当前位置:文档之家› 什么是负荷曲线

什么是负荷曲线

什么是负荷曲线
什么是负荷曲线

1、什么是负荷曲线,负荷曲线类型?

负荷曲线是表征电力负荷随时间变动情况的一种图形,反映了用户用电的特点和规律,纵坐标表示负荷,横坐标表示对应时间。

负荷曲线按负荷的功率性质不同,分有功负荷曲线和无功负荷曲线;按时间单位的不同,分日负荷曲线和年负荷曲线;按负荷对象不同,分用户,车间或某类设备负荷曲线。

2、日负荷曲线的特点、年负荷曲线的特点?

日负荷曲线特点:1.为方便计算,负荷曲线多绘成阶梯形。2.其时间间隔取得越短,曲线越能反映负荷的实际变化情况。3.日负荷曲线与横坐标所包围的面积代表全日所消耗的电能。年负荷曲线特点:1.??

3、什么是年最大负荷和年最大负荷利用小时、平均负荷和负荷系数

1.年最大负荷Pmax:年最大负荷是指全年中负荷最大的工作班内30分钟平均功率的最大值。

2.年最大负荷利用小时Tmax:是指以年最大负荷Pmax持续运行一段时间后,消耗的电能恰好等于该电力负荷全年实际消耗的电能。

3.平均负荷Pav:是指电力负荷在一定时间内消耗的功率的平均值。

4.负荷系数:是指平均负荷与最大负荷的比值,分有功负荷系数和无功负荷系数。

4、设备容量Pe的定义及其确定的方法。

将经过换算至统一规定的工作制下的“额定功率Pn”称为设备容量,用Pe表示

确定方法;1.长期工作制和短时工作制用电设备的设备容量就是该设备的铭牌额定功率。2.反复短时工作制的用电设备的设备容量是指某负荷持续率下的额定功率换算到统一的负荷

持续率下的功率。3.照明设备:不用镇流器的设备容量就是额定功率;用镇流器的Pe=Kbl*Pn (Kbl为镇流器的功率损耗系数)。

5、什么是计算负荷?

导体中通过一个等效负荷时,导体的最高温升正好和通过实际的变动负荷时其产生的最高温升相等,该等效负荷就称为计算负荷。

6、计算负荷的实用计算方法有哪些?各自适用的范围。重点掌握需要系数法。

1.故算法:在做设计任务书或初步设计阶段,尤其当需要进行方案比较缺乏准确的用电负荷资料时,按估算法计算较为方便。有单位产品耗电量法和负荷密度法。

2.需要系数法:在进行工程设计或施工设计时,需要对负荷做比较精确的计算,以便正确选择导体、电缆、开关电器和电气设备,计算方法有需要系数法。利用系数法、二项式法。

7、需要系数的定义、计算公式

在所计算的范围内(如一条干线、一段母线或一台变压器),用电设备组的计算负荷并不等于其设备容量,两者之间存在一个比值关系,因此引进需要系数的概念,即Pc=Kd*Pe(Kd

为需要系数;Pc为计算负荷,Pe为设备容量)。

8、需要系数法的计算步骤。

9、对于二项式法,各计算公式的各参数的意义。

10、需要系数法与二项式法的比较

11、功率损耗和电能损耗:掌握线路损耗、变压器损耗的计算方法,了解电能损耗。

12、掌握如何根据逐级计算法确定用户总负荷。

13、什么是尖峰电流,计算尖峰电流的目的,了解尖峰电流的计算方法。

尖峰电流Ipk是指单台或多台用电设备持续1~2s的短时最大负荷电流。

计算尖峰电流的目的时选择熔断器,整定低压短路器和继电保护装置,计算电压波动及检验电动机自启动条件等。

单台:Ipk=Ist=Kst*In(Ist为用电设备启动电流;In为用电设备的额定电流;Kst为用电设备的启动电流)

多台:Ipk=Ic+(Ist-In)max(Ic为全部设备投入运行时线路的计算电流,(Ist-In)max为用电设备组启动电流与额定电流之差中的最大电流)

14、功率因数提高的意义,掌握提高功率因数的具体方法。

功率因数太低将会给供配电系统带来电能损耗增加,电压损失增大和供电设备利用率降低等不良影响。

提高自然功率因数:1.合理选择电动机的规格、型号。2.防止电动机长时间空载运行。3.保证电动机的检修质量。4。合理选择变压器的容量。5.交流接触器的节电运行

人工补偿功率因数:1.并联电容器人工补偿。2.同步电动机补偿。3.动态无功功率补偿。

15、掌握无功功率补偿的计算

16、掌握电力电容器Δ形和Y形连接的特点。

采用Δ形接线时,任一电容器击穿短路时,将造成三相线路的两相短路,短路电流很大,有

可能引起电容器爆炸,这对高压电容器特别危险。

采用Y形连接时,在其中的一相电容器发生击穿短路时,其短路电流仅为正常工作电流的3

倍,运行相对比较安全

17、并联电容器的装设

1.高压集中补偿

2.低压集中补偿

3.单独就地补偿

18、补偿后用户的负荷和功率因数的计算

电力负荷与负荷曲线

电力负荷与负荷曲线 一、电力负荷 电力负荷,既可指用电设备或用电单位,也可指用电设备或用电单位所消耗的功率或线路中流过的电流。 (一)电力负荷的分级及其对供电电源的要求 电力负荷根据其对供电可靠性的要求及小断供电在政治、经济上所造成损失或影响的程度,分为下述三级。 1.一级负荷 这类负荷在供电突然中断时,将造成人身伤亡或给国民经济带来意大损失。如造成重大设备损坏、用重要原料生产的产品大量报废、重点企业的连续生产过程被打乱需要长时间才能 恢复等。 在一级负荷个特别重要的负荷又称为保安负荷,如溶故照明、通信系统、火灾报警装置、保 证安个少/’的计算机及自动控制装置等。保安负荷中断供电将导致爆炸、火灾、中毒、混乱等。 领负衬要求有两个独立电源供电,所谓独立电源是指此两个电源之间无立接联系,如任一电源因故障而停止供电,另一电源不受影响,能继续供电。对特别重要的负荷(保安负荷) 还必须备有应急电源,如蓄电池、胎陕速启动的柴油发电机、不间断电源装置(UPS)等。 2.二级负荷 这类负荷如突然停电,Atmel代理企业连续生产过程被打乱,且器要长时间才—6h恢复止常,或出现大 量废品或大量减产,在经济上造成较大的损失。这类负荷允许短时停电几分钟,它在企业中所 真的比审最大,通常化工厂连续性生产的大部分负荷多为二级负荷。 二级负荷原则k要求两路以上线路供电,并尽量做到当发生电力变压器或电力线路故障时不致中断供电。当负荷较小或地区供电困难时,也可出一路专线供电。 3.三级负荷 所有不届J:“、二级负荷的均为二级负荷,如化工厂“的机修辅助车间等。 三级负荷届不重要负荷,对供电电源无特殊要求。 (二)电力负荷的工作制 电力负荷拉用途分,打照明负荷和动力负荷。照明负荷为单相负荷,在三相系统仍良难做 到三相平衡;而动力负荷—般可视力三相平衡负荷 负荷和居民生活负荷等。 电力负荷(设备)技工作制可分卜述三类。 1.长期工作制 电力负荷按行业分,有工业负荷 这类设备长期连续运行,负荷比较稳定,例如,通风机、空气压缩机、电动发电机组、电炉和 照明灯等。机床电动机的负荷虽然变动较大,但大多也是长期连续工作的。 2.短时工作制 这类设备工作时间较短,而停歇时间相对较长,例如,机床上的某些辅助电动机(进给电

电力负荷预测方法与应用

电力负荷预测方法与应用 一、概述 电力工业是国民经济的基础工业。随着我国产业结构完善和人民整体生活水平的改善,对电能的需求逐年加大,同时对电力质量的要求也越来越高,且由于电能生产和消费的同时性,对电网建设和布局提出了更高的要求。 电力负荷预测是电网规划建设的依据和基础。随着电力工业在国民经济中扮演着越来越重要的角色,电力负荷的正确预测显得尤为重要。 电力负荷预测是指通过对电力系统负荷历史数据的分析和研究,运用统计学、数学、计算机、工程技术及经验分析等定性定量的方法,探索事物之间的内在联系和发展变化规律,对未来的负荷发展做出预先估计和推测。电力负荷预测结果的准确与否直接关系到电力投资的效益,供电的可靠性,用电需求的正常发展,以及社会的经济效益和社会效益。但要做到预测准确或较准确是很困难的,因为影响电力负荷预测的因素相当多,且由于各地区产业结构和人民生活水平不同,各具体因素对电力负荷预测的敏感度是不一样的,因而电力负荷预测具模糊性。 回顾我国“十五”期间的预测情况与实际发展情况是很有意义的。 基于“九五”期间国民经济和电力工业的发展状况,在全国电力供需趋于平衡的前提下,我国制定的“十五”规划对电力工业发展提出了“可持续发展”的要求:电力工业发展方式要从数量速度型向质量效益型转变,从以供给导向为主转向以需求导向为主,优化电力资源配置。国家经贸委电力工业“十五”规划中预测:“十五”期间我国经济增长速度为年均7%左右,电力需求的平均增长速度为5%,到2005年全国发电装机容量将达到3.9亿千瓦,全国发电量将达到17500亿千瓦时以上。国家电力公司电力工业“十五”计划及2015年远景规划中预测:“十五”期间我国GDP年均增长7%左右,电力需求的平均增长速度在4.5%~5.0%之间,到2005年全国发电装机容量将达到3.65亿千瓦,全社会用电量将达到16200亿~16600亿千瓦时。 但实际的情况是:截至2005年年底,全国发电装机容量达到5.17亿千瓦,全国发电量达到24975.26亿千瓦时,全社会用电量为24689亿千瓦时。 比较我国“十五”期间电力工业发展中发电装机容量、发电量与全社会用电量等参数的预测值与实际值,可以发现我国“十五”电力规划中全国发电装机容量、发电量和全社会用电量的误差分别高达33%、43%和50%,这还是在2002年下半年至2005年间严重限电情况下发生的值,实际的电力需求值比这还高很多,也即误差比这还要高的多。这直接导致了自2002年6月以来的全国电力供需严重紧缺状态,直至“十五”末期电力供需形势总体来说仍然处于紧张状态,2005年曾在一季度拉闸限电省份达创纪录的26个,最大限负荷达3400万千瓦。而“十五”期间的严重缺电,不仅成为影响国民经济快速发展的“瓶颈”,其隐性损失更是不可估量:

非线性电阻的伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。 图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表 示)。结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。

发动机负荷特性曲线(精)

发动机负荷特性曲线 2006-9-6 发动机诸性能特性中有一个叫做负荷特性,它是指当发动机转速一定时,经济性指标的有效比燃油消耗量随发动机负荷的变化关系。利用这一变化曲线,可最全面地确定发动机在各种负荷和转速时的经济性。 在了解负荷特性前,首先要知道有效比燃油消耗量是什么。 衡量汽车耗油量大小一般用汽车在规定的速度下行驶100公里路程的实际耗油量(升)计算。例如汽车技术参数上常见有“90公里/小时等速”时100公里耗油量的参数,这是衡量汽车经济性指标。衡量发动机经济性指标,工程技术人员用有效比燃油消耗量这一个指标,简称油耗率,用ge表示,它指每小时单位有效功率消耗的燃油量,单位是g/kw.h。当然,衡量发动机经济性还有其它指标,由于与本文关系不大不作介绍。 发动机分为汽油机和柴油机两大类。汽油机是依靠节气门调节负荷的,因此汽油机负荷特性又称节流特性;柴油机是靠改变喷油量来调节负荷的,通过喷油量变化改变混合气成份,因此柴油机负荷特性又称燃油调整特性。 由于发动机转速是经常变化的,需要测定发动机不同转速下的负荷特性,才能全面评价不同转速和不同负荷下发动机的燃油经济性。发动机负荷特性的读取在试验台架上进行。以汽油机为例,启动发动机后逐渐开启节气门,直至最大,同时调节载荷使发动机保持某一转速稳定运行,测定此工况下发动机输出功率及燃油消耗量。然后再关小节气门,调整载荷使发动机保持转速不变再测定。如此依次进行下去,直到发动机能保持稳定工作的最小节气门开度,得到不同负荷和转速下的燃油消耗量。不同转速下的发动机负荷特性曲线变化的趋势是差不多,只是具体数值的不同。 普通汽油机负荷特性曲线的特征,开始启动时ge最大(此时需要浓混合气),但随节气门逐渐开启负荷增大而ge减少直至最低点,此时节气门接近全开。继续开大节气门,ge又会开始上升,曲线呈现一条内凹抛物线。曲线的最小ge值越低越好,同时ge随负荷的变化越平缓,发动机在不同负荷下工作的经济牲越好。从曲线的形状,可以分析出哪一个负荷区域是最经济的。 汽油机负荷特性曲线

电力负荷预测方法

1.负荷预测分类和基础数据处理 1.1负荷预测及其分类 1.1.1负荷预测概念 负荷预测是根据负荷的历史数据及其相关影响因素,分析负荷的变化规律,综合考虑影响负荷变化的原因,使用一定的预测模型和方法,以未来经济形势、社会发展、气候条件、气象因素等预测结果为依据,估计未来某时段的负荷数值过程。 1.1.2负荷预测的分类 按照预测方法的参考体系,工程上的负荷预测方法可分为确定性预测方法、不确定预测方法、空间负荷预测法。 确定性:把电力负荷预测用一个或一组方程来描述,电力负荷与变量之间有明确的一一对应关系。 不确定性:实际电力负荷发展变化规律非常复杂,受到很多因素影响,这种影响关系是一种对应和相关关系,不能用简单的显示数学方程描述,为解决这一问题,产生了一类基于类比对应等关系进行推测预测负荷的不度额定预测方法。 空间负荷预测:确定和不确定负荷预测是对负荷总量的预测。空间负荷预测是对负荷空间分布的预测,揭示负荷的地理分布情况。

1.2负荷预测的基础数据处理 1.2.1负荷预测的基础数据 基础数据大致包括四类,分别为:①负荷数据(系统、区域、母线、行业、大用户的历史数据;负荷控制数据;系统、区域、大用户等的最大利用小时数;发电厂厂用电率和网损率。)②气象数据(整点天气预报;整点气象要素资料;年度气温、降水等气象材料。)③经济数据和人口(区域产业GDP;城乡可支配收入;大用户产量、产值和单耗;电价结构和电价政策调整;城乡人口。)④其他时间(特殊时间如大型会议、自然灾害;行政区域调整) 1.2.2数据处理 为获得较好的预测效果,用于预测数据的合理性得到充分保证,因此需要对历史数据进行合理性分析,去伪存真。最基本要求是:排除由于人为因素带来的错误以及由于统计口径不同带来的误差。另外,尽量减少异常数据(历史上突发事件或由于某些特殊原因会对统计数据带来宠大影响)带来的不良影响。常见的数据处理方法有:数据不全、数据集成、数据变换和数据规约等。 2.确定性负荷预测方法 2.1经验技术预测方法 2.1.1专家预测法 专家预测发分为专家会议发和专家小组法。会议发通过召集专家开会,面对

电阻伏安特性

实验19 电阻伏安特性及电源外特性的测量 一、实验目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线; 2. 学习测量电源外特性的方法; 3. 掌握运用伏安法判定电阻元件类型的方法; 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法。 二、实验仪器 直流恒压源恒流源,数字万用表,各种电阻11只,白炽灯泡1只(12V/3W)及灯座,稳压二极管(2CW56),电位器(470/2W),短接桥和连接导线及九孔插件方板 三、实验原理 1. 电阻元件 (1)伏安特性 (a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。根据

测量所得数据,画出该电阻元件的伏安特性曲线。 (2)线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。可表示为:U=IR ,其中R 为常量,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图19-1(a )所示。 (3)非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,其伏安特性是一条过坐标原点的曲线,如图19-1(b )所示。 (4)测量方法 在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。 2. 直流电压源 (1)直流电压源 理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。因此它的外特性曲线是平行于电流轴的直线,如图19-2(a )中实线所示。实际电压源的外特性曲线如图19-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图19-2(b )所示。图19-2(a )中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= (19-1) (2)测量方法 将电压源与一可调负载电阻串联,改变负载电阻R 2的阻值,测量出相应的电压源电

读懂发动机特性曲线图

读懂发动机特性曲线图,看看加速与节油性能 我和各位车友一样,开始时对发动的性能到底如何,是一头雾水,但要想了解发动机的性能,那么就必须读懂——发动机特性曲线图。本人整理了一些网上收集到的资料,提供给各位车友。 一、什么是发动机转速特性曲线图? 发动机转速特性曲线——也有叫发动机工况图,是将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,简称为发动机特性曲线。 如果发动机节气门全开,此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能 跑多快,有没有劲。 从“图1”可以看出,转速在ntq点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。

图1 二、如何由曲线图判断发动机性能: 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。 起步加速能力: 图2 拿到一张发动机曲线图,如“图2”,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持

负荷预测方法一

1、单耗法 这个方法是根据预测期的产品产量(或产值)和用电单耗计算需要的用电量,即 A h =∑=n i 1Q i U i 式中 A h —某行业预测期的需电量; U i —各种产品(产值)用电单耗; Q i —各种产品产量(或产值)。 当分别算出各行业的需用电量之后,把它们相加,就可以得到全部行业的需用电量。这个方法适用于工业比重大的系统。对于中近期负荷预测(中期负荷预测的前5年),此时,用户已有生产或建设计划,根据我国的多年经验,用单耗法是有效的。 在已知某规划年的需电量后,可用年最大负荷利用小时数来预测年最大负荷,即 P n·max =T A n m ax 式中 P n·max —年最大负荷(MW ); A n —年需用电量(k W·h ); T max —年最大负荷利用小时数(h )。 各电力系统的年最大负荷利用小时数,可根据历史统计资料及今后用电结构变化情况分析确定。 单耗法分产品单耗法和产值单耗法。采用单耗法预测负荷的关键是确定适当的产品单耗或产值单耗。 单耗法可用于计算工业用户的负荷预测。 单耗法可根据第一、第二、第三产业单位用电量创造的经济价值,从预测经济指标推算用电需求量,加上居民生活用电量,构成全社会用电量。预测时,通过对过去的单位产值耗电量(以下简称“单耗”) 进行统计分析,并结合产业结构调整,找出一定的规律,预测规划第一、第二、第三产业的综合单耗,然后根据国民经济和社会发展规划指标,按单耗进行预测。单耗法需要做大量细致的统计、分析工作,近期预测效果较佳。 单耗法的优点是方法简单,对短期负荷预测效果较好。缺点是需做大量细致的调研工作,比较笼统,很难反映现代经济、政治、气候等条件的影响。

电力负荷预测方法

1.负荷预测分类和基础数据处理 负荷预测及其分类 负荷预测概念 负荷预测是根据负荷的历史数据及其相关影响因素,分析负荷的变化规律,综合考虑影响负荷变化的原因,使用一定的预测模型和方法,以未来经济形势、社会发展、气候条件、气象因素等预测结果为依据,估计未来某时段的负荷数值过程。 负荷预测的分类 按照预测方法的参考体系,工程上的负荷预测方法可分为确定性预测方法、不确定预测方法、空间负荷预测法。 确定性:把电力负荷预测用一个或一组方程来描述,电力负荷与变量之间有明确的一一对应关系。 不确定性:实际电力负荷发展变化规律非常复杂,受到很多因素影响,这种影响关系是一种对应和相关关系,不能用简单的显示数学方程描述,为解决这一问题,产生了一类基于类比对应等关系进行推测预测负荷的不度额定预测方法。 空间负荷预测:确定和不确定负荷预测是对负荷总量的预测。空间负荷预测是对负荷空间分布的预测,揭示负荷的地理分布情况。 负荷预测的基础数据处理 负荷预测的基础数据 基础数据大致包括四类,分别为:①负荷数据(系统、区域、母线、行业、大用户的历史数据;负荷控制数据;系统、区域、大用户等的最大利用小时数;发电厂厂用电率和网损率。)②气象数据(整点天气预报;整点气象要素资料;年度气温、降水等气象材料。)③经济数据和人口(区域产业GDP;城乡可支配收入;大用户产量、产值和单耗;电价结构和电价政策调整;城乡人口。)④其他时间(特殊时间如大型会议、自然灾害;行政区域调整)

数据处理 为获得较好的预测效果,用于预测数据的合理性得到充分保证,因此需要对历史数据进行合理性分析,去伪存真。最基本要求是:排除由于人为因素带来的错误以及由于统计口径不同带来的误差。另外,尽量减少异常数据(历史上突发事件或由于某些特殊原因会对统计数据带来宠大影响)带来的不良影响。常见的数据处理方法有:数据不全、数据集成、数据变换和数据规约等。 2.确定性负荷预测方法 经验技术预测方法 专家预测法 专家预测发分为专家会议发和专家小组法。会议发通过召集专家开会,面对面讨论问题,每个专家充分发表意见,并听取其他专家意见。小组法以书面形式独立发表个人见解,专家之间相互保密,最后综合给出预测结果。 类比法 类比法是将类似失误进行分析对比,通过已知事物对未知事物做出预测。例如选取国内外类似城市或地区为类比对象,参考该对象的发展轨迹对本地区作出预测。 主观概率发 请若干专家来估计某特定时间发生的主观概率,然后综合得出该时间的概率。 经典技术预测方法 单耗法 通过某一工业产品的平均单位产皮用电量以及该产品的产量,得到生产这种产品的总用电量。 用电量A=国民生产总之或工农业总产值b*产值单耗g

中长期负荷预测方法综述1

中长期负荷预测方法综述 摘要:负荷预测是电力系统规划、供电、调度等部门的重要的基础工作,讨论了负荷预测的特点、分类及各种成熟的负荷预测技术,研究了现代负荷预测技术的发展动态,并指出未来主要的研究方向。 中长期负荷预测各种预测方法都具有其各自的优缺点和适用范围,在实际预测工作中,必须根据实际情况,着重从预测目标、期限、精确度等诸多方面作出合理选择,寻求能获取所需精度的预测方法。本文针对电力系统中长期电力负荷预测方法做出分析。 关键字:负荷预测、中长期负荷、负荷预测方法、负荷预测综述 正文:负荷预测是从已知的电力需求出发,通过对历史数据的分析, 并考虑政治、经济、气候等相关因素,对未来的用电需求做出估计和预测。负荷预测是电力系统规划、供电、调度等部门的重要的基础工作。对于经济合理地安排发电机组的启停及检修计划,保持电网安全稳定运行以及未来电网的增容和改建等有十分重要的用。 电力系统负荷预测是电力系统安全经济调度、规划、设计研究的基础和前提,准确的负荷预测结果将意味着在满足供电质量要求的条件下对系统建设资金最大可能限度的利用和有限投资的最大社会经 济效益的获得,负荷预测工作因而引起了人们的普遍关注随着电力 系统的迅速发展尤其是我国电力工业市场化改革的推行负荷预测 工作面临如何准确合理地考虑电力工业市场化后对实际电力负荷从大小到特性上的影响和给整个系统运行规划带来的变化的难题可以

设想在强大的市场压力和竞争机制作用下适用于电力市场环境下 的负荷预测理论和算法必将获得突破性研究成果 随着我国国民经济的快速发展和人民生活水平的不断提高,人们对电量需求量以及电能质量的要求也越来越高。、 一、基于参数模型的中长期电力负荷预测方法 1.趋势外推方法。将已有的各年度的电力负荷看作一个时间序列,利用最小二乘拟合等方法寻求电力负荷与时间的函数关系,并利用这个函数关系预测以后年度的电力负荷。趋势外推方法可以保证对历史数据的拟合是最好的,但不能保证外推效果的可靠性。 2.回归分析方法。回归分析预测是电力系统负荷预测的一种常用方法,根据回归分析涉及变量的多少,可以分为单元回归分析和多元回归分析。在回归分析中,随机变量是自变量,非随机变量是因变量,由给定的多组自变量和因变量资料究二者之间的关系,形成回归方程。回归方程求得后,给定各自变量数值,就可求出因变量值。回归方程根据自变量和因变量之间的函数形式,又可分为线性回归方程和非线性回归方程。在负荷回归分析法方法简单、预测速度快、外推性好,对于历史预测问题中,回归方程的因变量一般是电力系统负荷,自变量是影 响电力系统负荷的各种因素,如经济、人口、气候等。上未出现的情况有较好的预测性。但它对数据的要求高,特别是历史数据残缺或存在较大误差的情况下,预测效果很不理想;用线性方法描述比较复杂

发动机的外特性和负荷特性

发动机的外特性和负荷特性 发动机的外特性和部分特性统称发动机的速度特性。它是指在正常温度、正常机油压力点火提前角(或喷油提前角)以及燃料供给系的调整均在最佳状态下,使节气门开度(或供油调节杆)保持在一定位置不变,发动机的有效扭矩(Me)、有效功率(Pe)以及油耗率(βe)随发动机转速而变化的规律,速度特性曲线是在节气门开度固定于某一开度下(或在供油调节杆固定于一定位置下),依次改变发动机转速,在每一转速下测算Pe、Me、mT、βe,就可得到节气门在该开度下的特性曲线,如果改变节气门开度,如从小到大,就可得到许多条速度特性曲线,但常采用节气门开度为25%、50%、75%和100%时的曲线作为代表,节气门开度为100%(全开)时的特性称为发动机的外特性,该开度下的特性曲线称为外特性曲线。节气门开度在其他情况下得到的特性称为部分特性,其相应开度下的特性曲线都称之为部分特性曲线,由此可见,一台发动机,部分特性有无数个,而外特性只有一个。因为发动机外特性是在节气门全开或油量调节杆处于最大供油量时测定的,所以外特性曲线上的每一点表示着发动机在不同转速下所能发出的最大功率和最大扭矩,因此,通过发动机的外特性可以得知发动机所能达到的最高性能指标以及对应于Pemax、Memax和βemax时的转速,也可以计算出扭矩适应性系数(或称扭矩储备系数)。一般发动机铭牌上标明的功率、扭矩及相应的转速都是以外特性为依据的。因此,外特性在速度特性中最为重要。发动机诸性能特性中有一个叫做负荷特性,它是指当发动机转速一定时,经济性指标的有效比燃油消耗量随发动机负荷的变化关系。利用这一变化曲线,可最全面地确定发动机在各种负荷和转速时的经济性。 在了解负荷特性前,首先要知道有效比燃油消耗量是什么。 衡量汽车耗油量大小一般用汽车在规定的速度下行驶100公里路程的实际耗油量(升)计算。例如汽车技术参数上常见有“90公里/小时等速”时100公里耗油量的参数,这是衡量汽车经济性指标。衡量发动机经济性指标,工程技术人员用有效比燃油消耗量这一个指标,简称油耗率,用ge表示,它指每小时单位有效功率消耗的燃油量,单位是g/kw.h。当然,衡量发动机经济性还有其它指标,

什么是负荷曲线

1、什么是负荷曲线,负荷曲线类型? 负荷曲线是表征电力负荷随时间变动情况的一种图形,反映了用户用电的特点和规律,纵坐标表示负荷,横坐标表示对应时间。 负荷曲线按负荷的功率性质不同,分有功负荷曲线和无功负荷曲线;按时间单位的不同,分日负荷曲线和年负荷曲线;按负荷对象不同,分用户,车间或某类设备负荷曲线。 2、日负荷曲线的特点、年负荷曲线的特点? 日负荷曲线特点:1.为方便计算,负荷曲线多绘成阶梯形。2.其时间间隔取得越短,曲线越能反映负荷的实际变化情况。3.日负荷曲线与横坐标所包围的面积代表全日所消耗的电能。年负荷曲线特点:1.?? 3、什么是年最大负荷和年最大负荷利用小时、平均负荷和负荷系数 1.年最大负荷Pmax:年最大负荷是指全年中负荷最大的工作班内30分钟平均功率的最大值。 2.年最大负荷利用小时Tmax:是指以年最大负荷Pmax持续运行一段时间后,消耗的电能恰好等于该电力负荷全年实际消耗的电能。 3.平均负荷Pav:是指电力负荷在一定时间内消耗的功率的平均值。 4.负荷系数:是指平均负荷与最大负荷的比值,分有功负荷系数和无功负荷系数。 4、设备容量Pe的定义及其确定的方法。 将经过换算至统一规定的工作制下的“额定功率Pn”称为设备容量,用Pe表示 确定方法;1.长期工作制和短时工作制用电设备的设备容量就是该设备的铭牌额定功率。2.反复短时工作制的用电设备的设备容量是指某负荷持续率下的额定功率换算到统一的负荷 持续率下的功率。3.照明设备:不用镇流器的设备容量就是额定功率;用镇流器的Pe=Kbl*Pn (Kbl为镇流器的功率损耗系数)。 5、什么是计算负荷? 导体中通过一个等效负荷时,导体的最高温升正好和通过实际的变动负荷时其产生的最高温升相等,该等效负荷就称为计算负荷。 6、计算负荷的实用计算方法有哪些?各自适用的范围。重点掌握需要系数法。 1.故算法:在做设计任务书或初步设计阶段,尤其当需要进行方案比较缺乏准确的用电负荷资料时,按估算法计算较为方便。有单位产品耗电量法和负荷密度法。 2.需要系数法:在进行工程设计或施工设计时,需要对负荷做比较精确的计算,以便正确选择导体、电缆、开关电器和电气设备,计算方法有需要系数法。利用系数法、二项式法。 7、需要系数的定义、计算公式 在所计算的范围内(如一条干线、一段母线或一台变压器),用电设备组的计算负荷并不等于其设备容量,两者之间存在一个比值关系,因此引进需要系数的概念,即Pc=Kd*Pe(Kd

教您读懂发动机特性曲线图

教您读懂发动机特性曲线图 2009年11月09日星期一 12:41 如果说发动机是汽车的心脏,那么发动机特性曲线图则是这颗心脏的“健康证书”,读懂这份“证书”才能使广大同学对一款车的性能有更为清楚、客观的认识。所以,此次我们便来认识这份证书——发动机特性曲线图。 一、什么是发动机特性曲线图? 大家在读各种杂志和汽车厂商的宣传资料中会发现有发动机特性曲线(也有叫发动机工况图),将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,此曲线称为发动机转速特性曲线或简称为发动机特性曲线;如果发动机节气门全开(柴油机高压油泵在最大供油量位置),此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。 以上是较为专业的定义解释,但其实通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能跑多快,有没有劲。 从图1可以看出,转速在ntq 点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。 图1 二、如何由曲线图判断发动机性能 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。

起步加速能力 图2 拿到一张发动机曲线图,如图2,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持在最高扭矩转速附近,这样我们就可以用更短的时间提高车速。 超车能力

负荷预测的几种方法及其应用

负荷预测的几种方法及其应用 摘要:在电力改革进一步深入、电力市场逐步形成、电力企业自主经营、自负盈亏的今天,电力负荷预测工作开始越来越重要。科技发展为预测提供了各种理论和方法,通过对电力负荷预测,对预测方法及其应用进行初步探讨。 关键词:电力负荷预测方法应用 1趋势分析法 趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(Logistic)模型、龚伯茨(Gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利

用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kWh和85.08亿kWh。拟合曲线如图1所示。 2回归分析法 回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。 对珠海市历年用电量和国内生产总值GDP、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727GDP+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kWh和70.98亿kWh。 回归分析预测方法是要通过对历史数据的分析研究,探索经济、社会各有关因素与电力负荷的内在联系和发展变化规律,并根据对规划期内本地区经济、社会发展情况的预测来推算未来的负荷。可见该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。 3指数平滑法 趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组

发动机特性曲线

161 161 第11章 发动机特性 11.1基本概念 全面了解发动机在所有工况下的性能指标的变化,对合理使用、检查与维修发动机,都有很强的适用价值。 11.1.1 发动机特性与特性曲线 1.发动机特性 发动机性能指标随调整情况及运转情况而变化的关系称为发动机特性。发动机性能指标主要有功率、转 矩、燃料消耗率、排气温度、排气烟度等; 调整情况主要指柴油机的供油提前角、汽油 机的点火提前角、发动机燃料等可调因素对 发动机性能的影响;运转情况一般指发动机 转速和负荷等。 2.特性曲线 为了直观显示发动机的特 性,常以曲线形式表示,称为发动机特性曲 线。图11-1为Audi (奥迪) 2.4L 四缸5 气门汽油机的外特性曲线。 3.发动机特性分类 发动机特性分调节特性和性能特性两大 类。 (1)调节特性 指发动机的性能指标随 调节情况而变化的关系。如柴油机的供油提 前角调节特性、汽油机的点火提前角调节特 性、汽油机的燃料调节特性等。 (2)性能特性 指内燃机的性能指标随 运行工况而变化的关系。如负荷特性、速度特性、调速特性、万有特性、螺旋桨特性等。 图11-1 发动机特性曲线 (Audi 2.4L5气门V6汽油机外特性)

162 162 11.1.2 发动机特性的制取 发动机特性需在专门的试 验台(俗称发动机台架)上进 行,图11-2显示了带水力测功 器的试验台的基本组成。它可 以模拟发动机的实际工况,使 其在要求的转速和负荷下工 作,并可以同步测量发动机在 各种工况下的功率、燃料消耗、 废气排放、气缸压力等性能参 数。 发动机特性试验,国家已 有标准,需按有关标准,在规 定的条件下进行。 11.2 发动机调节特性 发动机调节特性对发动机的正确调整、使用与维修关系 密切,值得重视。 11.2.1 柴油机供油提前角 调节特性 它是指在发动机转速一定和油量控制机构(如喷油泵的供油拉杆)位置一定条件下,其功率、燃料消耗率等性能指标随供 油提前角变化而变化的关系。 图11-3为柴油机供油提前角调节特性曲 线。由曲线可见,随着供油提前角θ的改变, 发动机的功率与燃料消耗率也随着变化。对应 于最大功率和最小燃料消耗率的供油提前角即 为最佳供油提前角。发动机使用维修时,应注 意按照使用说明书要求,检查调整发动机静态 最佳供油提前角。 最佳供油提前角是随着发动机的转速变化 而变化的,它一般由供油提前角自动调节装置 来控制。对于电控柴油机,则由ECU 根据发动 机工况精确控制。 11.2.2 汽油机点火提前角调节特性 它是指在发动机转速和节气门开度一定条件下,其功率、燃料消耗率等性能指标随点火提前角变化而变化的关系。 图11-2 发动机试验台 1-发动机 2-数显水温表 3-数显油压表 4-数显排温表 5-油门执行器 6-转速表 7- 负荷表 8-水门执行器 9-水温传感器 10-油压传感器 11-排温传感器 12-气 缸压力传感器 13-油压传感器 14-针阀升程仪 15-电 荷放大器 16-电荷放大器 17-霍尔针阀传感器 18-示波器 19-水力测功器 20-转角信号发生器 21-电荷放大器 22-A/D转换板 23-微机 24-打印机 25-显示器 图11-3 柴油机供油提前角调

影响电力负荷预测因素的探究

影响电力负荷预测因素的探究 摘要:首先简要介绍了电力负荷预测的概念,分析和总结了影响电力负荷预测结果准确度的各种因素,提出了提高电力负荷预测的建议。 关键词:负荷预测影响因素建议 负荷预测是从已知的用电需求出发,考虑政治、经济、气候等相关因素,对未来的用电需求做出的预测。在电网运行管理当中,负荷预测是重要工作,直接关系到电力系统备用容量的科学安排,电力系统运行的优质安全,资源配置利用的优化,乃至电力营销以及市场交易。电力需求量的预测决定发电、输电、配电系统新增容量的大小;电能预测决定发电设备的装机类型。电力负荷预测中通常按时间期限分为长期、中期、短期和超短期负荷预测。 1 电力负荷预测的影响因素 在电力负荷预测中,很多因素不同程度地影响着电力荷的预测值。有些因素因自然而变化,比如气象。有些因按地区条件产生差异,如工农业发展速度;有些因素是无估计的重大事件,如严重灾害等,并且各个因素对负荷的响可能是不一样的,而且同一因素的不同水平对负荷的影也是不同的。 1.1气象因素的影响,很多负荷预测数学模型都引入了气象部门提供的气象预报信息,包括温湿度、雨量等在内的气象因素都会直接影响负荷波动,尤其在居民负荷占据较高比例的地区,这种影响更大。由于天气变化大,负荷大幅波动,造成负荷预测的难度加大。近两年来,随着大家生活水平的提升,空调在家庭中的普及让居民家庭的降温负荷日益加剧。所以气温突变很可能导致夏季负荷预测准确率降低。就目前的天气预报内容而言,其预报信息只能大概呈现次日天气及气温的大概情况,拿雷雨天气为例,雷电方位、大小以及时间长短等都无法准备预告,而这些都会导致地区负荷曲线的突然变化,复测预测在这方面精度不高的现象也就比较容易发生。与此同时,部分地区在旱情比较严重的时候,人工增雨措施的展开也给符合预测带来一定的难度,由于这方面信息的不同步以及相关作业效果的无法预测,负荷预测偏差较大也是可能出现的。 1.2节假日及特殊条件的影响,较之正常工作日,一般节假日的负荷都会明显降低,以春节为例,春节期间的负荷曲线一般会出现大幅度的下降变形,而其变化周期也大致与假日周期吻合。在和正常工作日的横向比较中,节假日期间可供研究的负荷数据较少,各种随机波动因素都会干扰符合。不过就同一节假日的纵向比较来说,每年的负荷曲线都呈现出比较相似的变化趋势。这也能为节假日负荷预测提供可借鉴的依据。 1.3大工业用户突发事件的影响对于大工业用户装接容量占用电负荷较高的地区,大工业用户在负荷预测偏差中起到的影响作用也比较大。一般情况下,大工业用户连续生产情况下日常用电负荷相对稳定。不过自身的设备原因或外部因

伏安特性曲线

(一)线性电阻的伏安特性曲线 由图可知,伏安特性曲线的斜率为0.9944,故实验测得线性电阻阻值为1/994.4=1005.6Ω。 实际电阻的标称值为1000Ω,相对误差为E=(|1000-1005.6|/1000)*100%=0.56%。 误差原因:实验中采用电流表内接法,电压表的读数包括了电流表的压降,因此计算所得电阻为电流表内阻和线性电阻之和,偏大。 (二)半导体二极管伏安特性曲线 1、正向特性 U/V 2.0 4.0 6.0 8.0 10.0 I/mA 1.992 3.976 5.956 7.953 9.947 U/V 0.20 0.40 0.60 0.62 0.64 0.66 0.68 0.70 I/mA 0.004 0.004 0.013 0.023 0.042 0.084 0.173 0.359

2、反向特性 U/V 2.00 4.00 6.00 6.20 6.40 6.60 6.80 I/mA 0.004 0.004 0.004 0.004 0.004 0.004 8.034 (三)理想电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 10.032 10.032 10.031 10.030 10.030

(四)实际电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 9.406 8.853 8.545 7.842 7.421 由公式U=Us-IRs,伏安特性曲线的斜率为电源内阻,可求得实际电源内阻49.8Ω. 实验中,实际内阻为51.2Ω,相对误差为E=|51.2-51|/51*100%=0.39%。 误差原因:实验中采用电流表外接法,电流表的读数包括了电压表中的电流,因此,根据公式U=Us-IRs计算所得电阻值偏小。

(完整版)电力负荷预测方法

电力负荷预测方法 朋友们大家好,很高兴与大家分享一下电力方面的知识。本节摘要是:负荷预测方法可分为确定性负荷预测方法和不确定性负荷预测方法。确定性负荷预测方法是把电力负荷预测用一个或一组方程来描述,电力负荷与变量之间有明确的一一对应关系,包括时间序列预测法、回归分析法、经典技术预测法、趋势外推预测法等。不确定性预测方法基于类比对应等关系进行推理预测的,包括灰色理论预测法、专家系统法、模糊预测法、神经网络法、小波分析预测法等。 关键字:电力负荷预测方法... 负荷预测是电力系统调度的一个重要组成部分,是电力交易的主要数据源,也是电力系统经济运行的基础,任何时候,电力负荷预测对电力系统规划和运行都极其重要。近几年,随着我国电力供需矛盾的突出集电力工业市场化运营机制的推行,电力负荷预测的准确度有待进一步提高。 负荷预测方法可分为确定性负荷预测方法和不确定性负荷预测方法。 确定性负荷预测方法是把电力负荷预测用一个或一组方程来描述,电力负荷与变量之间有明确的一一对应关系,包括时间序列预测法、回归分析法、经典技术预测法、趋势外推预测法等。

而为了解决实际电力负荷发展变化规律非常复杂不能用简单的显式数学方程来描述期间的对应和相关这一问题,许多专家学者经过不懈努力,把许多新的方法和理论引入到负荷预测中来,产生了一类基于类比对应等关系进行推理预测的不确定性预测方法。包括灰色理论预测法、专家系统法、模糊预测法、神经网络法、小波分析预测法等。 <一> 确定性负荷预测方法 一、时间序列预测法 时间序列分析法利用了电力负荷变动的惯性特征和时间上的延续性,通过对历史数据时间序列的分析处理,确定其基本特征和变化规律,预测未来负荷。 时间序列预测是依据电力负荷的历史数据建立一个时间序列的数学模型,通过时间序列的数学模型可以描述这个时间序列变换的规律性,同时在数学模型的基础上建立电力负荷预测的数学表达式,并对未来的负荷进行预测。电力负荷时间序列预测方法主要包括自回归AR(p)模型、滑动平均MA(q)模型和自回归与滑动平均ARMA(p,q)模型等。 按照处理方法不同,时间序列法分为确定时间序列分析法和随机时间序列分析法。时间序列模型的缺点在于不能充分利用对负荷性能有很大影响的气候信息和其他因素,导致了预报的不准

相关主题
文本预览
相关文档 最新文档