0001g。 3.5 托盘: 4试剂和材料: 变色硅胶:工业用品。 5煤中全水分的测定实验步骤: 5.1 预先将干燥箱鼓风并加热到105~110℃。 5.2 称量预先干燥过的称量皿,精确到0.2mg,记录称量皿的质量。

煤中全水的测定方法.

煤中全水分的测定方法 标准号:GB/T211-2007。代替GB/T211-1996《煤中全水分的测定方法》。2008-06-01实行。 水是煤炭的组成部分,煤中水分含量与其变质程度有一定的关系。煤中含水量过多,会增加加工利用的难度,同时也会给运输、贮存带来不利的影响;煤中含水量高,其发热量就降低,因为煤在燃烧过程中,水分蒸发要消耗相当热量。全水分还是商品煤的定量指标,如:洗精煤的计量指标定在7.0 %。 图 1 煤中水分存在状态的分类 例如:硫酸钙(CaSO4·H2O)、高岭土(Al2O3·2SiO2·2H2O)中 的水。 煤中的游离水又分为外在水分和内在水分。 全水分

燥状态时所失去的水。 煤中水分的测定主要是指全水分的测定和空气干燥基水分的测定,这两种测定的原理和操作基本相同。煤中全水分的测定包括内在水分和外在水分的测定。 1范围 △规定测定煤中全水分的试剂、仪器设备、实验步骤、结果计算及精密度等。 △在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种; △在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;△微波干燥法(方法C)适用于烟煤和褐煤。 △方法A1为仲裁方法。 2规范性引用文件 GB/T474 煤样的制备方法 GB/T19494.2 煤炭机械化采样第二部分:煤样的制备 GB/T212 煤的工业分析方法

3 方法分类 图 2 煤中全水分测定方法分类 4 试剂 △氮气:99.9%,含氧量<0.01%。(氮气为实验室常用惰性气体,主要作 用——防止样品氧化。若干燥时通入含氧量>0.01%的氮气,会使煤样在失去水分同时,氧化加剧,导致全水分测定值偏低。) △无水氯化钙:化学纯,粒状。(白色,易吸水,常用干燥剂,密封贮存) △变色硅胶:工业用品。(常用干燥剂) 5 仪器设备 △空气干燥箱:带有自动控温和鼓风装置,能控温在(30~40)℃和 (105~110)℃范围内,有气体进、出口,有足够的换气量,如每小时可换气5次以上。 △通氮干燥箱:带自动控温装置,能控温在(105~110)℃范围内,可容 纳适量的称量瓶,且具有较小的自由空间,有氮气进、出口,每小时可换气15次以上。 方法A1(在氮气流中干燥) 方法A2(在空气流中干燥) 方法C(微波干燥法)

环境监测原始记录表

环境监测原始记录表 环境保护监测中心站 2012年

目录 1. 地表水采样原始记录表19.离子选择电极原始记录表 2. 大气采样原始记录表20.分光光度法分析原始记录表 3. 降水采样原始记录表21.原子吸收分光光度法分析原始记录表 4. 降尘采样原始记录表22.气相色谱分析原始记录表 5. 土壤采样原始记录表23.离子色谱分析原始记录表 6. 底质(底泥、沉积物)采样原始记录表24.细菌总数测定原始记录表 7. 污染源废水采样原始记录表25.粪大肠菌群测定原始记录表 8. 固定污染源排气中气态污染物采样原始记录表26.区域环境噪声监测原始记录表 9. 固定污染源排气中颗粒物采样原始记录表27.城市交通噪声监测原始记录表 10.烟气烟色监测现场记录表28.污染源噪声监测原始记录表 11.pH值分析原始记录表29.机动车排气路检原始记录表 12.电导率分析原始记录表30.一般试剂配制原始记录表 13.色度分析原始记录表(铂钴比色法)31.校准曲线配制原始记录表 14.色度分析原始记录表(稀释倍数法)32.标准溶液配制与标定原始记录表 15.重量分析原始记录表33.样品交接记录表 16.容量法分析原始记录表34.样品分析任务表 17.五日生化需氧量分析原始记录表35.样品前处理原始记录表 18.一氧化碳分析原始记录表36.大气采样器流量校准原始记录表

xx 省环境监测原始记录表( 1 ) 地表水采样原始记录表 采样目的: 方法依据:GB12998-91 采样日期: 年 月 日 枯 丰 平 pH 计型号及编号: DO 仪型号及编号: 电导仪型号及编号: 采样: 送样: 接样: .第 页 共 页

煤中全水分的测定方法(国标)

煤中全水分的测定方法 本标准适用于褐煤、烟煤和无烟煤的商品煤样、生产煤样和煤层煤样的全水分测定。全水分是指煤样在采取时所含水分的总量。 本标准规定测定煤中全水分的三种方法,其中方法A 仅适用于烟煤和无烟煤,并作为测定烟煤和无烟煤全水分的仲裁方法。而方法B 和C 适用于褐煤、烟煤和无烟煤,并以方法B 作为测定褐煤全水分的仲裁方法。 方法要点:煤样在105~110℃或145±5℃的干燥箱中干燥至恒重,以煤样的失重计算水分的百分含量。 1 仪器设备 1.1 干燥箱:内附鼓风机,并带有自动调温装置,温度能保持在105~110℃或145±5℃范围内。 1.2 浅盘:由镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成,其面积能以大约每平方厘米0.8g煤样的比例容纳500g 煤样。而且盘的重量应小于500g。 1.3 托盘天平:感量为1g 和5g 各一台。 1.4 干燥器:内装干燥剂(变色硅胶或未潮解的块状无水氯化钙)。 1.5 玻璃称量瓶:直径为70mm,高为35~40mm,并带有严密的磨口盖。 1.6 分析天平:感量为1mg。 2 煤样的制备 2.1 按照GB 474—83《煤样的制备方法》中第 3.9 条缩制煤样。 2.2 方法A 和B 采用最大粒度不超过13mm,煤样量约2kg。方法C 采用最大粒度不超过6mm,煤样量不应少于300g①。 2.3 在测定全水分之前,首先应检查装有煤样的容器的密封情况,然后将其表面擦拭干净,用托盘天平(1.3)称重②,并与容器上标签所注明的重量进行核对。如果称出的煤样毛重(即煤样与容器的总重量)小于标签上所注的毛重(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减轻的重量作为煤样在运送过程中的水分损失量。并计算出该量对煤样净重(标签上煤样毛重减去容器的重量)的百分数(W1),在计算煤样全水分时,应加入这项损失,并将容器中的煤样充分地混合。 注:①GB474—83《煤样的制备方法》中3.9.3 全水分煤样粒度小于3mm,煤样量100g 的规定改为本条的规定。 ②当煤样与容器的总重量不超过1kg 时,应采用感量为1g 的托盘天平进行称重。 3 测定步骤 3.1 方法A 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。将装有煤样的浅盘放入预先鼓风注并加热到105~110℃的干燥箱(1.1)中,在不断鼓风的条件下烟煤干燥2~2.5h,无烟煤干燥3~3.5h。再从干燥箱

水质检测方法

水质化验分析方法(常规) 1水质pH值的测定玻璃电极法 水质-pH值的测定—玻璃电极法 1.l 围 1.1.1 本方法适用于饮用水、地面水及工业废水pH值的测定。 1.1.2水的颜色、浊度、胶体物质、氧化剂、还原剂及较高含盐量均不干扰测定;但在pH小于1的强酸性溶液中,会有所谓酸误差,可按酸度测定;在pH大于1;的碱性溶液中,因有大量钠离子存在,产生误差,使读数偏低,通常称为钠差。消除钠差的方法,除了使用特制的低钠差电极外,还可以选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校正。温度影响电极的电位和水的电离平衡。须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在±1℃之。 1.2 原理 pH是从操作上定义的(此定义引自GB3100-31C2-82“量和单位))第151页).对于溶液X,测出伽伐尼电池参比电极IKC1浓溶液ll溶液XIH2IPt的电动势Ex。将未知pH(x)的溶液x换成标准pH溶液S,同样测出电池的电动势E。,则pH(X) =pH(S)+(Es-Ex)F/(RTlnl0)因此,所定义的pH是无量纲的量。pH没有理论上的意义,萁定义为一种实用定义。但是在物质的量浓度小于O.lmol/dm3的稀薄水溶液有限围,既非强酸性又非强碱性(2

煤炭的全水分测定方法

全水分的测定(计算) 本标准包括试验法和计算法两种方法。试验方法是仲裁方法。 试验法(一步法或空气干燥法) 一、方法提要 称取一定量的粒度小于6mm的煤样,在空气流中,于105~110℃下干燥到质量恒定,然后根据煤样的质量损失计算出水分的含量。 二、仪器设备 干燥箱:带有自动空温装置和鼓风机,并能保持温度在105~110℃范围内。 干燥器:内装变色硅胶或粒状无水氯化钙。 玻璃称量瓶:直径70mm,高35~40mm,并带有严密的磨口盖。 分析天平:感量0.001g。 工业天平:感量0.1g。 三、测定步骤 1、用预先干燥并称量过(称准至0.01g)的称量瓶迅速称取粒度小于6mm的煤样10~12g(称准至0.01g),平摊在称量瓶中。 2、打开称量瓶盖,放入预先鼓风并已加热到105~110℃的干燥 箱中,在鼓风的条件下,烟煤加热干燥2h,无烟煤干燥3h。 3、从干燥箱中取出称量瓶,立即盖上盖,在空气中冷却约5min。然后放入干燥器中,冷却至室温(约20min),称量(称准至0.01g)。 4、进行检查性干燥,每次30min,直到两次干燥煤样质量的减 共4页,第1页

少不超过0.01g或质量有所增加为止。在后一种情况下,应采用质量增加前一次的质量作为计算依据。水分在2%以下时,不必进行检查性干燥。 四、结果计算 全水分按下列公式计算: m 1 Mt=——×100 m 式中: Mt——煤样的全水分,单位为百分数(%)。 m——煤样的质量,单位为克(g)。 m1——煤样干燥后失去的质量,单位为克(g)。 报告值修约至小数点后一位。 如果在运送过程中煤样的水分有损失,则按以下公式求出修正后的全水分值。 m 1 Mt=M1+——×100 m 式中M1是煤样运送过程中的水分损失量(%)。 五、精密度 全水分,%重复性,% <10 0.4 ≥10 0.5 共4页,第2页

---GBT211煤中全水分的测定方法

煤中全水分的测定方法 GB/T 211-2007 代替GB/T 211-1996 1 范围 本标准规定了测定煤中全水分的试剂、仪器设备、操作步骤、结果计算及精密度。 在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种;在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;微波干燥法(方法C)适用于烟煤和褐煤。 以方法A1作为仲裁方法。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 474 煤样的制备方法 GB/T 19494.2 煤碳机械化采样第2部分:煤样的制备(GB/T 19494.2-2004,ISO 13909-4:2001,NEQ) GB/T 212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999,eqv ISO 1171:1997,eqv ISO 562:1998) 3 方法提要 3.1 方法A(两步法) 3.1.1 方法A1:在氮气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.1.2 方法A2:在空气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.2 方法B(一步法) 3.2.1 方法B1:在氮气流中干燥

养殖水质检测常用的方法有哪些

养殖水质检测常用的方法有哪些? 养殖水质检测常用的方法有哪些?众所周知,养殖生产成功的关键在于水,只有管好水,养殖的成功才有保障。保持良好的水质环境,水质检测是至关重要的。水质检测的方法有很多,从传统的经验法到化学法再到目前正在推广的仪器法,经历了漫长的三个阶段。 一、传统经验法 是指养殖人员凭借多年的工作经验,人为地判断水质的各项指标。如鱼类摄食减少,则可能是pH值偏高或偏低,也有可能是氨氮超标;鱼类集中于水面,可能是水中缺氧等。这些人为的判断只是一个粗略的结果,误差是相当大的,而且随着养殖行业的发展,各企业的养殖规模越来越大,养殖的品种也越来越多,养殖的质量要求在不断提高,那么养殖水质的变化就是多样的,造成水质改变的原因更是多样的,例如投喂饲料、投放药物、自然环境、养殖品种数量的变化等因素,都会造成水质改变,单纯依靠人为经验的判断,已根本无法满足需要,有时甚至会带来巨大的损失。因此,这种依靠经验判断水质的土办法虽然运用了很长时间,但随着科学的进步和人们观念的转变,养殖专家的经验依然是各企业的宝贵财富,但作为检测水质的方法,已经逐渐被淘汰了。 二、化学法 在很多人依靠经验判断水质好坏的时候,采用化学方法检测水质还不被广泛利用,这一方法的最大优势就是检测数据准确可靠,但为什么没有推广应用呢?有几个方面的原因:第一,化学方法的检测过程比较复杂,需要较长的时间,要求检测人员具备相当的专业技能,才能准确的检测,如化学滴定法。有的化学检测试纸,如pH试纸,一般只能进行粗略的测量,如观察试纸颜色判断pH值在7~8之间,而无法得到准确的数字;另一方面,试纸容易受到外界环境(如温度、湿度、光照等)的影响,会导致试纸失效,粗略的测量也无法保证了。第二,化学法检测都需要取样测量,而水样采集到实验室时,各项指标都可能已发生变化,因而最终的检测结

煤样水分的测定

煤样水分的测定

————————————————————————————————作者: ————————————————————————————————日期: ?

煤样水分的测定 一、内水的测定 1 测定原理:空气干燥法 称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的质量分数。 2 仪器、设备: 2.1干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内; 2.2干燥器:内装变色硅胶; 2.3玻璃称量瓶:直径40mm ,高25mm,并带有严密的磨口盖; 2.4分析天平:感量0.0001g 。 3测定步骤: ? 在预先干燥并恒重过(精确至0.0002g)的称量瓶中称取粒度小于0.2 mm 以下的空气干燥煤样(1±0.1)g ,精确至0.0002g ,平摊在称量瓶中。打开称量瓶盖,放入预先鼓风(预先鼓风是为了使温度均匀。将称好装有煤样的称量瓶放入干燥箱前 3~5min 就开始鼓风)并已加热到105~110℃的干燥箱中。在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1~1.5h.从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20mi n) 后,称量。然后进行检查性干燥,每次30min ,直到连续两次干燥煤样的质量减少不超过 0.0010g.或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。水分在2.00%以下时,不必进行检查性干燥。 4 结果计算: ? 空气干燥煤样的水分按下式计算: Mad == m m 1 × 100 式中: Mad ——空气干燥煤样的水分含量,%; ?m1——煤样干燥后失去的质量,g; ?m ——煤样的质量,g 。 5水分测定的精密度: 水分测定的重复性如下表规定。 水分/% 重复性限Mad/% <5.00 0.20 5.00—10.00 0.30 >10.00 0.40 附: 仪器分析(内水测定简易操作步骤) 1准备好水/灰分坩埚,试验样品,样勺,检查控制线路和电源线路是否坚固好。 2打开电源,启动计算机。 3双击《SDT GA5000a 》软件 4单击《设置》中的《参数设置》,水分方法[自定义水]单击《保存》 5单击〈〈实验〉〉中的〈〈称样〉〉;称量项目[水分],测试方法[自定义水],试样个数[],新编号;单击〈〈开始〉〉,按提示操作(放入坩埚,加入试样),点击〈〈确认〉〉。该试验一般需用时30mi n。 6实验结束后,系统进入“恒温”状态。

环境项目原始记录表格

目录五日生化需氧量分析记录(Ⅰ) 2 五日生化需氧量分析记录(Ⅱ) 3 氯化物原始记录表 4 原子荧光分光光度计原始记录 5 COD分析原始记录表 6 二氧化氮分析原始记录表 7 氟化物分析原始记录表 8 无机含氮化合物分析原始记录表 9 阴离子表面活性剂分析原始记录表 10 总氮分析原始记录表 11 总硬度分析原始记录表 12 pH、电导率、水温分析原始记录 13 高锰酸盐指数原始记录 14 挥发酚分析原始记录表 15 甲醛分析原始记录表 16 全盐量分析原始记录表 17

总磷分析原始记录表 18 二氧化硫原始记录表 19 六价铬、总铬原始记录表 20 溶解氧原始记录表 21 氟化物电极法分析原始记录表 22 氟化物分光光度法分析原始记录表 23 工业企业厂界环境噪声测量记录 24 原子吸收分光光度法分析原始记录 25 水中苯系物的测定原始记录 26 环境空气苯系物的测定原始记录 27 社会生活环境噪声监测原始记录 29 地表水采样记录 30 污染源废水采样记录 31 大气环境采样记录 32 PM2.5、PM10、烟(粉)尘重量分析原始记录表 33 建筑噪声监测原始记录 34

五日生化需氧量分析记录(Ⅰ) 项目名称项目编 号分析项目样品性质仪器编号 检测依据采样日 期收样日期 培养时间年月日时室温℃ 至年月日时室温℃ 培养箱温度℃稀释水制备日期

分析者校核者审核 者 共页第页 五日生化需氧量分析记录(Ⅱ) 项目名称项目编 号分析项目样品性质仪器编号 检测依据采样日 期收样日期 培养时间年月日时室温℃ 至年月日时室温℃ 培养箱温度℃稀释水制备日期

煤中全水分的测定方法

8、煤中全水分的测定方法 本文介绍了洲定煤中全水的A 、B 、C 、D 四种方法的试剂、仪县设备、操作步骤、结果表达及精密度方法A 适用于各种煤;方法U 适用于烟煤和无烟煤:方法C 适用于烟煤和揭煤:方法D 适用于外在水分高的烟煤和无烟煤。 首先介绍对煤样的要求: 方法A 、B 和C采用粒度小于6mm的煤样.煤样且不少于500g;方法D 采用粒度小干13mm的煤样.煤样盆约2kg ( 1 )粒度小于13mm煤样技照GB474 的第6 . 13 进行制备。 ( 2 )粒度小于6mm煤样的制备. a 、破碎设备:破碎过程中水分无明显损失的破碎机。 b 、制备方法:用九点取样法从破碎到粒度小于13mm的煤徉中取出约2kB ,全部放入破碎机中.一次破碎到粒度小 于6mm.用二分粉迅速缩分出500g煤样,装入密封容器。 ( 3 )在侧定全水分之前,首先应检查煤样容器的密封情况.然后将其表面攘试干净.用工业天平称准到总质皿的0 . 1 % ,并与容器标签所注明的总质里进行核对。如果称出的总质t 小于标签上所注明的总质龟(不超过l % ) ,并且 能确定煤样在运送过程中没有损失时,应将减少的质里作为煤样在运送过程中的水分损失t .并计算出该t 对工样质盆的百分数(M1 ) .计入煤样全水分。称取煤样之前.应将密闭容路中的煤样充分混合至少lmin . 一、方法^(通氮干摄法) ( l )方法提要 称取一定盆粒度小于6mm的煤样,在干饭氮气流中、于105一110 ℃下干澡到质t 衡定,然后根据煤样的质t 损失计算出水分的含t . b 、无水抓化钙:化学纯,粒状。 c 、变色硅胶:工业用品。 ( 3 )仪器、设备 a 、小空间干饭箱:箱体严密,具有较小的自由空间,有气体进、出口,每小时可换气巧次以上,能保持温度在105-110 ℃ 范围内。 b 、玻璃称t 瓶:直径70mm.高35-40mm,并带有严密的磨口盆。 c 、千裸器:内装变色硅胶或杖状无水权化钙。 d 、分析天平:感级0 . 001g . c 、工业天平:感0 . 1g. f 、流t 计:侧t 范100-1000mL/min . g 、干澡塔:容t 25OmL .内较干澡剂。

环境监测系统原始记录表式(doc 118页)

浙江省环境监测系统原始记录表式 浙江省环境监测中心 二〇〇九年十二月

原始记录表目录 ZHJC/JL001 pH 、电导率、溶解氧、水温测试原始记录 ZHJC/JL002 离子选择性电极法分析原始记录 ZHJC/JL003 色谱分析原始记录(I ) 色谱分析原始记录(II ) 色谱分析原始记录(Ⅲ) ZHJC/JL004 浮游生物现场采样记录表 ZHJC/JL005 (冷)原子荧光 吸收 法分析原始记录 ZHJC/JL006 红外(非分散)分光光度法分析原始记录 ZHJC/JL007 原子吸收分光光度法分析原始记录 ZHJC/JL008 标准曲线和质控记录 ZHJC/JL009 分光光度法原始记录(I ) ZHJC/JL010 分光光度法原始记录(II ) ZHJC/JL011 容量分析法原始记录(I ) ZHJC/JL012 容量分析法原始记录(II ) ZHJC/JL013 容量分析法原始记录(Ⅲ) ZHJC/JL014 五日生化需氧量分析原始记录(I ) ZHJC/JL015 五日生化需氧量分析原始记录(II ) ZHJC/JL016 五日生化需氧量分析原始记录(Ⅲ) ZHJC/JL017 五日生化需氧量分析记录(Ⅳ) ZHJC/JL018 生化需氧量分析记录(Ⅰ) ZHJC/JL019 生化需氧量分析记录(Ⅱ) ZHJC/JL020 重量法分析原始记录 ZHJC/JL021 硫酸盐化速率分析原始记录 ZHJC/JL022 标准溶液配制及标定记录 ZHJC/JL023 标准物质配置记录 ZHJC/JL024 一般试剂配制记录 ZHJC/JL025 分析原始记录 ZHJC/JL026 色度分析原始记录 ZHJC/JL027 地表水采样和交接记录

水质检测方法总结(1)

水质 化学需氧量的测定(GB 11914--89) 1 应用范围 本标准适用于各种类型的含COD 值大于30mg/L 的水样,对未经稀释的水样的测定上限为700mg/L 。 本标准不适用于含氯化物浓度大于1000mg/L 的水样。 2 试剂配制 2.1 蒸馏水或同等纯度的水 2.2 硫酸银(Ag 2SO 4),分析纯 2.3 硫酸汞(HgSO 4),分析纯 2.4 硫酸(H 2SO 4),密度为1.84g/cm 3 2.5 硫酸银—硫酸:向500mL 硫酸中加入5g 硫酸银,放置1-2天使之溶解,并混匀,使用 前小心摇动。 2.6 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L :将12.258g 在105℃干燥2h 后的重铬酸钾溶于水中,稀释至1000mL 。 2.7 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L :溶解39g 硫酸亚铁 铵[(NH 4)2Fe(SO 4)2·6H 2O]于水中,加入20mL 硫酸,待其溶液冷却后稀释至1000mL 。 2.8 邻苯二甲酸氢钾标准溶液500mg/L :称取105℃时干燥2h 的邻苯二甲酸氢钾0.4251g 溶于水,并稀释至1000mL ,混匀。 2.9 1,10—菲啰啉指示剂溶液:溶解0.7g 七水合硫酸亚铁(FeSO 4·7H 2O )于50mL 水中, 加入1.5g 1,10—菲啰啉,搅动至溶解,加水稀释至100mL 。 3 试剂标定 3.1 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L 标定:每日临用前, 必须用重铬酸钾标准溶液准确标定此溶液的浓度。取10mL 重铬酸钾标准溶液置于 250mL 三角烧瓶中,用水稀释至约100mL ,加入30mL 硫酸,混匀,冷却后,加3滴1,10— 菲啰啉指示剂溶液,用硫酸亚铁铵标准滴定溶液滴定至溶液的颜色由黄色经蓝绿色变 为红褐色,即为终点。记录下硫酸亚铁铵的消耗量。 C[(NH 4)2Fe(SO 4)2·6H 2O] = V 50.2 式中:V ------ 滴定时消耗硫酸亚铁铵的毫升数。 3.2 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L 纯度及操作步骤检验:按操作步骤分

煤中全水分的测定方法16K(论文资料)

煤中全水分的测定方法GB/T 211—1996 代替GB 474—84 1 主题内容与适用范围 本标准规定了测定煤中全水分的A、B、C、D四种方法的试剂、仪器设备、操作步骤、结果表达及精密度。 方法A适用于各种煤;方法B适用于烟煤和无烟煤;方法C适用于烟煤和褐煤;方法D适用于外在水分高的烟煤和无烟煤。 2 引用标准 GB 474 煤样的制备方法 3 一般要求 3.1 煤样:方法A、B和C采用粒度小于6mm的煤样,煤样量不少于500g;方法D采用粒度小于13mm的煤样,煤样量约2kg。 3.2 煤样的制备: 3.2.1 粒度小于13mm煤样按照GB 474的第3.9条进行制备。 3.2.2 粒度小于6mm煤样的制备 3.2.2.1 破碎设备:破碎过程中水分无明显损失的破碎机。 3.2.2.2 制备方法:用九点取样法从破碎到粒度小于13mm的煤样中取出约2kg,全部放入破碎机中,一次破碎到粒度小于6mm,用二分器迅速缩分出500g煤样,装入密封容器。 3.3 在测定全水分之前,首先应检查煤样容器的密封情况,然后将其表面擦拭干净,用工业天平称准到总质量的0.1%,并与容器标签所注明的总质量进行核对。如果称出的总质量小于标签上所注明的总质量(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减少的质量作为煤样在运送过程中的水分损失量,并计算出该量对煤样质量的百分数(M1),计入煤样全水分。 3.4 称取煤样之前,应将密闭容器中的煤样充分混合至少1min。 4 方法A(通氮干燥法) 4.1 方法提要 称取一定量粒度小于6mm的煤样,在干燥氮气流中,于105~110℃下干燥到质量衡定,然后根据煤样的质量损失计算出水分的含量。 4.2 试剂 4.2.1 氮气(GB/T 8979):纯度99.9%以上。 4.2.2 无水氯化钙:化学纯,粒状。 4.2.3 变色硅胶:工业用品。 4.3 仪器、设备

常用水质检测方法

总氮 1.方法:碱性过硫酸钾消解紫外分光光度法 总磷 1.方法:钼酸铵分光光度法 化学需氧量(COD) 1.方法: 1.1.重铬酸盐法(重铬酸钾法):---国标 本方法适用于各种类型的含COD 值大于30mg/L 的水样,对未经稀释的水样的测定上限为700mg/L。 本方法不适用于含氯化物浓度大于1000mg/L(稀释后)的含盐水。 1.2. 密封催化消解法: 本方法可以测定地表水生活污水工业废水(包括高盐废水)的化学需氧量水样。因其 化学需氧量值有高有低,因此在消解时应选择不同浓度的重铬酸钾消解液进行消解。请参考下表选择消解液: 1.3. 催化快速法: 本方法适用于焦化,造纸,石化,化工,印染,皮毛,制革,酿造,试剂,冶金,木材,加工,日化,助剂,制药,化肥及食品加工等多种工业废水中化学需氧量的测定。 当使用30mm光程比色皿时不经稀释的废水COD值测定范围为60~1000 mg/L。 氯离子浓度高于900mg/L干扰测定。故在消化水样前加入硫酸汞,使其与氯形成络合物以消除干扰。氯离子高于900mg/L的水样,应先做定量稀释,使Cl-含量降至900mg/L以下再行测定。 五日生化需氧量(BOD5) 1.方法:稀释与接种法: 本方法适用于BOD5 大于或等于2mg/L 并且不超过6000mg/L 的水样。BOD5大于 6000mg/L 的水样仍可用本方法,但由于稀释会造成误差,有必要要求对测定结果做慎重的说明。 溶解氧(DO) 1.方法: 1.1.碘量法: 碘量法是测定水中溶解氧的基准方法。在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样。易氧化的有机物,如丹宁酸,腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时宜采用电化学探头法。

煤中全水分的测定方法 国标

煤中全水分的测定方法本标准适用于褐煤、烟煤和无烟煤的商品煤样、生产煤样和煤层煤样的全水分测定。全水分是指煤样在采取时所含水分的总量。 本标准规定测定煤中全水分的三种方法,其中方法A 仅适用于烟煤和无烟煤,并作为测定烟煤和无烟煤全水分的仲裁方法。而方法B 和C 适用于褐煤、烟煤和无烟煤,并以方法B 作为测定褐煤全水分的仲裁方法。 方法要点:煤样在105~110℃或145±5℃的干燥箱中干燥至恒重,以煤样的失重计算水分的百分含量。 1 仪器设备 1.1 干燥箱:内附鼓风机,并带有自动调温装置,温度能保持在105~110℃或145±5℃范围内。 1.2 浅盘:由镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成,其面积能以大约每平方厘米0.8g煤样的比例容纳500g 煤样。而且盘的重量应小于500g。 1.3 托盘天平:感量为1g 和5g 各一台。 1.4 干燥器:内装干燥剂(变色硅胶或未潮解的块状无水氯化钙)。 1.5 玻璃称量瓶:直径为70mm,高为35~40mm,并带有严密的磨口盖。 1.6 分析天平:感量为1mg。

2 煤样的制备 2.1 按照GB 474—83《煤样的制备方法》中第 3.9 条缩制煤样。 2.2 方法A 和B 采用最大粒度不超过13mm,煤样量约2kg。方法C 采用最大粒度不超过6mm,煤样量不应少于300g①。 2.3 在测定全水分之前,首先应检查装有煤样的容器的密封情况,然后将其表面擦拭干净,用托盘天平(1.3)称重②,并与容器上标签所注明的重量进行核对。如果称出的煤样毛重(即煤样与容器的总重量)小于标签上所注的毛重(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减轻的重量作为煤样在运送过程中的水分损失量。并计算出该量对煤样净重(标签上煤样毛重减去容器的重量)的百分数(W1),在计算煤样全水分时,应加入这项损失,并将容器中的煤样充分地混合。 注:①GB474—83《煤样的制备方法》中3.9.3 全水分煤样粒度小于3mm,煤样量100g 的规定改为本条的规定。 ②当煤样与容器的总重量不超过1kg 时,应采用感量为1g 的托盘天平进行称重。 3 测定步骤 3.1 方法A 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。将装有煤样的浅盘放入预先鼓风注并加热到105~110℃

相关主题
文本预览
相关文档 最新文档